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Pattern selection at high nonlinearity in a diffusively coupled logistic lattice
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A different pattern-selection regime is shown to exist in regions of high nonlinearity in the diffusively

coupled logistic lattice with nearest-neighbor interaction. For this regime, the phase diagram of several
prominent attractors is determined. The results indicate that the spatiotemporal chaos in some of the re-
gions so far believed to be areas of fully developed spatiotemporal chaos is of a transient nature.

PACS number(s): 05.45.+b, 02.60.+y, 64.90.+b

Coupled map lattices (CML's) have been studied exten-
sively in recent years as a model for spatiotemporal chaos
[1—6]. This is not only because they can be applied to a
wide range of areas, such as turbulence, chemical reac-
tions, biology, etc. , but also because they exhibit an ex-
tremely rich phenomenology, which includes kink dy-
namics, suppression of chaos, intermittency, and spa-
tiotemporal chaos.

One of the simplest and most intensively investigated
CML is the diffusively coupled logistic lattice with
nearest-neighbor interaction. In one dimension, the case
considered exclusively here, this can be written as

x„+,(i)=F (1—e)x„(i)+—[x„(i+1)+x„(i—1)]

where n is the discrete time, i the lattice site, e the lattice
coupling constant, and I' the logistic map, which is given
by

F(x„)=x„+,= 1 —ax„,
with the nonlinearity a a constant. Periodic boundary
conditions are used throughout.

One of the interesting phenomena exhibited by the
diffusively coupled logistic 1attice is pattern selection with
the suppression of chaos. When patterns are selected, the
entire system is in a very regular state and is not only
temporally but also spatially periodic. This is well known
to occur in regions of medium nonlinearity
(a=1.55—1.75), i.e., regions where the single logistic
map is chaotic (except for windows) if E is not too small.

A nice overview of the regions in which pattern selec-
tion occurs is, for example, given in Kaneko's phase dia-
gram in Ref. [2]. One can view this regime as a kind of
equilibrium between the tendency of the chaotic motion
of the local element to make the system inhomogeneous
and the tendency of the diffusion to do the opposite. Spa-
tiotemporal chaos may occur if the coupling is too weak
or the nonlinearity too strong for the equilibrium to be
established.

Kaneko's phase diagram, however, only covers values
of the coupling constant of up to @=0.4. If the above
picture of an equilibrium has any validity, a priori one

cannot exclude the possibility that the pattern-selection
regime extends, at least somewhat, further into the direc-
tion of high nonlinearity for values of e) 0.4.

The main topic of the present Brief Report is to inves-
tigate how far "somewhat" may be. Clarifying this is not
only important in its own right but also regarding its
consequences for the analysis of spatiotemporal chaos.
The phase diagram in [2] indicates, for example, that ful-
ly developed spatiotemporal chaos (FDSTC) governs
when the nonlinearity is greater than that of the period-3
window for a~0. 2. Although the phases for e) 0.4 are
neither indicated nor directly mentioned in the text, the
diagram suggests somewhat that regions of high non-
linearity and large coupling are spatiotemporally chaotic.
Various authors have determined Lyapunov spectra be-
tween a=1.8 and a=1.9 for @=0.4, for example, to il-
lustrate how these spectra appear for regions of spa-
tiotemporal chaos. It is shown below, however, that a
periodic attractor exists in this area. Accordingly, when
starting from random initial conditions, as is customary,
there is no guarantee that the obtained spectrum is accu-
rate, however likely, without making certain that for the
chosen random initial conditions the transient time is
sufficiently long.

As it turns out, regions of high nonlinearity and large
coupling are not spatiotemporally chaotic at all. Figure 1

shows an attractor for a=1.9 and @=0.85. Random ini-
tial conditions are used and the system size is N =60.
The periodicity of the attractor is four. If one defines the
number of domains nd as the number of times that the
line connecting the amplitudes of the lattice sites at a cer-
tain time crosses the fixed point of the logistic map
[x*=(&1+4ct—1)/2a] in the positive direction, it can
clearly be seen that the attractor has seven domains.
This means that there is some frustration, i.e., the ratio of
the system size and the number of domains is noninteger,
and indicates thus that the attractor must be quite stable.
This can also be confirmed by adding dynamical noise.
In the case of Fig. 1, the addition of 6' noise was neces-
sary to destroy the attractor.

In order to check whether pattern selection is generic
for the above parameter values, the distribution of the
transient times when starting from 100000 random initial
conditions was determined. The result is displayed in
Fig. 2. The longest transient time was 471 136 steps and
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FIG. 1. Attractor at high nonlinearity. The system size is
N =60; o.=1.9 and @=0.85. The figure shows the situation just
after the system has fallen onto the attractor. Every 1000th step
was plotted.
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FIG. 2. Distribution of transient times before the system
reaches a period-4 attractor at a= 1.9 and a=0.85. The system
size was N =60 and the bin size was 1000.

the shortest a mere 192 steps. The distribution has a
peak for the 2X 10 bin and an exponential tail. Since all
the initial conditions reached a period-4 attractor, it
seems justifiable to conclude that pattern selection is
indeed the prevalent final state for these parameter
values. The possibility that other attractors with very
small basins of attraction exist cannot, of course, be ex-
cluded. The above result, for example, should not drasti-
cally change for parameter values in a small neighbor-
hood of those above, and since the chaotic region of the
single logistic map is densely interspersed with windows,
one could choose a value of a close to 1.9 so that the sin-
gle logistic map is in a periodic window. In that case, the
homogeneous attractor does exist; its basin of attraction,
however, is so small that it is extremely unlikely to be
found when starting with random initial conditions.

Next, it will be interesting to see in which regions of
parameter space a nontrivial period-4 attractor exists.
This could be done in the same way as is usual in con-
structing a basin of attraction, but instead of gradually
changing the initial conditions one would have to change
the parameters. There are, however, some severe draw-
backs with this method. For example, if several attrac-

tors coexist, one might have to trace a large number of
trajectories (starting from random initial conditions) for
every o.'-e pair to obtain a good picture of the most pre-
valent attractors. Also, for some parameter values, the
average transient time might be impractically long for a
detailed numerical analysis. Therefore the following,
more e%cient, method was used.

Given a certain number of domains, a pair of a and e
was first determined where the wanted attractor would
generally be selected in an acceptable time. Then the ob-
tained attractors were used as a starting point for a pa-
rameter sweep. Initially, only e was swept in the positive
direction, until a value was reached where a subsequent
sweep in the o. direction would not destroy the attractor
in the entire range of u investigated. In the second step,
a was swept, and in the final step e, first in the positive
and then in the negative direction, until the attractor was
destroyed. Every time an attractor was destroyed, a new
sweep would start again from the starting attractor and
the procedure repeated. Only in the case of the nd =11
attractor did an extra sweep step have to be inserted be-
cause there was no value for e that could be used as the
starting point for the sweep in the o. direction that would
cover the entire range.

The advantage of this method is that it is able to show
where the wanted attractors exist in a computationally
efficient way; iis drawback is that no conclusions can be
drawn about the sizes of the basins of attraction or about
the average transient times. It should, therefore, be
viewed not as a replacement but as a complement to the
one mentioned first.

After every step of the sweep, the system was allowed
to adjust to the new parameters for 60 time steps. The
next 40 steps were used for the periodicity check, where
the average difference of ten successive periods was not
allowed to be more than 2%. The step size in the a
direction was 0.01, and the step size in the e direction
0.005. In order to make certain that only regions where
the attractors are (fairly) stable were included, 1%
dynamical noise was added throughout the sweeping pro-
cess.

The resulting phase diagram for attractors that have
from 6 to 11 domains and periodicity 4 is given in Fig. 3.
The large stars indicate the starting attractors, and the
numbers the number of domains nd in each region. As
can clearly be seen, these attractors cover almost all of
the parameter space under consideration, and most of the
boundaries are virtually linear in e. In the case of ten
domains, the upper boundary suddenly seems to jump to
e= 1.0 around a = 1.85. This stems from a rather
smooth transition from a period-4 to a period-2 attractor
with the same number of domains. The reason that this
smooth transition can only be observed for nd = 10 is the
match between system size and the number of domains,
which leads to extra stability of the domain structure.
Without a smooth transition, the nd = 11 attractor shows
a jump at around +=1.7 from @=0.35 to @=0.45. Why
only this attractor shows such a jump is not clear at
present.

The dashed box roughly indicates one of the areas of
FDSTC in the phase diagram of Ref. [2]. Since nontrivial
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FIG. 3. Phase diagram for the period-4 attractor with the
numbers of domains ranging from 6 to 11. The system size is
X =60. The large stars indicate the starting points of the pa-
rameter sweeps. The dashed box corresponds to one of the re-
gions of FDSTC in [2]. The numbers represent the number of
domains nd. The upper and lower boundaries are indicated
with the following markers, respectively: (0) nd =6, (X) nd =7,
(6) nd = 8, (~) nd =9, (o) nd = 10, (f) nd = 11.

FICz. 4. Transition from the nonhomogeneous to the homo-
geneous attractor under a parameter sweep. Every fourth time
step is plotted. With every time step, e is increased by
1.0X 10 ', and the transition occurs at a=0.73.

attractors exist in the upper left corner, it seems reason-
able to assume that, at least in this region, FDSTC is a
transient phenomenon. One of the starting attractors
(nd = 11, a = 1.90, @=0.4) even lies clearly in the FDSTC
region, albeit at the border of the plot. Although the
transient time of this attractor can be considered as rath-
er long (the average of 75 runs was 1.48 X 10 while the
shortest was 110464), it certainly is not astronomical, nor
is it outrageous when compared to recent simulations.
Grassberger and Schreiber, for example, have determined
the density of defects in a CML using 10 iterates [3].

The transient times seem to increase with decreasing e.
Up to the maximum nonlinearity ct =2.0, however, a zig-
zag regime exists for @=0.15. Hence there must be a
value of e between 0.4 and 0.15 where the transient time
is at a maximum. If this maximum is not astronomically
large, the only region in which "true" FDSTC may occur
will be the one of very small e, eventually sustained by su-
per transients [7].

Although for higher values of e, as stated above, nu-
merical evidence suggests that the basin of attraction of
an eventually coexisting chaotic attractor is quite small if
it exists, this need not necessarily be true for smaller
values of e.

The domains in all the starting attractors were, in prin-
ciple, stationary in time, i.e., the domain walls did not
move. In the medium nonlinearity regime, traveling
waves were recently discovered for large e [5]. These
traveling waves also occur almost everywhere in the high
nonlinearity regime. This is no surprise, since, in princi-
ple, stationary and traveling waves are composed of the
same elements, the four phases of the basic waveform.
Their only difference lies in the order of the elements.
Owing to the movement of the domain walls, however,

traveling waves are less stable and destroyed sooner when
being swept.

The fact that a stable, homogeneous attractor exists in
periodic windows makes a transition from a periodic,
spatially inhomogeneous attractor to the homogeneous
one possible in principle. Simply extrapolating the re-
sults of [7] would imply that, for larger values of the cou-
pling, the homogeneous attractor, in practical terms, can
never be reached. There is, however, a way to achieve
this in a reasonably short time. In general, when starting
with random initial conditions and @=0.35, a period-4
attractor with ten domains is reached within a few hun-
dred thousand steps for a=1.755, i.e., the single logistic
map is in the period-3 window. After the attractor is
reached, e can be swept in the positive direction. As can
be seen from the phase diagram, at a=0.7, the nd = 10 at-
tractor ceases to exist. At this point, the transition to the
period-3 attractor may occur, as is illustrated in Fig. 4.
Of course, the same scenario also works if one does not
wait for the system to fall onto the attractor at the start-
ing value of e but sweeps slowly enough. So far, this
transition was only observed in the period-3 window; it
may be expected, though, that it will also occur under
similar circumstances in other windows. Furthermore,
this transition seems to be extremely sensitive to noise.

In conclusion, a different pattern-selection regime at
high nonlinearity has been reported. The phase diagram
constructed shows that this regime covers a large part of
the parameter space from medium to high nonlinearity.
The results do not contradict, but supplement and
exceed, previous findings, and there may be important
consequences for the understanding of spatiotemporal
chaos in a diffusively coupled logistic lattice.
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