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Generalization ability of perceptrons with continuous outputs
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In this paper we examine the influence of dift'erent input-output relations on the generalization ability
of a single-layer perceptron. The input-output relations can be linear, binary, or sigmoid. With this
choice we take into account most of the cases which are of present interest. The generalization problem
will be realizable or unrealizable if the input-output relations for teacher and student are identical or
not. We show that sometimes it can have a positive e8ect on the generalization ability, if one learns with
errors.

PACS number(s): 87.10.+e, 02.50.+s, 05.20.—y

I. INTRODUCTION

Generalization is a characteristic ability of feedforward
networks. The rule, which connects an input to an out-
put, can be learned by examples obeying the rule.

The process of generalization can be divided into two
phases. During the training phase the network learns a
set of input-output pairs [(P,P);@=1,. . . ,p]. Usually
its parameters (weights, thresholds, etc. ) are adjusted in
such a way that the distance between the desired output
P and the actual output P is minimized. The learning
error is the average of this distance over all presented ex-
amples P,

EL =—g dist(p„,g") .
P =1

The examples are presented repeatedly until the learning
error fulfills a termination condition.

In the test or generalization phase one wants to know
how well the rule has been learned. Therefore one com-
pares the outputs of the network g and the correct out-
puts g» for random inputs S. The generalization error
averages the distance between these outputs over the dis-
tribution of the inputs S,

E = (dist(g, (S),g(S) }& (s~ .

For theoretical purposes it is useful to represent the rule
by a second network, which we shall call the teacher net-
work. It yields per definition the correct outputs g». Its
parameters are the suitable variables to describe the rule.
An interesting consequence is the fact that a student net-
work may not be able to learn the rule perfectly, if there
are certain differences in the architecture of teacher and
student. This leads to a main division of the rules in real-
izable and unrealizable rules.

Many aspects of generalization have been examined,
such as the effect of binary and continuous weights,
Boolean and continuous outputs, and different learning
rules [1—3]. Intelligent students have been constructed,
which choose the training examples in order to get the
maximal information about the rule [4—6].

In the present paper we will confine ourselves to

single-layer perceptrons [7] with N input nodes and one
output node. The inputs shall be binary
(S;=+1,i =1,. . . , N) but the outputs g can accept con-
tinuous values determined by the input-output (IO) rela-
tion g. Continuous outputs show their importance in
multilayer networks, because many important learning
rules are based on gradient descent methods (e.g. , error
backpropagation [8]). In this paper we will be interested
in the inhuence of the input-output relations on the gen-
eralization ability of the perceptron.

Teacher Student

weights (j=l, . . . ,N)

local fields

output

The input-output relations g, and g do not need to be
identical. In the following they will be chosen indepen-
dently out of the set S,o of input-output relations,

cVio [ yx, sgn(x ), tanh(yx ),fpL(yx ) ] (3)

Outline

The paper is organized as follows. In Sec. II we intro-
duce the method of our analysis. We define a suitable
measure of the generalization error, describe the training
phase as an optimization problem, and calculate the free
energy. In Sec. III we derive order parameters for the
linear student. A general examination of realizable cases
is presented in Sec. IV. The next section deals with the
piecewise linear student. In Sec. VI we discuss a learning
strategy at finite temperatures. The last section rejects
the results.

where fPL(yx ) is the 'piecewise linear function,
fp„(yx)=min(~yx ~, 1)sgn(x), and y is the gain factor of
the functions. We selected for the set S,o some represen-
tative examples, the linear IO as the simplest, the sign
function for binary outputs, and two sigmoid functions
for bounded continuous outputs.
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II. MEAN-FIELD CALCULATION

A. Generalization error

=
—,
' ( [g„(h,) —g(h)]') (s) . (4)

If the inputs are distributed independently with mean
zero and variance one, the local fields are sums of in-
dependent random numbers and in the limit X—+ ao they
become Gaussian distributed. We describe them by
Gaussian variables x and y which are correlated through
the couplings W' and W. The correlations are expressed
by the values of the following order parameters:

N

( (x)') =—g ( W,
*)'= 1,

iY .

1 N

(xy ) =—g W,*W,:—R,J

N
((y)')= —y (W, ) -=Q.J

The first can be chosen to be equal to one, the second
measures the overlap between the weights of teacher and
student, and the third one is the norm of the students'
weights. The generalization error can be expressed as an
integral over the two Gaussian variables x and y with a
two-dimensional density function F(x,y) which has a co-
variance matrix given by (5)—(7),

EG= f dx J dy F(x,y) —,'[g, (x)—g(y)] . (8)

It can be transformed into a more convenient form,

E& = Dx Dy —,
'

X [g, (x)—g[(Q —R )' y+Rx]]
(9)

where Dx is the Gaussian measure

dxDx= e (10)

The generalization error measures the averaged
difference between the desired output g, and the actual
output g of the network. Because the outputs can take
continuous values, we measure the difference with the
quadratic deviation,

EG = —,'([g, (S) g(S)] )(s)

h", namely, g(h")=p~. The solution for the couplings
with minimal norm Q has a pseudoinverse form [9],

W, = —g h"(C ')„„g,with g(h")=P, , (11)
1

p, v= i

where (C )„„is the inverted correlation matrix
C =(1/N)g" g".

Obviously one gets g'=g(h ') =g'„.We will call a case
learnable if the learning error can be minimized to zero.

Here one should notice that the gain factor yz of the
student IO is not an independent parameter. From the
condition g(h")= p„it follows that W~ ~ h" ~ys ', there-
fore the product ysQ is constant. The norm of the cou-
plings determines the effective gain of the student. Later
we will decide which of the two parameters we will
choose as independent.

If the minimal learning error is larger than zero (this
includes learnable cases above a= 1), one can apply an
iterative learning procedure called adaline (adaptive
linear) [10,11] to find the optimal solution. It is a gra-
dient procedure similar to the backpropagation algorithm
[8], which finds the optimum with respect to the quadra-
tic deviation. For a &1 it yields the pseudoinverse solu-
tion. Here we will only mention how the couplings are
changed by this procedure,

dEg
b, W~ ~ ~ g [g, (h", )

—g(h")]g'(h" )P . (12)
aw, -

A more complete description can be found in the litera-
ture, for example in [12].

Beside these two methods, standard numerical algo-
rithms for quadratic optimization can be used to solve
the problem.

C. Free energy

If we want to know the evolution of the generalization
error with the number of examples we have to calculate
the values of the order parameters Q and R.

The above-mentioned learning strategy will be to mini-
mize the learning error by adjusting the weight vector W.
More generally, we will assume a stochastic training algo-
rithm that results in a Gibbs distribution of the couplings
W. As a normalization condition we use the spherical
constraint which selects all weights with the norm Q.
This results in a partion function

The behavior of the generalization error is completely
determined by the order parameters Q and R.

B. Learning algorithms

The training phase can be formulated as an optimiza-
tion problem. The p input-output pairs provide p equa-
tions g"=g(h "(W)) and one has to optimize the N
weights 8' of the student in order to minimize learning
error Eg.

If the minimal learning error is zero, the optimal cou-
plings can be expressed analytically. From EL =0 it fol-
lows that p=g"„for all p, which yields a condition for

N
Z= J g dW exp —Pg E„(W)

j=1 @=1

N
X5 g (W, ) —NQ

N 1 N

E„(W)=—,
' g, —g W.*g —g —g W g'~

N, , &N

2

(14)

where E„is the training energy, which is defined as the
learning error of example P,
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As usual the order parameters will be found from the
free energy, which has to be averaged over all input pat-
terns. This can be done using the replica trick,

(u„u,) =5„,, (u~u~ ) =5„Q
(ui'u ) =5 q, (u„ui')=5„+ (18)

1 1 . (Z) —1
Pf—=—(lnZ) =—lim

Ãn o n
(15)

The free energy will give us the averaged learning error,

1 t)(Pf )

a Bp
(16)

To shorten the calculation we can again introduce
Gaussian variables u„and Ul„' which approach the local
fields h~~ and h" for fixed weights W in the limit N~ ~.
Note that p = 1, . . . , n is the replica index. As in the case
of the generalization error above, they are correlated
through the weights:

Qp =Xp

u~ —= (q —R )' y +Rx„+iQ qz~ —.
(19)

(20)

This leaves us with the averaged replicated partition
function

Since we will be interested only in the replica sym-
metric case, we assume replica symmetry for the order
parameters, i.e., Q =Q, q =q (pro. ), and R =R.
Then we can get rid of the correlations, if we transform
the two variables into three uncorrelated normal distri-
buted variables, i.e., x„,y„,and z~,

(Z")= f" g Dx„f" QDy f +Dz~expING„(Q, q, R )]

Xexp —g [g, (x„)—g [(q —R )' y„+Rx„+V'Q —
q z~ ] ]

p~p

(21)

The factor including G„,which measures the phase space volume for fixed Q, q, and R, does not need any further exam-
ination. It is not afFected by the IO relations and can be taken from previous works [3]. In the limit n ~0 it is

G„(Q,q, R ) = n — + —,'ln(Q —q) —= nGO(Q, q, R ) .1 q
—R

Evaluating the n —+0 limit in the remaining terms produces the free energy

Pf =a f Dx—f Dy ln f Dz exp ——[g, —g] . +Go(Q, q, R ),
oo oo 00

(23)

with

g~ =g~(x) and g=g[(q —R )' y+Rx++Q —qz] .

(24)

The three integrals can be solved analytically only in the
case of a linear student. Later this will prove to be not as
severe as it now seems.

III. LINEAR STUDENT

The case, which can be calculated analytically, is the
one with the linear student g(x) =ysx. We will solve this
case in a general form for an unspecified teacher g„(x).
Included are the cases with the linear teacher, which was
examined by Krogh and Hertz [13,14], and the binary
teacher, where g (x) =sgn(x), which was solved by
Opper et al. [3].

Before we evaluate the integrals in (23), it is useful to
introduce the following two abbreviations:

&g'„&=f" Dxg'. (y,x),
(g, x )—:f Dx g, (yrx )x .

oo (25)

With these definitions, we get the following expression for

the free energy:

1 —R
/3f =— —+ —,'ln(Q —q) ——ln[1+Py2s(Q —q)]

2 Q —
q

' 2

ap &g', ) —2»R &g„x&+»'q
I+pl", (Q —

q )
(26)

1 o.q=
xs2

with the abbreviation

(g'„)—a (g„x)' (27)

a = 1+[%'s(Q —q)] (28)

The generalization error and the learning error can be ex-
pressed in terms of the same abbreviations,

EG = ,'(& g'. &
—2»R &g.x &+y-sQ)

E,=,(&g„&-2»R&,„.&+», )

2

+ 1

2Pa

(29)

(30)

The desired order parameters R and q are the values
which make the free energy stationary,

R= (g, x& —,1 0!

ys a
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and the generalization and learning errors are

(31)

EG =— [ (g ~ &
—a(2 —a) (g~x & ], EL =0 . (32)

1 1

a ) 1: This case is overdetermined, one has more equa-
tions than parameters (p )N). Not all equations can be
fulfilled exactly, but one can find an optimal solution.
Therefore one has to find a minimum of the free energy
with respect to the norm Q. This variation provides a
value for the factor Pys(Q —q),

(33)

which is finite even in the limit p~ ~.
Now the order parameters become (a =a)

R= &g, x&,1

'Vs
(34)

and thus the generalization and the learning error are

If we want to find the absolute minimum of the learn-
ing error we have to go to the limit phoo. Before this
can be done we have to distinguish two cases, the case
with a smaller than 1 and the one with a larger than 1.

a & 1: Remembering the interpretation of learning as
an optimization problem (see learning algorithms), the
condition a & 1 means that one has fewer equations than
parameters 8'~. That is why many solutions exist which
have different norms Q of the weights. The factor
pcs(Q —q) diverges with p —+ oo. After the evaluation of
the limit p~~, one can choose the solution with the
minimal norm Q =q, which corresponds to the pseudoin-
verse solution (11).

The order parameters R and Q take the form (a = 1)

1
&g, x &a, g=

y

A. Realizable case: Linear teacher

An interesting special case is the one with identical
input-output relations for the teacher and the student.
Then the student should be able to realize the target rule
perfectly. We will call such a case realizable. A case is
unrealizable if the generalization error will always be
larger than zero. For the case at hand the two abbrevia-
tions (25) reduce to (g„&= (g„x& =@T, which
simplifies the equations for the order parameters and the
errors. For +&1

Ps 1'T+a, R =+a, EG =
—,'yT(1 —a), EL =0 .

For a) 1

'Vs 'VT, R =1, EG =0, EL =0

Ez decreases linearly from its maximal value at o;=0
to zero at a=1. If p =X, there are enough equations to
determine the N variables 8' completely. The student is
an exact copy of the teacher. Many extensions of this
case have been studied by Krogh and Hertz [13,14].

B. Unrealizable cases: Other teachers

In these cases the IO relations of the teacher and the
student are different. The student will never be able to
learn the rule exactly.

If g „(x)=sgn(x), this is the binary teacher, which was
examined by Opper et al. [3]. The order parameters can
be compared, if one uses the values of the abbreviations
(25), (g ~ &

= 1 and (g~x &
=&2/n.

As an example we will evaluate the case where
g~(x)=tanh(yTx). Figure 1 shows the behavior of the
generalization error for this case.

The piecewise linear teacher will show qualitatively the
same behavior. Both cases include the sign teacher as a
special case in the limit y T~~.

If one wants to understand the behavior of Ez the or-
der parameters ys and R introduced above show their
usefulness. There are three interesting limits to consider,
namely, a~O, 1, and ~. For a —+0

EG =— [&g', &
—&g„x&'], E, =1 Q

2
a —1

EG
1.Q

(35)

Here it can be seen again that ys is determined by the
norm Q of the weights. Only the product ysg has a
physical meaning. One of the two can be fixed to 1.
Later we will see that it is more instructive to keep Q
fixed to 1 as we demanded for the teacher. This defines
new order parameters ys and R. The first describes the
effective gain of the student due to the adaptation of the
weights 8', the other the normalized overlap between
the two weight vectors W* and W,

0.6-

0.4-

0.2—

0.0 0.5 1.0 1.5 2.0

7 = 100.0
T~= 10.0
V =5.0
T~=8.0
Vv= 1-0
T,=0.5

R
Fs =)'s&Q— v' (36)

The above equations simplify in a special case where the
teacher is also linear.

FIG. 1. Generalization e&ror for a typical unrealizable case,
linear student learns tanh teacher. Several teacher gains are
shown. The dots mark the results of the simulations (N = 100).
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ys~0, R ~0, EG =
—,'&g~ &, E~ =0 .

For a~1

BEG =0—ys"=&g, x & . (38)

y~~~, R~0, EG~~, EL=0 .

For e —+~

ys &gx &, R 1,
E =

—,'(&g', &
—&g„x&'),

At ca=0 both yz and R are zero. The student has not
learned anything yet. The generalization error is a
Gaussian average of the teacher output.

At a=1 the network is just at the limit of its perfect
learning capacity. It has learned the maximal number of
examples without error. This leads to a divergence of the
norm of the couplings Q. But the student has completely
misunderstood the rule (R =0). The generalization error
goes to infinity. This phenomenon is known as overfitting

As 0.—+ ~ the generalization error approaches its
minimal value. The weights of the student 8'. approach
the teacher's weights 8'z*,' this is expressed by R = 1. The
gain factor ys takes its optimal value & g, x &.

The asymptotic behavior can be understood without
knowledge of the order parameters. From the assump-
tion that the best generalization can only be achieved if
the local fields are identical, one can infer the identity of
the weights (R =1). This implies an asymptotic generali-
zation error

EG(~)= —,
' f Dx[g, (yTx) —ysx]

=-,'(&g'„&—2y, &g. &+y', ) .

The gain of the student can be optimized to minimize
EG( ~ ).

—tanh( y T&av'1 —ay

+y Tax )] (41)

Above a=1 it is zero (see Fig. 2). These analytical re-
sults are supported by simulations.

Increase of EG for small a

Although the network is learning examples its under-
standing about the rule can decrease. This is a
phenomenon of a bounded teacher IO relation. In a gen-
eral realizable case we can approximate the student for
small a by a linear function,

EG(a ((1)=EG(a=O) —
—,'ayT(2&g„x &

—y T) . (42)

As long as 2&g, x & is larger than yT, the generalization
error will decrease. This is always fulfilled in the linear
case, where & g, x &

=y T. But with a bounded IO, & g, x &

is also bounded and y T can become larger than 2 & g, x &.

In the case of g„(x)=tanh(yTx ) the critical gain factor
1s yT=1.33.

One can understand the e6'ect if one remembers that
learning means optimization of gain factor yz and cou-
plings O'. Since it seems that the student approximates
the teacher first linearly, the increase of the gain yz can
be too fast if the teacher has a bounded IO relation.

V. PIECE%'ISE LINEAR STUDENT

where, in the second line, we have exploited the existence
of g '(g, ).

This means that training provides for all realizable
cases the same order parameters. There is no need to cal-
culate the order parameters; we can directly take the ones
of the linear realizable case, y~ =v'ayT and R =v'a.

In the particular case with g, (x)=g(x)=tanh(yTx ),
the generalization error is for cz ( 1,

EG= —,
' f Dx f Dy[tanh(yz-x)

These results are in complete agreement with the limits of
the order parameters.

Learning with a piecewise IO causes problems which
we can understand immediately, if we look at the learn-

IV. QTHER REALIZABLE CASES

Now we want to solve the general realizable case,
where the IO relations of the teacher and the student are
identical, i.e., g, (x)=g(x) and g (g, ) exists for all
teacher outputs g, . Then the prescription for the pseu-
doinverse couplings (11) simplifies.

g(h") =P h"=g '(g", ) =g -'(g, (&", ))=&"„. (39)

The weights 8'. are thus independent of the IO relation.
The independence can also be seen in the free energy

(23) in the limit P~ co,

0.6-

' 0.4-

0.2—

0.0 I
(

I
l

I
1

I
i

I

0.0 0.2 0.4 0.6 0.8 1.0 1.2

V,=1OO.O

7~= 10.0
7,=5.0
T,=P.O

V =1.O
7 =0.5

~5(g '[g„(h„)]—h ), 3g '(g, )

~5(h, —h), g=g, (40)

exp [g. g]' "~—(0—.——g(A')), P
FIG. 2. Generalization error for the realizable case, where a

tanh student learns a tanh teacher. Above +=1 it is zero. For
small a and high teacher gains yT the generalization error can
increase while a is increasing.
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(44)
ass

In our new learning method we learn only outputs which
correspond to local fields of teacher and student in a re-
stricted interval [ xp xp] where xo has to be deter-
mined. We calculate again the asymptotic generalization
error, but now in the restricted interval,

Xo
EG(oo)= —,

' f Dx[g„(yr ) x—ysx] (45)
0

ing algorithms. The pseudoinverse solution (11) demands
an invertible student function, which is not given because
of the constant part of the function fpL. Moreover, the
adaline learning rule (12) changes the weights only if the
derivative g' is nonzero, which is also not fulfilled by the
constant part offpL.

That is why we will try to find a learning strategy for
the PL student (i.e., g =fpL). We will restrict learning to
the linear part of g. If we try to learn all the outputs of
the teacher, we will end with the results of the linear stu-
dent. Therefore we have to restrict the teacher too. For
a PL teacher (i.e., g+ =f pL ) the restriction is obvious; it
means that only patterns with an output smaller than 1

will be learned. For other teachers we need a more gen-
eral condition.

To find a threshold for the outputs of an unspecified
teacher, we can look at the asymptotics. The asymptotic
generalization error can be calculated without knowledge
of the order parameters, see (37). It can be used to set up
a condition for the gain factor of the PL student, which
learns a teacher g, ,

EG( ~ )=
q f Dx [go(j rx ) fpL(ysx )] ~ (43)

BE~ =0=—ysP'(PL) .

A. Order parameters

Now it should be obvious how the replica calculation
has to be changed to fit for this strategy. The x integra-
tion in (23) must be confined to the interval [ —xo, xo].
The restriction means also that not every pattern is
learned. Therefore it is useful to define an effective frac-
tion of patterns a,&,

0
a,ff=a Dx =a erf(xo/v'2) .

0

This leads to effective abbreviations (g, ),ff, (g, x ),ff,
and (x ),ff of the form

(4g)

(x'),ff=( f Dx x')( f Dx)
0 0

In the limit /3~ &x we get the order parameters R and Q.
If a(1,

(49)

(g, ),
y, "1—a[1—(x'&„]' (50)

Q=, "
[&g'. &,ff

—2ysR&g. x&.ff
ys ~em

+ysR (x ),ff]+R (51)

and if o, ) 1,

only if the threshold is more or less independent of the
unknown teacher's gain. So it is quite surprising that this
is also fulfilled for the tanh teacher; see the last line of
Table I. To restrict the learning on outputs with an
amount smaller than 0.85 is a good strategy to solve the
case with the tanh teacher.

BEG =0- —ysP'(linear, xo) . (46)
t:Iys

If we demand that this effective linear student in the re-
stricted interval should have the same gain as the true PL
student, we get a condition for the boundary xo,

R=
ys

1 1
I:&g. &.ff 2ysR &g.x &—.ff

y~~ a,~
—1

(52)

ysP'(linear, xo) =ysP'(PL) .xo . (47) +ysR (x ),ff]+R (53)

TABLE I. Numerical determination of the output threshold
for the case PL student learns from tanh teacher.

yT
yF'
X()

tanh(y z-xo )

0.50 1.00 2.00 5.00
0.43 0.80 1.55 3.85
2.33 1.25 0.64 0.26
0.82 0.85 0.86 0.86

10.00
7.70
0.13
0.86

100.0
76.9
0.013
0.86

The boundary xo for the local fields is connected via the
IO relation g, with a threshold for the outputs

g. (yrxo)
We can test the method at the PL teacher. The op-

timal gain is obviously yz-, therefore the interval must be
in the linear part of the teacher, i.e., xo =y&- ', the thresh-
old is, as expected, smaller than 1. The method is con-
sistent and makes sense.

Now we will use it for the tanh teacher. Table I shows
the numerical results for some examples of teacher gains
yT

Naturally the restricted learning is of practical interest

B. Realizable case: PL teacher

With xo =y &
' the constants can be expressed in terms

of (x'),ff,

&g'. &,ff=y'T(x & ff and &g*x& ff yT(x & ff. (54)

This changes the behavior of the order parameters in the
case of a,ff(1. Q does not diverge if a,ff approaches l.
Above n,&=1 we get

2

Q=R yT
2ys

ys yT (55)

which yield. s a vanishing generalization error.
Figure 3 shows the behavior of EG. The result is

They have a form similar to those of the linear student;
this leads to the same behavior. The case in which teach-
er and student are both piecewise linear should again be
realizable.
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1.0 1.0

0.8— 0.8—

0.6- 0.6—

E, 0.4—

0.0
0.0 0.2 0.4 0.6 0.8 1.0 1.2

y =100.0
y =10.0
y,=5.0
y~=2. 0
y, = 1.0
y, =0.5

E, 0.4—

0.2—

0.0 0.2 0.4 0.6 0.8 1.0 1..2

T~= 100.0
V~= i0.0
7~=5,0
7~=2.0

o T,=1.0
V,=0.5

FIG. 3. G ec ive piecewise ineareneralization error of an effective
student, which learns a PL teacher. FIG. 4. generalization error of an effect ive piecewise linear

student which learns a tanh teacher.

e simu ations show a strongconfirmed by simulations. The
'

1 t' h
nite size effect if X0 becomes very small.

C. Unrealizable case: tanh teacher
A (a, a) =—1

2 a

1 2 2[a (g„)—a(2a —a)(g x) ] (59)

This unrealizable case shows th e same c aracteristich
es o e inear studente avior as the unrealizable case f th 1'

see ig. 4). In the different limits for a,s. the order a-
rameters take the samarne values. As a consequence of the

az eor e pa-

boundness of both jt:0 relations th 1'e genera ization does
not diverge. With the greater similarity of the IO rela-
tions (note that they become 'd t 1 'fi en ica i yT~~) the
asymptotic errors are much smaller.

VI. LEARNING WITH A FINITE ERROR

EL (t) ~ Et '"+e, with e & 0 . (56)

Until now our strategy was to find the absolute
minimum of the learning error hoping that this will lead
to the best generalization abilit . The o
p enomenon in the unrealizable cases was an unwanted
result of this strategy. Next w 'll h he wi s ow t at sometimes

y. ver ttingit can be better to learn less than optimall 0 fi

a learnin
can e diminished if we terminat th te e raining process at
a earning error larger than the minimal one,

and

a —= 1+ [Py, (Q —
q ) ] (6O)

[Equations (32) and (35) describe the errors in the case of

If we assume p to be large but finite, we can neglect the
last term in both equations. Then th 1

ror and the learn
en e genera ization er-

d h earning error are connected via the variable
a. If we choose a finite e in (56), the expression (58) gives
us the appropriate value a(a, e). Then the first expres-
sion yields the generalization erro E ( ) h

to o,'and e.
r G e, e wit respect

Figure 5 shows the evolution of E& with a for different
values of e in the case where a linear student learns tanh
teacher with a gain yT=5. 00.

The curve with error-free learning (@=0.0) '

reached by e=0.0001; larger e show a
is nearly

this large e nearly doubles the asymptotic generalization
error, which is Em'" oor, w ic is G ~ )=0.112. Therefore an e between
0.01 and 0.1 will be optimal.

EG = A (a, a)+ 1

2P(a —1)
2

(57)

For a iven 1

For an illustration we go ba k t th 1'c o e inear student.
or a given learning algorithm this strategy is sim 1

en e y minimizing with reduced accurac . W' h'
y is simp y im-

an anal tical fry
'

al framework this approach can be modeled at
least qualitativel b

'
e y y integrating over the volume of all

couplings which yield a fixed positive learning error EI .
This ansatz is equivalent to learning at a positive tern
ature in (13).

'
ive emper-

If we insert the values of the order parameters R and
(27) in E s. (29) enq . , generalization and the learning err

an q

be expressed at finite temperature in the form
ng error can

1.0

0.6-

G 0.4- w

0.2—

0.0
0.0 0.5 1.0 1.5 2.0

m=0. 1

a=0.01
v=0.001

o c=0.0001
v=0.00

EL = A(a, a)

where

+ 1

2Pa
(58)

FIG. 5. generalization error for learnin with a fini

ing error EL.
g wi a nite earn-
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It is interesting to compare our results to a recent
study of Krogh and Hertz [13], who found that the
overfitting arising from noisy teacher outputs can be
suppressed by learning strategies which allow learning
with errors. A related result was obtained by Opper and
Haussler [16] within the framework of Bayesian learning.
Here a noise in the teacher outputs naturally leads to
learning at a finite temperature. This suggests that when-
ever teacher and student will not properly match, due to
noise or inappropriate network architecture, learning will
benefit from errors in the training process.

VII. CONCLUSION

In the present paper we investigated the infiuence of
different input-output relations on the generalization abil-
ity of a single-layer perceptron. It turns out that this
problem exhibits many characteristic phenomena of gen-
eralization. Choosing different input-output relations in-
dependently for teacher and student we got realizable
cases, if the IO s are identical, and unrealizable cases, if
they are not. For a gradient descent learning rule it was
important, whether the student's IO is invertible for all
teacher outputs or not. As long as we learned with
minimal learning error, an invertible student was able to
learn a realizable teacher exactly after N examples had
been presented.

On the other hand, if the number of examples is small
compared to X it seems that the student effectively ap-
proximates the teacher by a linear function. This leads to
an increase of the generalization error in the realizable
case with a bounded IO for high enough teacher gains

An unrealizable case can never be learned exactly. It
even shows a strong increase in the generalization error if
e approaches 1. This is a characteristic consequence of
the exact learning of the pseudoinverse learning rule,
called overfitting [15]. If learning is not exact, that
means if the learning process is terminated at a learning
error larger than the minimal one, the overfitting can be
reduced, which leads to an improved generalization abili-
ty in the surroundings of +=1. We expect that increas-
ing the generalization ability by learning with errors is
relevant for many practical applications and is still an in-
teresting question (see [17] and references therein).
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