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Long-time limit of the self-correlation-function of one-dimensional diffusion
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Considering the random walk of the vacancies in a one-dimensional (single-file) system, the moments

of the probability distribution curves of molecular displacements are calculated yielding a Gaussian dis-

tribution curve.

PACS number(s): 05.60.+w, 66.30.Dn, S1.10.+y

The treatment of molecular propagation in linear sys-
tems where the molecules are unable to pass each other
(single-file systems) is substantially facilitated by consid-
ering the displacements of the individual vacancies [1].
Interpreting the elementary step of molecular migration
as an exchange process between an occupied and a vacant
site, the displacement s (t) of an arbitrarily selected
diffusant (molecule) during a time interval t may be
represented as [2]

s(t)=1+ [f(m„(t))—f(mt, (0))],
k

where l stands for the step length, and where lmk(t)
denotes the separation between the kth vacancy and the
molecule under consideration. The function f (m ) is
defined by the relation

+ —,
' for m)0

for m (0 (2)
2

Since the positions of the individual vacancies are in-
dependent from each other, with Eq. (1) the mean-square
displacement becomes

(s'(i)) =('( gf(ma(()) —f(mk(0)) ')

=&'g ([f(m„(t))—f(m„(0))]'),

where the sum is to be extended over all vacancies. Obvi-
ously, only those vacancies contribute to the sum, which
at time zero and at time t are on opposite sides of the
considered molecule. In Ref. [2], this sum was calculated
by integrating the self-correlation function of vacancy
diffusion over the two half- spaces on the left and on the
right of the considered molecule, yielding in a few lines
Fedder's classical result [3]

(4)

where 0 denotes the relative site occupancy.
In this calculation the self-correlation function of va-

cancy diffusion has been postulated to be governed by a
diffusivity D„which is related to the diffusivity

D, ,„=l /(2r)

of an isolated vacancy by

D, =D, ,„/B =l /(2&B ) .

This assumption may be rationalized in the following
way: In an array of occupied sites with only one vacancy
at position m, the probability of finding this vacancy at
site m' after time t is obviously given by the standard
diffusion expression

P, ,„(m,m ', t) = [l /(4rrD, ;„t)]'
X exp[ —( lm —lm ') /(4D, ;„t)] . (7)

On the other hand, Eq. (7) may be also interpreted as the
probability that after time t a vacancy initially at position
m has disappeared from this position (and with it from
the whole interval m, . . . , m'), and has appeared at posi-
tion m'. This interpretation may even be preserved if
there are several vacancies, i.e., in the case of nonisolated
vacancies. Now one has to drop, however, the implica-
tion that the vacancy appearing at position m is identi-
cal with the vacancy initally at position m, since as soon
as two vacancies are in contact with each other they are
indistinguishable. However, it is just with respect to this
broader interpretation that the self-correction function of
vacancy diffusion is used: a particular molecule within a
single-file system is shifted by one step if a vacancy disap-
pears on one side of the molecule and appears on the oth-
er side, irrespective if it is "the same" or "another" va-
cancy. With this understanding, vacancy propagation
within a single-file system with a finite number of vacan-
cies may be easily derived from the propagation of a sin-
gle vacancy within a completely occupied single-file sys-
tem by simply inserting the relevant number of vacancies
between the occupied sites. With respect to vacancy
propagation such a procedure does not effect anything
else than a broadening of the probability distribution cor-
responding to the dilatation of the space scale by 1/0 as
brought about by the insertation of the vacancies. The
self-correlation function of vacancy diffusion in the case
of a finite number of vacancies P, (m, m ', t) may be simply
derived, therefore, from P, ;„(m,m', t) as given by Eq. (7)
by replacing D„;„by D, ;„/B, in complete agreement
with Eq. (6).

Studying transport phenomena experimentally, e.g. , by
means of quasielastic neutron scattering [4] or pulsed-
field gradient NMR [5], one is generally concerned with
the complete probability distribution curve of molecular
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displacement P (s, t) (synonymous expressions are "propa-
gator" or "self-correlation function of molecular
diffusion" [6]) rather than only with the mean-square dis-
placement. While in the case of ordinary diffusion it is
well known that the distribution curve is given by a
Gaussian function, besides Monte-Carlo simulations
there are no adequate analytical considerations for the
case of single-file diffusion in the literature [7]. In the fol-
lowing it shall be demonstrated that the method used in
Ref. [2] for the determination of the mean-square dis-
placement may be also applied to calculate the complete

I

distribution curve P (s, t) in a straightforward way.
P(s, t) is determined if all moments &s "(t) & are known.

Using Eq. (1), the nth moment may be represented as

(s"(t't)=l" 'xq~ "),
k

where we have used the notation y„=f(m„(t))
f(m—k(0)). Due to symmetry reasons, on calculating

the right-hand side of Eq. (8) all terms containing cpk with
i =odd vanish, yielding

pk ) x x(lpk pk ) x(gk )+x Qipk ~(pk ~+x x~0k ~~pk
k k) k kl

'
kl k2 kl k2

+ $ $ &&+", '&&+', &&+', &+ . . + g g &q'„& . &q'„& (9)
k) k2 k3 k) k /2

and n even, while for n odd, & ( gk tpk )"
& is zero. The in-

dividual terms of the sums on the right-hand sides of Eq.
(9) are equal to 1 for any vacancy k that is on opposite
sides of the considered molecule at times 0 and t, and
equal to zero otherwise. In particular, with Eq. (3) one
has for n =2

cp
2 =

cp
= s t /I (10)

+k„/2
k k) k /2

=(n —1)ii(&"(t)&/l')"",
where the second equation follows from combinatorial
considerations by use of Eq. (10). All moments with n

odd are equal to zero. Inserting Eq. (11) into Eq. (8) final-
ly yields for the nth moment

Correspondingly, the higher sums in Eq. (9) are found to
be proptional to ( & s 2(t) & /l ), where m is the number of
sums within one term. Hence, in the long-time limit, i.e.,
for &s (t)&/l ))1, all terms on the right-hand side of
Eq. (9) are negligibly small in comparison with the last
term, and for n even one obtains

&s &' =[2(1—6)/(tr6')]'"i . (16)

In contrast to ordinary diffusion, however, the mean-
square displacement is proportional to the square root of
the observation time as given by Eq. (4), rather than to
the observation time itself.

For an estimate of the space and time scale for which
an application of the long-time limit as represented by
Eq. (4) might be justified it is useful to consider the oppo-
site limiting case. For sufficiently short times, the molec-
ular mean-square displacement behaves as [7].

12
&s'(t) & =2 (1 —6)t, (14)

2v
where l /(2r) is the diffusivity of an isolated molecule
[coinciding with that of an isolated vacancy [Eq. (5)],
which is multiplied by the additional factor (1-6)
representing the probability that a jump attempt is direct-
ed to a vacant site. In the short-tme limit, any correla-
tion between subsequent jumps may be neglected. Equat-
ing Eqs. (4) and (14), the crossover between both depen-
dences is found to occur for

2

2
(15)~e'

and

&sn& (n 1)ii&s2&n/2 (12)

P(s, t)=(2tr&s (t)&) ' exp[ —s /(2&s (t)&)] . (13)

which is exactly the condition for a Gaussian distribu-
tion. Hence, as in the case of ordinary diffusion, also un-
der single-file conditions molecular displacements are
found to follow a Gaussian distribution curve

The long-time limit of single-file diffusion should there-
fore be applicable for observation times much larger than
2r/(sr6 ) and root-mean-squre displacements much
larger than [2(1—6)/(tr6 )]'~21.
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