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We investigate analog neural networks. They have continuous state variables that depend continu-
ously on time. Although they all have an energy function, not all can have their dynamics derived
from a Hamiltonian. Some necessary conditions are given for the network to have Hamiltonian
dynamics. We give an example and, using symplectic transformations, describe a whole class of

neural networks with Hamiltonian dynamics.
PACS number(s): 87.10.4¢, 03.20.+i

I. ANALOG NEURAL NETWORKS AND THE
NEED FOR A HAMILTONIAN FORMULATION

Most analog neural networks have the following dy-
namics:

du,(t) 2n
Hi— g z_ui(t)+Z:1Ti:‘fa'(uj(t))+h(t),
o
i=1,...,2n, p;i>0. 1)

This describes a system with 2n neurons, see Fig. 1,
and [1, 2]. Neuron ¢ has state u;(t). This is a continuous
function of time t. The weight or synapse T;; describes
the influence that neuron j exerts on neuron ¢. The func-
tion f; is the transfer function of neuron j, it has asymp-
totes —1 and +1, and is monotonically increasing and
continuous. There is an external input I;(t) to neuron 3.
Each neuron has a positive time constant u;.

Most useful results known about neural networks with
dynamics (1) are on the existence and stability of equi-
libria. These results are obtained via the construction
of energy functions and Lyapunov functions [3,2]. An
energy function for (1) is

K>

.

FIG. 1. Weights T;; and external inputs I; in a neural

network.
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with f;! the inverse function of f;. The function E de-
creases as the network evolves in time (provided the ma-
trix T is symmetric). This shows that all analog neural
networks with symmetric connectivity matrix have an
energy function. A Lyapunov function for (1) is

2n
v = E aiu?,
i=1

with suitable conditions on the a; [2]. It has a negative
definite derivative along the solutions of (1).

This approach provides no information about the time-
dependent behavior of the network: the possibility of
periodic solutions (oscillatory behavior), phase locking,
bifurcations, chaos. However, all these aspects have been
studied extensively for Hamiltonian systems [4].

When a Hamiltonian is known for a system, it is also
possible to reduce the system (eliminate variables) [5].
Finding a constant of the motion is a first step in the
reduction process. The elimination of variables is equiv-
alent to elimination of neurons. This reduces the number
of interconnections, and means that Hamiltonian neural
networks may have a very-large-scale-integration VLSI
layout with a low number of interconnections. This would
facilitate an area-efficient VLSI layout, as the intercon-
nections take up most of the space on a neural-network
computer chip [6]. We will in fact see at the end of this
paper that our class of Hamiltonian networks are eco-
nomical to rout (connect the neurons in VLSI). This is
the original motivation for our research.

The question therefore arises: for which neural net-
works do Hamiltonians exist? We do not give an ex-
haustive answer to this question, but will establish an
important class of Hamiltonian neural networks. Their
dynamics will be slightly different from (1).
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II. HAMILTONIAN SYSTEMS

A Hamiltonian system has dynamics

O0H O0H

ql:a—p:’ _—6—q'_i, i=1,...,n. (2)

pi =
The variables g;(t) are the generalized coordinates and
p;i(t) are the generalized conjugate momenta. The time
derivative of ¢;(t) is denoted by ¢;. The function
H(q1,...,qn,P1y- .-, Pn,t) is the Hamiltonian. The ques-
tion we want to solve is how to bring (1) in the form (2).
This may not be possible for all systems (1).

In many systems the Hamiltonian is the sum of kinetic
and potential energy [7],

H=T+V.

This occurs, however, mainly in second-order systems,
where the moment p; is proportional to ¢;.

There are two methods of extending (1) to a second-
order system (in ;). One is to add a differential equation
for the weights (8], e.g.,

7Ty = —Tij + Si(wi)S;(us), 7i; >0

(3)
Si(u,-)=—l——— ’i=1,...

1 +e_ciui’ 72n7

ji=1,...,2n,
with ¢; constant. This can then be substituted in the
derivative of (1). Equation (3) models well biological
learning, but the resulting dynamics (in ;) are very dif-
ficult to analyze, particularly so because of the different
time constants 7;; and y; involved in the change of the
weights and the change of the neuron states.

Another way is simply to take the derivative of (1).
This gives, after substitution of (1),

pith; = —u; + Z Tijf;(uj')ﬂj + Iz
J

1 .
= |wi =Y Ty fi(uy) — L+ O(uiuy) | + L,

3
i=1,...,2n. (4)

We will from now on suppose that the external input
is constant in time,

L) =o. (5)

This makes (1) an autonomous system.

One can drop second-order interactions between the
neurons (products of u; and u;). Even with these simpli-
fications the system (4) is very unlike any other second-
order dynamical system from mechanics, because of the
nonlinear functions f;. The result of this section is that,
if a neural network has a Hamiltonian, it is likely to be
as a first order system, with p; not proportional to ¢;.

III. THE HAMILTONIAN FOR A NEURAL
NETWORK WITH BIPARTITE CONNECTIVITY

Few systems of first-order differential equations can be
derived from a Hamiltonian via (2). The Dirac equation
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can be brought in this form [9], but only because the
complex conjugate of the wave function has a meaning
in quantum mechanics.

The Volterra-Lotka equations [10, 11], modeling preda-
tor-prey systems in biology, are more interesting for our
purpose. The equations

z = (a’ - by)xy

g=—(c—fa)y, «,y>0, abec>0 (6)

can be derived from a Hamiltonian only after the trans-

formation
z=e? y=¢€P. (7

Something very similar will happen for neural networks.

Consider a set of 2n neurons. Split them up in two
sets of n neurons (see Fig. 2). The graph expressing
the connectivity of the neural network is then a bipar-
tite graph [12]. For this reason we will call the network a
network with bipartite connectivity. Kosko has shown [8]
how powerful a model this is. In his neural network mod-
els the neurons are split up in two groups. Each group
calculates, alternately, its state by summing the products
of interconnection weights T;; and states u; of neurons
in the other group, and then applies a nonlinear func-
tion, e.g., f;. Whittle’s antiphon [13] is another example
of a network with bipartite connectivity. It is similar to
Kosko’s model, but the weights are binary and only one
group of neurons applies the nonlinear function.

As in the Volterra-Lotka equations, the generalized co-
ordinates will be the state variables of part of the system
(here the first n neurons, called the ¢ neurons). The con-
jugate momenta are the state variables of the other part
of the system (the other n neurons, called the p neurons).
The state variables of the ¢ neurons will be denoted by
u;, i =1,...,n, those of the p neurons by w;,i =1,...,n.
We will refer to them as ¢ neurons and p neurons, respec-
tively, because the dynamics will be expressed in terms
of the variables

q; =f‘i(ui), p‘i:gi(wi)a 1= 1,"'7"’) (8)

g-neurons

p-neurons

FIG. 2. The network with bipartite connectivity, express-
ing how the ¢ neurons influence the p neurons.
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with all f; and g; continuous monotonically increasing
functions with asymptotes —1 and +1 (for example,
tanhz). The reason for choosing this transformation is
similar to the reason for choosing (7) for the Volterra-
Lotka equations. It can also be remarked that both (7)
and (8) are not symplectic. More about transformations
of Hamiltonian systems in the last section.

There will be two weight matrices: S and T. The
matrix S expresses how the p neurons are influenced by
the ¢ neurons, see Fig. 2, and T expresses how the ¢
neurons are influenced by the p neurons, see Fig. 3. The
matrices S and T should not be confused with the weight
matrix for the complete network of 2n neurons. This
2n X 2n matrix has the form

(55)

External input to the ¢ neurons will be denoted I;,7 =
1,...,n, to the p neurons J;,i = 1,...,n. We choose
the input to be constant in time, so that the system is
conservative.

The choice of a Hamiltonian is always guesswork if
there is no obvious choice for kinetic and potential energy.
For this reason a Hamiltonian H is proposed now, and its
dynamics will be investigated,

n n n
H=3 Z Z Sij2:q; — Z Jigs

i=1 j=1 =1
n n n
1
-3 Tijpip; + E I;p;.
i=1 j=1 i=1

The first equation in (2) is now

q_BH
k= ok
F)
- |4 T T 3 T
k i(k) (k)

i(#k) i(#k)

The influence of the p neurons on the ¢ neurons.
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This expression can be simplified by making the as-
sumption that T is symmetric. This will be done here
mainly for aesthetic reasons, in order to simplify the ex-
pression for ¢x. The assumption that T is symmetric
does not mean that the synaptic influence between two
neurons is symmetric, but that the weight between p;
and g; is the same as the weight between p; and ¢;. (We
remark that we do not have to suppose that T has zero
diagonal.)

The simplified expression for ¢ is now

n
G =— Y Te;p; + Ii. (9)

j=1
Similarly, one obtains

= — 21
Pr =5

n
== Sk;a; + Ji. (10)

j=1
It is obvious that for these dynamics

04 _ 9P

g opi’
a necessary condition for Hamiltonian dynamics that can
be derived from (2). This condition can never be ful-
filled by (1), thus providing another indication that the
requirement of bipartite connectivity was necessary to
obtain Hamiltonian dynamics for a neural network.

IV. THE NEURONAL DYNAMICS

What dynamics are described by Eqgs. (9) and (10)?
The equations are similar for ¢ neurons and p neurons,
so we will concentrate on (9).

On application of the inverse of the transformation (8),
one gets

d n
Zpfe(ue) = — D Trjgs(wy) + I,
=1

or

1

= Faw \ D Thig5(w;) + I

j=1

Uk

This is Cohen-Grossberg activation dynamics [8] for the
q neurons, showing how they are influenced by the states
w; of the p neurons, and an external input Iy to the ¢
neurons.

The non-negative function 1/f/(ux) is an amplifica-
tion function. For example, if fr(ux) = tanh(uk), then
1/f{(ux) = cosh®(ug). This stays bounded, provided
that ug is bounded.

If the initial state of the system
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1 n
Uk = — Tiigi(w;) + I |,
k fl/c(uk) pa 993( .7)
W =——< | — Skifilu;) +Jg |,
k g;c(/wk) ; J J( J)

k=1,...,n (11)

is sufficiently close to an equilibrium (fixed point), the
system will converge to it. The stability of the equi-
libria of (11) has been studied in adaptive resonance
theory [8, 3]. The dynamics show in general no unpre-
dictable, chaotic behavior, but are more like a damped
oscillation.

In the usual way [3], it is also possible to change (9)
and (10) to

n
de=wk — »_ Ti;p; + I,
j=1

n
Pe=ur— Y Sk;q; + J,
j=1

by changing the Hamiltonian to

n

H=13 Y Suaqs - 3 (sa- [* 57 @)

i=1 j=1 i=1

i n Pi
ZTijPipj +) (Iipi + /0 97 1(a:)alac)
= i=1

1 j=1

~1
2

n
=
with f{l the inverse function of f;. An additional re-
quirement in this case is f;(0) = ¢g;(0) =0,i=1,...,n.

V. SYMPLECTIC TRANSFORMATIONS AND
BIPARTITE CONNECTIVITY

Is it possible to transform the bipartite connectivity
network in Figs. 2 and 3 so that the dynamics remain
Hamiltonian (2)? This will be the case if the transform-
ation is symplectic [10, 14].

Denote the transformation by

hi = hi(q1,-..,qn,P1,---,0n), t=1,...,2n. (12)
Its Jacobian matrix is
Ohy ... 8h1 Ohy ., 8hy

9q1 8gn  Op1 Apn
Dh = Lo .

dq1 dgn Opi Opn

The condition for the transformation A to be symplectic

is
(DR)T (‘} ‘OI> Dh = (? _OI) : (13)

with I the n x n identity matrix. Split Dh up into four
n X n block matrices,

AB
o= (42).
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Then the condition (13) becomes
-AC+CA —-AD+CB\ _ (0 —I
-BD+DB)~ \I 0 /)"

—BC + DA
This has several solutions in 4, B, C, and D but we will
concentrate on two:

B =0,
C =0, (14)
D=A"1
and
A=0,
a

We will consider the following symmetry operations
[15] on the network: interchanging two neurons and in-
verting the sign of a neuron state. We will also sup-
pose that the f; and g; are odd functions. We then con-
sider u; <> uj or u; <> W; Or W; <> W; Or U; > —U;
or w; <« —w;, or, alternatively, ¢; <« qj Or q; <> p;j or
Di <> Dp;j Or g; «+> —@q; or p; <> —p;. These operations
can be composed to form all symmetry operations of the
network [15]. Which of them are symplectic?

The weight matrix of the bipartite network is

(55)

where S and T are the n x n weight matrices from (9)
and (10). The places of the zeros in this matrix describe
the connectivity. How is it altered by the symplectic
transformations?

before transform

after transfornm

FIG. 4. A neural network before and after a transforma-
tion as in (16).
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For the symmetry operations of the network (they are
linear transformations),

h = Dh.

We consider now the case where the symmetry trans-
formations are symplectic because they obey (14). The
weight matrix is transformed in the following way:

(82312 %)

But the symmetry transformations are their own inverse,
so A= A"1, and

A 2)ED-(57). w

This can be formulated in the following way (see Fig. 4):
Any interchange or sign inversion of the states of p neu-
rons, if complemented by the same transformation on the
q neurons, still allows the dynamics of the network to be
derived from a Hamiltonian.

The transformations that obey (15) transform the
weight matrix in the following way:

(52 9) (5 0)= (% 5%r):

Again, the transformations are their own inverse, i.e.,
B=B"1 or

(BO—I g) (g g) = (Bos BOT)' (a7)

This means (see Fig. 5): The connections from ¢ neurons
to p neurons are made to run from g neurons to ¢ neurons
that correspond to the p neurons. If an interchange or
sign inversion is done for the ¢ neurons, and if the same
is done for the corresponding p neurons, the dynamics of
the network can still be derived from a Hamiltonian.
All the networks with Hamiltonian dynamics that we
have considered here are easy to rout for VLSI layout [16],

I

FIG. 5. A transformation as in (17), split up in two steps.

because the connectivity graphs are bipartite, as in (16),
or can be split up into two nonconnected parts, as in (17).
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