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Soliton on a disordered lattice
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A stochastic version of the lattice nonlinear Schrodinger equation, allowing treatment by means of
the inverse-scattering technique and having an exact one-soliton solution, is introduced. It is shown
that such a model is a useful tool for investigation of a wide class of nonlinear lattices affected by
spatiotemporally random forces. A number of the most important statistical characteristics of soliton
dynamics governed by such models can be evaluated without any assumption about the smallness
of random perturbations. The problem is studied in detail in two limiting cases: small and large
intensities of Auctuations of a stochastic term in the integrable equation.

PACS number(s): 05.45.+b, 03.20.+i

In a recent paper Scharf and Bishop [1] reported a new
exactly integrable version of a "perturbed" lattice nonlin-
ear Schrodinger equation, which is a combination of the
Ablowitz-Ladik model [2] and a linear potential. The in-
tegrability of the continuum limit of that equation has
been known [3, 4]. Moreover, as has been shown by Be-
sieris [5], a one-soliton solution of a nonlinear evolution
equation, in which coefBcients of the linear potential are
time-dependent functions, can also be found. Simulta-
neously in Ref. [5] another, more general, version of the
stochastic nonlinear Schrodinger equation has been intro-
duced. In the last case a stochastic term was described by
a Gaussian field, being 6-function-correlated in time and
having a squared correlator in space. The known solution
of the first equation, a time dependent coeKcient which
also was assumed to be a Gaussian b'-function-correlated
process, together with the observation of the equivalence
of statistical properties of the two randomly perturbed
evolution equations, allowed Besieris to solve exactly (in
statistical meaning) the nonlinear Schrodinger equation
affected by spatiotemporally disorder. To the best of the
author's knowledge the method of the effective equation
(as we shall call the approach of Ref. [5]) being success-
fully applied to the mentioned particular case up to now
did not find extension for other nonlinear models [6]. In
the present report we show a possibility of one more ap-
plication of that technique, which in fact demonstrates
wide perspectives of the method. We shall deal with
discrete evolution equations. The work should be con-
sidered within the framework of general investigations of
randomly perturbed discrete systems, which have created
recent interest [7] and in some sense have been studied
much less than their continuum analogs [8].

First of all we introduce a lattice model, slightly gen-
eralized in comparison with that of Scharf and Bishop.
It reads

i(d@-/«) = —(1+ 14 I')X -i+ 0-+i) +a(t)n@-.

Here a(t) is a time dependent fun. ction (cf. Ref. [1]) and
a term of type b(t)@„ is assumed to be taken into ac-
count by corresponding phase renormalization. Using a
U-V pair from Ref. [1],and doing direct calculations, one
can make sure that Eq. (1) can also be included into the

scheme of the inverse scattering technique. The integra-
bility of the continnum limit of (1) has been stated by
Balakrishnan [4].

Knowing a one-soliton solution of Eq. (1) at
a(t) =const [1], it is not difficult to find a correspond-
ing solution of Eq. (1) for an arbitrary function a(t). It
is given by

dP(t)/dt = —2 coshP cosn(t),
dz(t)/dt = —(2/P) sinh P sin o.(t),

do.(t)/dt = a(t).

(3)
(4)

(5)

We shall consider a case of a random function a(t)
being a Gaussian process with zero incan value: (a(t)) =
0, dispersion o, and zero correlation radius

(a(t)a(t')) = 2~'8(t —t')

(throughout the paper we use angular brackets for aver-
aging over all statistical realizations of respective random
processes).

Let us also introduce a more general stochastic nonlin-
ear lattice equation

i(dv„/dt) = —(1+ [v~[ )(v„ i + v„+i) + f„(t)v„, (7)

where a Gaussian random function f„(t) is defined by
statistical characteristics as follows:

(f (t)) =o (f (t)f (t')) =», 8(t —t')

Following Ref. [5] the main subject of the further inves-
tigation will be the correlation function (Viv (n, t)), where
Viv(n, t) is given by

N/2

V~(n, t) = v„, (t)v„,„,(t) (9)

with n = (ni, ..., niv), N being assumed to be even, and
the asterisk denoting complex conjugation. Also we in-
troduce a quantity

g„(t) = sinh P sech(P[n —x(t)]) exp (—i[/(t) + nn(t)]), (2)

where P is a constant and functions P(t), x(t), and n(t)
are defined by

47 1423 1993 The American Physical Society



1424 BRIEF REPORTS

N/2

e (n, t) = @„*,„(t)g.,„,(t).
Two equations for U~ and 4iv follow directly from (7),(1)
and definitions (9),(10)

+( )) —) (—) (~, (t) )
tg= 1

N

' („, ) = ).(-1)'((&'""")+(&'";;")+(&'"'")

(nq +1) + (nq +1)
VN+2 ——v„v„VN (13)

(@~' is similar).(nq+1) .

In fact (ll) and (12) are infinite systems of bounded
equations for correlators of (Viv(ir, t)) and (@~(n,t))
types (note that values with the subindex N+ 2 belong
to the mentioned class). In order to close them, i.e. , to
transform the last term on the right-hand side, we employ
the Novikov theorem [9], taking into account statistical
properties of the random processes. This yields

(~, (t)Viv) = i) (—1) D .. .(Viv)
@=1

N

n, (a(t) @~) = io ) (—1)"n„nq(4'iv).

I et us suppose now that both Eqs. (1) and (7) are
subject to the same initial conditions, i.e.,

4 iv(n, t = 0) = Vip (n, t = 0)

for all N and D. Then one can conclude that

(@~(n t)) = F~(n t))

at any moment of time, if

) ) (-1)'(-1)"D-.,-, (V-)
@=1 @=1

N N

= o' ) ) (—1)'(—1)" „n(Vn~). (18)
q=1 @=1

Indeed in that case both systems (ll), (14) and (12),(15)
are identical. Thus under the condition (18) correspond-
ing statistical characteristics of Eq. (7) can be found
through calculation of characteristics of Eq. (1), for which
the exact one-soliton solution is known. In this sense
Eq. (1) can be considered as an effective equation associ-

+(&'";, ')) —) (-1)' .(.(t)~ )
q=1

Here the index (n~ 6 1) means that a subindex n„ in the
products (9) and (10) is replaced by n~ 6 1 for each p = q,
and

ated with Eq. (7).
By analogy with Ref. [5] one can verify that (18) is

satisfied identically in a particular case as follows:

D„,~ = Do —-', o (n —m) .2 2

However, this correlator has an "unphysical" region,
when (n —m)2 & 2DO/o, since it takes negative values.
Nevertheless, it can be used. After insertion D"(0) (the
primes here mean the derivative with respect to the ar-
gument) instead of o', Eq. (19) can be considered as the
first terms of the Taylor expansion of a correlation func-
tion D„=D(n —m) of a rather general type [note that
due to summation a term proportional to the first power
of (n —m) will give zero contribution]. Thus, the re-
quirement (18) is satisfied approximately for suKciently
close points n& and nq and for a differentiable function
D(n —m), depending on n and m through their difFer-
ence. It allows one to construct a perturbation theory
for statistical characteristics of a soliton of Eq. (7), using
another small parameter, rather than amplitude of the
random perturbation. In particular, (18) is exactly valid
for momenta of the soliton intensity (i.e. , when all n„are
equal).

Let us now discuss an applicability region of the ex-
pansion of D„~. The main problem is that the discrete-
ness of the evolution equation (7) raises restrictions (in
this sense even the statement about equality of intensity
momenta of both lattices is not exact). In order to ex-
plain this we recall Eqs. (11) and (12) and suppose that a
quantity of main interest is a momentum, say, in a point
n~ = n, . The equations for (Viv) and (4'iv) will contain
terms with n, + 1 and higher ones given in K+ 2 points.
Therefore in order to calculate the momentum of order N
one has to obtain all even momenta having orders greater
than N. But each equation for a higher momentum and
for correlators containing n~ = n, + 2 gives larger "devi-
ation" of points nq from n, . For example, momenta with
N + 2l (l being integer) will be related to correlators in
points n, 6 2l. Thus the treatment of Eq. (19) as an
expansion fails with ¹

However, this diKculty can be avoided by taking into
account the following arguments. We are interested in
dynamics of a soliton, initially localized in the region of
order of P i in the neighborhood of 2;(0) [see requirement
(16) and representation (2)]. This means that initially
both sides of Eq. (18) are exponentially small at

in„—n,
i

& p '.
Thus, only for the region in„n~i ( p doe—s one have
to demand validity of the expansion (19). It gives imme-
diately a requirement

po ——p D"(0) (( 1.

Besides the case of weak fluctuations it is satisfied for
strongly localized pulses, having large P, and (or) smooth
spatial perturbations. As is clear po [ D(0)/rP; r being
a spatial correlation radius] is a small parameter of the
problem under consideration and the expansion error is
of order of p,03.

In fact, applicability of the method is wider, since an-
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other limit, P « 1, can also be treated. As is clear, in
that case a soliton width is much greater than distance
between neighbor lattice sites, and one deals with the
"quasicontinuum" limit for which

p, ,'( max(P'; D(0)r '))

(V.'"" ') + (V'"'
(( l. 22

(V(nq+1)
) (V(nq —1)

)

Then as usual the sum (V~"'+ ) + (V~"' ) can be re-
placed by OzV~/On +2(Viv). All terms in Eqs. (11) and
(12) for any K will be defined on the same set of points
n. Thus the perturbation theory for studying Eq. (7)
can be constructed with respect to the small parameter
p, q, as well. However, in the last case one has to take
into account that terms proportional to higher deriva-
tives in the expansion of D(n —m) yield a perturbation
as well (in contrast to the previous case it is not taken
into account by only the small parameter pi). But now
its role is different. It results in a restriction to points on
which the correlators (V)v) and (4)v) are equal approxi-
mately: correlators in points far from each other cannot
be considered. In general the method allows one to study
correlators given on a set of points, satisfying the condi-
tion (n„—nq) r z &( 1. This means in particular that
smooth random perturbations having large correlation
radii allow one to describe larger diversity of the correla-
tion functions (Viv). But what is most important is that
neither case (21) nor (22) requires smallness of stochas-

tic term (what typically is a background of most of the
preceding approaches [8]).

Thus soliton dynamics of both Eqs. (1) and (7) sub-
ject to the supposition introduced may be described by
the system of the stochastic equations (3)—(5). Despite
the system essentially difFering from that obtained for the
continuous nonlinear Schrodinger equation (see Ref. [5])
and being more complicated, some results can be ob-
tained. In particular, introducing a three-point probabil-
ity density P(re, x, n, t), which describes distribution of
P(t), x(t), and n(t) at any moment of time, in the usual
manner [10]:

P((t' » n t) =- (~((t'(t) —(t')~(z(t) —z)~(n(t) —n))

[6() being Dirac's b function], one derives the Fokker-
Planck equation

BP BP 2 . . BP 28 P
— = 2coshPc osn + —sinhPsinn + o . (24)

Ot B Bz Bn

Its solution has to satisfy the initial condition

P(re, z, n, 0) = 6((t'(0) —(I)p)6(z(0) —zp)b'(n),

where (I)o and xp are the initial phase and position of a
soliton. Equation (24) can be treated in an evident form
in limiting cases.

Let o.2 &( 1, which corresponds to the large correlation
radius of D„. The quantity o. in a region giving the
main contribution is small and one can expand cos n and
sinn. Then the leading order of the probability density
takes the form

~3 (P = b((tp+ 2t coshP) exp
27t )2g ~

t2n' P'(x —xp) nPt(x —zp)+
3 4sinh P 2sinh P

(26)

Thus in this case the phase P(t) does not undergo fiuctuations.
The averaged soliton intensity (]Q„(t)] ) and its fiuctuations are important characteristics of soliton dynamics.

They depend only on the distribution of x [see Eq. (2)]. From (26) one finds a corresponding one-point distribution

P, (z, t) = dP dn P(P, z, n, t) = (1/2cr) +3/qrt3 exp[ —3P (z —xp) /2 sinh o t ].

A remarkable fact is that now intensity momenta of the
lattice soliton display the same stochastic dynamics as
that of a soliton in the continuum limit [5] (see also [8]).

Another case allowing rather complete investigation is
the limit of large o. . Let us examine in this limit the
mean value (I(n —x)) where I(n —x) is an arbitrary finite
localized function on x (as is clear, intensity momenta are
such functions). It can be expressed through the Fourier
transform I(r)

BII /Bq. = AK(II i —II +i) —m II
where

(29)

II = II (K, q.)

dze dne™ dPP(re, x, n, t).

As is clear, now (exp(irx)) = IIp(r. , ~) and

introducing designations A = '&", and v. = o. t one gets
the result in a form of a differential-difFerence equation

(I(n —x)) = dKI(r)e '""(e'" ),
2qr

(28)
dKI(r)e '""IIp(r., q.).

where I(r) is a regular function defined by initial con-
ditions. Thus it is sufBcient to study a mean value
(exp(irx)), which depends on time. To this end we mul-

tiply both sides of Eq. (24) by (2vr) / exp( —irx+imn)
(m being integer) and integrate over P, x, and n. Then

Equation (29) has to be considered subject to the initial
condition

II (r. , 0) = (1/~2qr)e'"*' (32)

[it follows from (25) and the definition (30)].
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II~~~ ——+AKe dt(II2(K, 0) —IIo)e'.

Substituting the representation of II+i into Eq. (29) and(&) ~

setting m = 0, one obtains the integral equation for IIp,

= 2(Ar)'e dt(112(K, 0) —IIp) e'.
87

It is not difBcult to rewrite it in the differential form

(36)

(8 II/Br ) —~ fl = 2(Ar) 112(K,O)e, (37)

where we introduce designations as follows: II = e / IIp
and ruz =

4
—2(Ar) . Equation (37) is solved trivially

under initial conditions: II(0) = (2') i/ exp(ivxo) and

OII/Br = II(0)/2, which result from (32) and (36). Fi-
nally one finds

Ilo(e, ) = e' " 1 — s' h(~v)e '~') .
27r 2(d

Since we are interested in the case o' » 1, in a region
giving the main contribution to the integral (31) r » 1

(t » a ) and expression (38) is simplified,

(38)

Iip(K, r) (I/V 2vr) e'" (1 —4[1+ 8(AK) ]

x exp(2sinh Pr. t/P o )) (39)
Thus we come to essentially different dynamics of a soli-
ton in comparison with the case o. (( 1, which can
be treated as a discreteness effect. Afterwards narrow
transition region (t ( ti = o 2) behavior of averaged
quantities (I(n —x)) is stabilized. The momentum takes

The differential-difFerence equation (29) has a small
parameter A (A ~ 0 at constant P and o. ~ oo). The
characteristic value of K is defined as the inverse width of
the localization of I(n —z), i.e. , r ( P [see Eqs. (2) and
(31)]. Therefore one can look for a solution of Eq. (29)
at ]n[ & 1 using expansion with respect to the small
parameter A:

rr = rr&'~ + Art~'& + (33)
[note that such representation is not valid for Ilo since
at m = 0 Eq. (29) does not contain the small parameter
in an evident form]. Correspondingly II are considered

subject to the initial condition (32) and II~ ) = 0 at t = 0
and j&1.

Insertion of (33) into (29) yields in zero order

II~ l = (1/v2vr) exp( —iKxo —m r) (34)

for [m[ & 1. Since this result implies II~ I —III ) ——0,
in order to find IIp one needs the terms IIgy ~ They are(&)

expressed through IIp

the approximate value 4I(n —xc) and maintains it till
t2 —o /2sinh P. The phase of a soliton undergoes
strong fluctuations. All changes of (I(n —x)) in the time

domain (ti, tz) are of the order of o t si nh P. At t » tz
the expression (38) reverts to the initial form, but this
region is outside the time interval when the expansion
(33) is valid.

Though the example just considered is interesting by
itself in that it demonstrates the distinction between dy-
namics of discrete and continuous solitary waves, it re-
quires some stipulations from the viewpoint of the ef-
fective equation method since the condition (21) is not
better satisfied. To this end we consider the substan-
tially discrete limit P » 1. Then Eq. (20) says that in
the leading order of the expansion of D„,„, one has to
set n„= nq, as far as these are discrete parameters. An
error of the approximation is given by items correspond-
ing to n„= nq + 1 in the sum (15) and being of order
of D"(0) exp( —2P). Demanding these terms to be much
less than 1 and bearing in mind that D"(0) is associated
with ~ one states that the effective equation method is
applicable for the case exp(2p) » o z » exp(p)/p, which
is compatible with all approximations of the last limiting
case studied above. These arguments allow one to con-
clude also that the restriction (21) is rather strong and
can be weakened at P » 1.

To conclude, we have found quahtatively difFerent be-
havior of a lattice soliton on the integrable disordered
lattice in cases of small and large intensities of external
force fluctuations. In the last case discreteness strongly
manifests itself. Such a model can serve as an effective
equation for studying the Ablowitz-I adik lattice under
random perturbations being b-function-correlated in time
and rather slowly varying in space. The technique used
does not require smallness of fluctuations and is based
on statistical equivalence of two different lattices. This
application of the efj'ective equation method, originally
proposed in Ref. [5], demonstrates possibilities for its fur-
ther extension to other systems (discrete or continuous)
describing soliton dynamics affected by spatiotemporally
disorder. Some of the extensions may be related to mul-
tisoliton problems, especially to interaction of solitons in
disordered lattices, to the use of new integrable systems
as effective equations, to other random lattices associated
with integrable ones, etc.

The author is grateful to I. M. Besieris whose com-
ments stimulated this work and F.G. Bass for some pre-
liminary discussions. The work has been supported by
the Universidad Complutense de Madrid.

* Present address: Universidade da Madeira, Colegio dos
Jesuitas, Lardo do Colegio, 9000 Funchal, Portugal.

[1] R. Scharf and A.R. Bishop, Phys. Rev. A 43, 6535 (1991).
[2] M.J. Ablowitz and G.F. Ladik, J. Math. Phys. 16, 598

(1985).
[3] H.H. Chen and C.S. Liu, Phys. Rev. Lett. 37, 693 (1976).
[4] R. Balakrishnan, Phys. Rev. A 32, 1144 (1985).
[5] I. M. Besieris, in Nonlinear Electromagnetics, edited by

P.L.E. Uslenghi (Academic, New York, 1980).
[6] I. M. Besieris (private communication).

[7] Disorder and Nonlinearity, edited by A.R. Bishop, D.K.
Campbell, and S. Pnevmatikos (Springer-Verlag, Berlin,
1989); Nonlinearity with Disorder, edited by F.Kh. Ab-
dullaev, A.R. Bishop, and S. Pnevmatikos (Springer-
Verlag, Berlin, 1992).

[8 F.G. Bass et aL, Phys. Rep. 157, 63 (1988).
[9 E.A. Novikov, Zh. Eksp. Teor. Fiz. 47, 1919 (1964) [Sov.

Phys. JETP 20, 1290 (1965)].
[10] V.I. Klyatskin, Stochastic Equations and Waves in Ran

domly Inhomogeneous Media {Nauka, Moscow, 1980).


