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This paper is the second of a series. The first [G. E. Hahne, Phys. Rev. A 45, 7526 (1992)] developed a
general theory of the transition operator approach to diC'raction of time-harmonic electromagnetic
waves from fixed obstacles, such that the response of the obstacle, denoted by Q, to an impinging elec-
tromagnetic signal with wave number k0 was simulated by nonlocal, homogeneous Leontovich (i.e., im-

pedance) boundary conditions on the obstacle's surface, which surface is called BQ. Moreover, the exte-
rior region, called Q'", was presumed to be unbounded empty space, and has an electromagnetic

~ +
response that can be expressed in terms of the so-called radiation impedance operator, denoted Zk, Zk

0 0

is a certain invertible, linear functional operator that maps the space of complex tangent-vector fields on
BA into itself. The matching of the limiting tangential electric and magnetic fields on BQ yielded a
functional-operator expression for the transition operator and thereby a formal reduction to quadratures
of the entire direct-scattering problem. This paper is intended to serve as an illustration and elaboration
of the formalism presented in the first paper. After a brief recapitulation of the theory, the following to-
pics are dealt with. First, an infinite sum in terms of vector spherical harmonics is obtained for Zz for

0

BQ a sphere. Second, a quasiplanar approximation, based directly on the exact result for planar BQ, is
+

obtained for Zk when
~
ko

~
is large compared to the local surface curvatures of M and attention can be

0

restricted to small neighborhoods on BQ; when augmented by the method of stationary phase, this ap-
proximation is shown to lead to the familiar physical optics method for smooth, convex surfaces. Third,
the latter method, supported by further interventions of the method of stationary phase, is applied in a
well-established manner to secure the results of geometrical optics for the complete Green's function for
the time-harmonic Maxwell field in the presence of a smooth-surfaced, convex, perfectly electrically con-
ducting obstacle. One feature of the latter computations is that the original source currents from which
the free-space Maxwell Green's function is constructed are presumed to generate ordinary outgoing
("causal" ) electromagnetic waves for electric current sources, and purely ingoing ("anticausal") waves
for magnetic current sources (i.e., sinks) of electromagnetic radiation. Fourth, a formal construction is
derived for mapping the Leontovich boundary conditions on an inner surface into a set of Leontovich
boundary conditions on an outer surface, in the circumstance that a layer comprised of a material medi-

um, which has possibly nonuniform and nonsymmetric tensors representing its constitutive properties,
fills the domain between the surfaces; the construction presumes that a Green's function is available for
the corresponding Maxwell equations in the medium when the medium is extended appropriately to fill

all space. The main body of the paper concludes with a brief discussion of directions of possible future
work and applications. The first appendix shows how to apply the method of stationary phase in the
present context, in particular for the mixed case that the original radiation source is anticausal and the
response currents generated in the obstacle are causal sources of radiation. A second appendix develops
an acoustic (Helmholtz equation) analog to the fourth topic mentioned above, and exhibits an interplay
of the theory with symplectic transformations in the case that the principle of reciprocity holds; it is not-
ed that a symplectic connection also exists in the electromagnetic case when the propagation medium's
constitutive properties are such that reciprocity holds.

PACS number{s): 42.25.Fx, 03.50.De, 03.40.Kf, 42. 15.Gs

I. INTRODUCTION

The subject of this paper is an elaboration of a previ-
ously established theory —cf. Ref. [1]—of the diff'raction
of time-harmonic electromagnetic waves from obstacles.
In Ref. [1], a transition (T) operator formalism was pro-
posed for the di8'raction of electromagnetic waves from
an impenetrable obstacle of general geometrical shape,
with imposed surface boundary conditions (SBC's) of gen-
eral homogeneous, nonlocal, linear type enforced on the
joint electric and magnetic field at the obstacle's bound-
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ary; the latter are called impedance, or (generalized)
Leontovich, SBC's. In this paper we consider applica-
tions and an extension of the theory of Ref. [1].

The applications comprise first, a spherical harmonic
expansion of the so-called radiation impedance operator,
as defined in Ref. [1], for a spherical surface, and second,
a reconsideration of familiar short-wavelength approxi-
mations from the new standpoint. The latter includes a
derivation of the so-called physical optics method on the
basis of a quasiplanar approximation to the radiation im-
pedance operator, augmented by the method of station-
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ary phase; it includes further a (re-)derivation of the
geometrical optics approximation for the complete
Green's function for the electromagnetic field in the pres-
ence of a smooth- and convex-surfaced perfectly electri-
cally conducting obstacle.

The extension of the theory of Ref. [1] that is obtained
here has as its principal objective the (one way) mapping
of Leontovich boundary conditions on a surface into an
analogous simulation on the exterior surface of a new
obstacle, which is comprised of the original obstacle aug-
mented by a material layer with specified geometry and
(linear) constitutive properties. The construction of the
mapping requires that a Green's function be available, at
least in principle, for the medium that fills the region be-
tween the two surfaces when it is extended in some suit-
able manner to fill all space; accordingly, numerical ap-
plications will normally be feasible only when this medi-
um is electromagnetically homogeneous and isotropic, as
in Ref. [1],Appendix C. In this manner, an obstacle that
is both materially and geometrically complex can be
simulated in the respect of its electromagnetic scattering
by Leontovich boundary conditions on a geometrically
simpler circumscribing surface, as a sphere. The map-
ping is one way in the sense that the method derived here
does not permit the mapping of Leontovich boundary
conditions from an exterior surface to an interior one.

Two previous papers [2,3] were dedicated to the estab-
lishment of a T operator theory of diffraction of time-
harmonic acoustic (scalar) waves from impenetrable ob-
stacles, such that general homogeneous, nonlocal SBC's
of the Robin (that is, impedance) type are satisfied by the
acoustic signal at the obstacle's bounding surface. The
first [2] of these papers treated the general theory, while
the second [3] contained an investigation of certain im-
portant aspects of the theory from the new viewpoint,
that is, of the acoustic radiation impedance operator and
of the geometrical acoustics limit for special obstacle
geometries and simple SBC's. The theory of Refs. [2] and
[3] is extended herein in Appendix B: a method of propa-
gating certain types of solutions of the Helmholtz equa-
tion from surface to surface, and a connection with pro-
jection operators and symplectic transformations on the
joint linear space of surface values and normal deriva-
tives, are established. There proves to be a structural
analogy between the acoustic and the electromagnetic
theory; the principal differences between electro-
magnetic-wave diffraction theory as it is treated here, and
the acoustic theory presented in Refs. [2] and [3] and in
Appendix B, derive from the vector character of the elec-
tric and the magnetic fields. Other differences are (i) that
in Secs. IV, V, and VI, which deal with short-wavelength
approximations, the hypothesis is made that true physical
electric and magnetic currents give rise to, respectively,
outgoing-wave and ingoing-wave solutions to Maxwell's
equations, and (ii) that in Sec. VII, which deals with
electromagnetic-wave propagation in a medium,
reciprocity-violating constitutive properties are intro-
duced.

The remainder of this paper is organized as follows. In
Sec. II, we shall recapitulate briefly parts of the general
theory of Ref. [1]:the kinematics of a diffraction problem

for electromagnetic waves, SBC's for perfect electrical
conductors (called E-type obstacles and SBC's), free-
space and complete Green's functions, the radiation im-
pedance operator Zk, and the T operator associated with

an E-type obstacle. In Sec. III, we shall obtain and dis-
cuss an infinite series expansion, in terms of vector spher-
ical harmonics, of Z&+ for the case of a spherical bound-

0

ary. In Sec. IV, we shall propose a "quasiplanar" ap-
proximation for Zk, which seems particularly suited to

0

applications for which the electromagnetic wavelength is
small compared to an obstacle's local curvature radii. In
Sec. V, we shall verify that the quasiplanar approxima-
tion for Zk will, with the aid of the method of stationary

0

phase, yield the familiar short-wavelength approximation
known as "physical optics" as a consequence. In Sec. VI,
we shall apply the results of Secs. IV and V, again with
the help of the method of stationary phase, to obtain an
approximation for the complete Green's function in an
E-type diffraction problem in the extreme short-
wavelength (i.e., geometrical optics) realm; the results
will be a mixture of the familiar and unfamiliar due to
our presumption of conventional and unconventional
forms of radiation from electric and magnetic current
sources, respectively. In Sec. VII we shall derive, with
the aid of a suitable Green's function, a mapping of given
Leontovich boundary conditions on an interior surface
into Leontovich boundary conditions on an exterior sur-
face, where a physically complex linear medium may fill
the domain between the surfaces. Section VIII concludes
the main part of the paper with a brief discussion of pos-
sible directions for further work.

The paper is augmented by two appendices. In Appen-
dix A, we derive the rules for stationary phase integrals
(and implicitly geometrical optics involving refiection
from a surface) both in the "elliptic" and "hyperbolic"
cases that the specular points are the stationary points of
the sum and difference function, respectively, of distances
from a point on the surface to a source point and to a
field point. In Appendix 8, we shall extend the theory of
Refs. [2] and [3] to develop a theory of propagation of in-
itial values (including both function values and their nor-
mal derivatives) of the Helmholtz equation from surface
to surface, and show how this theory is intertwined with
that of certain projection operators and symplectic trans-
formations, in the linear space of boundary values. It is
argued in Sec. VII that an analogous symplectic structure
exists for the time-harmonic Maxwell field when the prin-
ciple of reciprocity obtains.

II. SKETCH OF FORMAL DIFFRACTION THEORY

In this section we shall give a brief recapitulation of
those results of Ref. [1], specialized in the respects of
geometry and boundary conditions, that are needed for
our purposes here.

We denote Euclidean three-dimensional space by 0,
established a fixed Cartesian coordinate system in it, and
denote a point by a three-vector as r, r, , etc. ; the corre-
sponding volume measures are denoted d r and d r „re-
spectively. Specializing from Ref. [1],Sec. II, we let 0 be
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the open set occupied by the obstacle, let A'" be the open
set comprising the unbounded exterior region in which
the electromagnetic field propagates, and let BA be the
surface, presumed smooth that is the common boundary
of A'" and Q. Smoothness means that the outward unit
normal vector and the surface curvature matrix are con-
tinuous everywhere in BA. Points in the subset BA are
denoted by three-vectors with a first subscript 0, as ra or
ra &, and the corresponding element of surface area mea-
sure is called d A a or d A», respectively. The unit out-
ward (pointing toward Q'") normal vector to M at ra, is
denoted n(ra, ). These notations will need to be general-
ized for the computations of Sec. VII and Appendix 8,
where two or more surfaces are involved.

The electromagnetic fields and sources are presumed to
have the (unexpressed) time dependence exp( —ikoct),
where c is the speed of light in a vacuum, and the wave
number ko can be any nonzero real number. The elec-
tromagnetic field is described by the direct sum of two
three-vector fields, the electric field Ek (r), and the mag-

netic field cBk (r), where we use Syst'erne Intevnational
0

units, and the c is for dimensional consistency. An elec-
tromagnetic field is denoted (E& (r);cBk (r))', where the

O 0

~ means transpose, that is, the field at each r is a column
vector with six entries.

In the geometrical optics application of Sec. VI, the
obstacle occupying 0 is taken to be a perfect electrical
conductor, so that electrical currents Aow only within
BQ,, and no magnetic currents are induced in 0 U BA.
The region 0"is taken to be a vacuum. Accordingly, the
exterior limiting tangential component of the electric
field, denoted —n(ra) X [n(ra) XE„(ra+)],is forced to be

O

the zero vector; the extra + (or —) in the argument im-
plies that a limit from points in Q'" (or 0) is to be taken.
These physical SBC's will be called E-type boundary con-
ditions; the E may appear in a superscript, as in the
Green's function and the T operator. In acoustic-wave
diffraction, the limiting cases of "sound-hard" (Neu-
mann) and of "sound-soft" (Dirichlet) SBC's are associat-
ed with differently structured T operators in the degree of
singularity encountered —see Ref. [2], Eqs. (59) and (60),
and Ref. [3], Eqs. (5) and (6). For electromagnetic-wave
diffraction, the dual case of a perfect magnetic conductor
does not offer anything substantially new from a
mathematical viewpoint, so that we shall not consider
this case of hypothetical boundary conditions.

We denote the space of sufticiently well-behaved com-
plex tangent-vector fields on BQ by V . Linear opera-
tors that map this space into itself will have a superim-
posed "breve" accent, as C; these operators will be con-
strued to annihilate the normal components of a general
three-vector field on BA. The identity operator in V is
cal1ed Ia. We let Xa be the operator having local Carte-
sian components e 'kn~(ra) (e 'k is the Levi-Civita symbol,
and the summation convention is operative on Cartesian
indices); note that

Xa = —Ia .

If E i H V and Ez EV, we define the bilinear inner

(E2; C'E, )ao = (E,; CE~ )ao (3)

for all choices of pairs of fields E, E V and E2 E V
An operator that equals its transpose is called symmetric.

By virtue of the uniqueness and existence theorems for
Maxwell fields in 0" satisfying asymptotic conditions of
outgoing-wave type (cf. Ref. [4], Theorems 4. 18 and
4.27), each tangential electric-field distribution
Ia E& (ra+ ) is uniquely associated with a tangential

0

magnetic-field distribution IacBk (ra+ ) on BQ; these

fields are the tangential projections of the exterior limit-
ing values of a particular solution to Maxwell's equations
of outgoing-wave type. Bp definition, then, there exists
an invertible operator Z&, called the radiation im-

0

pedance operator, such that [cf. Ref. [1],Eq. (61)]

IaEk (ra+) = —(Zk+XacBk )(ra+ ),
where the —Xa is inserted for convenience elsewhere.
From the duality symmetry of Maxwell's equations in
empty space [Ref. [5], Eq. (6.151)],it follows that

(Zq )
'= —XaZk+Xa . (5)

It is easy to show that Z~+ is symmetric [Ref. [1], Eq.
0

(64)]:

(Zk+ )'=Z (6)

We denote electromagnetic Green's functions briefly
by a symbol I &

+ —,and in detail as entities with com-

ponents I f, +',k(r„r2). The physical meaning of the

various superscripts, subscripts, and arguments follows
the notation of Ref. [1],Sec. III, and is as follows. The X
can be M, E, or 0 in the present context: the M denotes
the Green's function when all space is filled by a material
medium the properties of which will be specified in con-
text; E stands for the complete Green's function when a
perfectly electrically conducting obstacle is present; and 0
stands for the free-space Green's function. The second su-
perscript + means that electrical sources are presumed
always to be associated with outgoing-wave solutions to
Maxwell's equations. The third superscript can be + or
—,depending on whether magnetic sources are presumed
to couple to outgoing-wave solutions or to ingoing-wave
solutions, respectively, to Maxwell's equations; we em-
phasize that only true magnetic sources are presumed to
be of the latter type, while any fictitious magnetic sources
arising from the modeling of the obstacle —presumed to
be made up of ordinary electrical matter —are taken to
be of the former type. Concerning the subscripts and ar-
guments, koc is the angular frequency of oscillation of the
sources and fields, the source is an electric (P=e) or mag-
netic (p=m) current element (5 function) pointing in

product

(Ei'Ez)an=—J Ei(ra)'E2(ra)d'a (2)
an

and the E&,Ez bilinear matrix element of an operator C as
(E, ; CE2)a„. The adjoint of C in this context is called its
transpose, and is defined as that operator C' for which
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I 0++
ko

(ro++ )

(r'+-)
ko me

( ro++ )ko em

0+
Gko „

0+

0+

0+

where the four constituent dyadics are constructed as fol-
lows: We have the causal (anticausal) scalar Green's func-
tion

(ri r2) = (4ir1 rl r21 ) exp(+&'ko
I rl r2I )

where the + (
—

) superscript or sign corresponds to out-
going (ingoing) radiation. The Green's dyadics of the
right-hand side (rhs) of Eq. (7) are now

direction k =x, y, or z, and located at r2', the Green's
function then gives the electric- (a=e) and magnetic-
(a=m) field components in directions j =x, y, and z, at
the field point r, .

Note that each of the four sub-blocks of a Green's
function, extracted by fixing both o. and P indices, can be
regarded as an ordinary dyadic operator that maps the
space of vector fields in 8 into itself linearly —cf. Ref.
[1],Eq. (34); for the free-space Green's function these are
expressible in terms of conventional Green's dyadics, as
in Ref. [1],Eqs. (A2) and (A3). We recapitulate these re-
sults. We take

where the differentiations are to be carried out after in-
tegration over rz when necessary to avoid singularities.

The T operator Y'k+ associated with a perfectly con-

ducting obstacle is defined implicitly as that operator that
makes the following equation [Ref.[1], Eqs. (38), (39)]
hold:

E+ — I 0+ —+ I o++ ~E+Po+
ko ko ko ko ko

where the second summand on the rhs is an operator
product. The first summand on the rhs of Eq. (11)
represents the signal in the absence of an obstacle, i.e.,
when Y'k is the zero operator. The second summand

comprises the complete scattered wave, where the cause
and e6'ect sequence, but not necessarily the temporal se-
quence, reads from right to left: In response to the im-
pinging field given by I k+, the Yk+ operator creates,

linearly but nonlocally, currents on 0 U BO, ; the operation
of I k++ on these currents then gives rise to an additional

electromagnetic field that exactly cancels the impinging
field within 0 and has the character of an outgoing-
wave scattered field in 0", such that the total exterior
field satisfies the given SBC's.

For any open set ACe we define the unit step func-
tion 8& as follows:

Gk, , 'k(rl r2) Gk, ,jk(rl r2)0+ 0+

=(kO5 k+kO '7'l, V, k )Gk +(r, ;r2), —

1 if rEA
6 r —= '

0 otherwise . (12)

0+ 0+
kO, m, jk( 1 2) Gko, , jk(rl 2)

= —i(V, X) kG„—(r, ;r2), (10)

We shall now give the results for I k+ derived in Ref.

[1],Eqs. (97) and (98), following applications of Eqs. (94)
and (95) of Ref. [1]:

rf+ p k(ri,'r2)=[1 —
( —,')en(r, )]Gk &

.k(r, ;r2) —
( —,')Gk+

& k(r, ;r2)6&( 2)

+('~2)[ k, , ae( S k,+SGk, , eP +SGk, , mP)]gk(rl'r2)

+' [(Gk, .+Oza~ps Gk,+, &s)Gk, ,.fl],k(r»r2) . (13)

The choices of plus and minus in the superscripts on the
rhs of Eq. (13) correspond to p= e and p= m, respective-
ly. The implied operator products on the rhs of Eq. (13)
entail restriction of the inner arguments of the Green's
functions to BA, summation over inner Cartesian indices,
and integration of all the inner arguments over BA. The
form Eq. (13) and its constituent expressions will be es-
timated in the short-wavelength approximations of Secs.
V and VI.

III. VECTOR SPHERICAL HARMONIC
EXPANSION OF Z FOR SPHERICAL BQ

In this section we shall obtain an infinite expansion in
terms of a complete orthonormal set of vector spherical

(E, IE2) = f [Ei(r&)]* E2(r&)dd& .
an

(14)

We shall follow and augment the constructions in
Jackson (Ref. [5], p. 746) of vector spherical harmonics,
but make certain changes of notation: For example, we
shall use J,M rather than l, rn as the indices for multipole

l

harmonics of the operator Zk, for the geometrical case+
0

that BQ is a sphere of radius a centered at the origin,
which sphere we call S (a). Note that in this section
orthogonality and normalization of states and operator
adjoints (called Hermitian conjugates) are defined in
terms of the sesquilinear inner product familiar from
quantum mechanics: that is, if El(r&) and E2(r&) are two
(not necessarily tangential) vector fields on BA, we have
the Hermitian inner product



47 TRANSITION OPERATORS IN. . . . II. 1341

order and orientation, as the former symbols are a nota-
tion that is more in keeping with the tradition in quan-
tum mechanics (cf. Ref. [6], Chap. 5.9, or Ref. [7], Chap.
2) for total angular momentum J=S+L and z projection
J, =S,+I., (with quantum numbers J and M, respective-
ly) in the kinematics of vector addition of spin S (with
quantum numbers s = 1, and m, =+1,0 for vector fields)

plus orbital angular momentum L (with quantum num-
bers 1, m).

Let us consider the space of complex three-vector fields
defined on the unit sphere S (1). Each such field, denot-
ed E(r) say, will have components E (r), where j=x,y, z
refers to fixed Cartesian axes and r&S (1). A complete
orthonormal set of such vector fields can be constructed
explicitly. In fact, let Yl (r), l =0, 1,2, . . . ,I = —I, —l + 1, . . . , + I be the spherical harmonics as
defined in Ref. [6], Eq. (2.5.5), and let S, L, and J be the
vector operators with Cartesian components

1
(Sj )kl l~kjl» ( j )kl fikl~jpqrp

(15)
(J, )l l

= (S, )ki+(I., )„, ;

the operator L can be expressed in terms of r coordinates
alone —cf. Ref. [6] Eq. (2.1.4). The desired set of vector
fields on S (1) will be called XP (r), p =1,2, 3, and is
obtained by the following construction (Ref. [5], p. 746,
as modified; see also Ref. [7], Chap. 2):

p —3

co —+ 1

—I~/Z

i—/v'2
0 I /v'2

0 —i /i/2
1 0

(21)

For J =0 the transformation matrix is 1 X 1; &3l l0)o is
the number +1. An analogous set of vector harmonics
can be constructed on the unit sphere in wave-vector (k)
space; there is a corresponding set of states that are
eigenstates of (i) the k-helicity operator
1,—:k J=k.S= i( k X ) (called p helicity in quantum
mechanics), (ii) the operator J.J, and (iii) the operator J, .
The values A, =+1, 0, and —1 correspond, respectively,
to left circular, longitudinal, and right circular polariza-
tion of the vector field —cf. Ref. [5], p. 274, and Ref. [9],
p. 28. Note that the position-coordinate representative of
the Hermitian operator k A, =k.J=k S is the curl opera-
tor VX within the space of three-vector fields on e,
where Fourier transformation is taken as the unitary
transformation between r space and k space, with an ob™
vious definition for the sesquilinear inner product of two
vector fields on 8 .

Now let f (r) be a continuously differentiable function
except possibly at r =0. Then away from the origin of
coordinates we have the gradient, curl, and divergence
formulas [derivations omitted —related formulas are in
Ref. [6], Eqs. (5.9.17)—(5.9.23)]

X' (r)—= [J(J+1)] ' I- Y (r) (16) V
l f(r)YJM(r)) = — f(r)[J(J+1)]'—X (r)

X. (r) =[rXX' (r)], ,

X (r)—:r YJM(r) .

(17)

& jrlpJM) =Xp (r) . (19)

A particular unitary transformation among the three
states lpJM), p =1,2, 3 (there is only one state with
J =0) yields the set of states that are simultaneous eigen-
states of three compatible (that is, mutually commuting)
Hermitian operators: (i) the so-called r-helicity operator
[8] cu =r.J=r S=i (r X ), (ii) the operator J J, and (iii) the
operator J, . In fact, if we call the latter states lcoJM ),
where the eigenvalue m can take the values +1,0,—1 for
J)0, and 0 for J =0, it can be verified that

I~JM&= y lpJM&&pll~&, ,

p =1

where for J)0 we have the J-independent matrix

(20)

In Eqs. (16) and (17) J= 1,2, 3, . . . , in Eq. (18)
J=0, 1,2, . . . , and in Eqs. (16)—(18) M = —J,
—J+1, . . . , J—1,J. The sets X' (r) and X (r) to-
gether are complete within the space of tangent-vector
fields to S (1).

We remark that the vector harmonics of Eqs. (16)—(18)
can be regarded as coordinate representatives of certain
state vectors, which states may be called lpJM ) in Dirac
notation; that is,

[f( ) ]X3JM(~) (22)
dr

V X [f( )XlJM(~z) ] [rf ( ) ]X2JM(P)1JM ~
r dr

+ f(r)[J(J+ I )]'j—X (r),
(23)

V X [f(r)X'JM(r)] = —— [rf (r)]X'JM(r),2JM ~
r dr

VX [f(r)X (r)]= — f (r)[J(J+ I )]'j X'—(r),
r

V [f(r)X' (r)]=0, (26)

V [f(r)X (r)]= —[J(J+1)' (i/r)f (r) YJM(r),

(27)

V [f(r)X (r)]=
2 [r f(r)]YJM(r) .3JM ~ 1

(28)

The time-harmonic Maxwell equations in empty space
are [Ref. [4], Eq. (4.2)], with ko&0,

Ek (r)= —(iko) '(VXcB„)(r),

cBk (r)=(iko) '(VXE„)(r) .
0 0

(29)

(30)

Using Eqs. (23)—(30) and the properties of the spherical
Hankel functions h"'(kor) (cf. Ref. [10], p. 437), we can
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establish that for each J ~ 1 and ~M~ ~ J the electromag-
netic field distribution [Ek (r);cBk (r)]', where

[E (r).cB+ M( )] —
[ B+mJM( ). E+mJM(

(33)
E+mJM(r) h (1)(k )X)JM(~) (31) A general solution to Eqs. (29) and (30) of outgoing-

wave type has the multipole expansion

cB+ (r)= — [rh"'(k (r)]X (r)

+ h"'(k r)[J(J+1)]' X (r)1

@or
(32)

Ek+ (r) y t g JME&™~(r)+g JMEk+eJM(r)]
J,M

cBk (r)= g [A cBk™~(r)+A, cB&
' (r)] .

J,M

(34)

(35)

satisfies Maxwell's equations in the domain 6 —IO], and
satisfies the Silver-Miiller radiation conditions of Ref. [4],
Theorem 4.4. The superscripts +I stand for outgoing-
wave magnetic multipole (this is, transverse electric)
fields, and J,M for the multipole order 2 and orientation.
The corresponding electric multipole (i.e., transverse
magnetic) fields of outgoing-wave type are obtained as the
dual solutions to Maxwell's equations:

g J) '(z) = [zh J" '(z) ] '(d /dz) [zh J" '(z) ] . (36)

It follows now from the definition Eq. (4) that the radia-
tion impedance operator for BII=S (a) has the following
expansion for its kernel:

We can find the corresponding tangential fields on S (a)
by substituting r =a in Eqs. (34) and (35) and dropping
all contributions from X (r). Let us define the loga-
rithmic derivative gJ"(z) for the Riccati-Hankel functions
(Ref. [7], Chap. 2.2. 1)

(j'r' Zk ~jr) =Zk+ '.(r';r)=a g IX,' (r')[ i(J)')—(koa)] '[X,' (r)]*+X,™(r')[igJ1
'(k—oa)][X (r)]*] .

J)O, M

(37)

We have asymptotically for large J and fixed z,

(38)

The expansion Eq. (37) for Z), divides into two suboperators involving either X' or X exclusively, where the latter

contributes the dominant singular terms to the generalized (in the sense of containing differential operations) kernel of
Zk+. In fact, let @(r) and %(r) be continuously differentiable tangent-vector fields on S (a). Then we define the derived

scalar fields

P)(r) =L.@(r), )t)2(r):—(rXL) @(r); (39)

(4O)

and similarly for it)) and $2 in terms of %. Following integrations by parts, we now have from Eqs. (37), (16), and (17)

(@~Z~+ ~%) =a f, d'r' f, d r[[P)(r')]*IC)(r', r)it))(r)+[/, (r')]*K&(r', r)it2(r)],

where we have used the definitions

K) (r', r) = g [ iJ(J + 1)(J(koa—)]
J&O, M

X YJM(r')[ YJM(r) ]*

ICz(r'; r)—:g [J (J + 1) ] '[ —i(J(koa ) ]
J&O, M

X YJM(r') [ YJM(r ) ]* .

(41)

(42)

Kz(r';r) =i [2irkoa ~r' —r~ ]

with a correction term of order In~ r' —r ~.

(43)

In view of Eq. (38) and Ref. [3], Eqs. (A3) —(A7), IC) (r', r)
is a continuous kernel, while the dominant singular term
inKz is

We conclude our discussion of vector spherical har-
monic expansions by noting the feasibility of obtaining an
expansion in these terms of the free-space Green's func-
tion I k+ +—

& k(r, ;r2). Beyond the first step, the computa-

tion amounts to an application of Dirac's transformation
theory, and goes as follows. First, the Careen's function
matrix is obtained in k space; this computation is alge-
braic, since the matrix is local in k. Second, the dyadic
constituents, which all commute with the operators cor-
responding to the "quantum numbers" A.,J,M, are
transformed into diagonal form in the corresponding
basis of states. Third, a suitable specialization of Ref. [8],
Eq. (24) is applied to express the Careen's function in an
r-helicity basis; this transformation entails the computa-
tion of a number of distinct Fourier-Bessel transforms.
Finally, Eqs. (16)—(21) are applied to express the Careen's
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IV. QVASIPLANAR APPROXIMATION FOR Zk 0

The "primitive" operators M& and Xk are defined in

Ref. [4], Eqs. (2.82) and (2.85), respectively —see also
Ref. [1],Eqs. (A4) and (A5); these operators effect a linear
mapping of the space V into itself. According to Ref.
[1],Eq. (68), we have

ko)Xa ik,Xa(Ia™k,) (44)

function in conventional Cartesian components and coor-
dinates in r space. Both the computation and the results,
which include generalized functions, are lengthy [11],and
will not be reproduced here. The problem of expanding
the electromagnetic Green's dyadics in vector spherical
harmonics has been the subject of a number of
investigations —see Refs. [12] and [13], and other papers
cited therein —and a recent book [14] discusses the
singularity structure of these dyadics.

V. DERIVATION OF THE PHYSICAL OPTICS
APPROXIMATION

—XaGk, , mp)0, (ra3 rZ) .0+ (49)

The reciprocity property for free-space Green's functions
of purely outgoing-wave type [Ref. [1], Eq. (51)] and the
symmetry of Zk [Eq. (6)] imply that

In this section we shall apply the approximation Eq.
(48) and the method of stationary phase to obtain a
short-wavelength approximation to terms that appear in
parentheses in the last two summands on the rhs of Eq.
(13). These results are an alternative statement of the so-
called physical optics approximation (Ref. [15], p. 29),
which approximation is postulated on physical grounds
as an extrapolation to gently curved, convex BQ of the re-
sults of the exactly solvable problem of reflection from a
perfectly conducting plane.

We will work out estimates for the expressions

+ko, p, lk( a3 2) =(Xa kOXagko, ep
+ 0 "+" 0+

Moreover, if BQ, is a plane, it is easy to verify that M& is
0

the zero operator in V

(Gko, Xa koXa Gko, Xa)jl( I ra3)

(50)

M~ =0~,

so that the result

Zk = —(i /ko)XaXk Xa

(45) Explicit formulas for the scalar Green's functions and
dyadic constituents of the Green's function for the free-
space Maxwell field are given in Eqs. (8) —(10).

It is convenient to use the following abbreviated sym-
bols for vectors, intervals, and unit vectors:

(Ia+Mk ) '=Ia —Mk + (47)

is exact for planar BA. If instead BA is smooth and con-
vex, it is plausible on physical grounds that locally, that
is, over distances ~ra

—
ra~ that are small compared to the

local curvature radii of BQ, , the correction terms to the
kernel Z„+, , (ra, ra) arising from the higher-order ap-

proximations in

r» 2= —r2» =r» —r2=r» 2r» 2 .

(51)

(52)

We continue to follow the summation convention for
Cartesian indices j,k, l,p, q, . . . . We carry out the indi-
cated differentiations in Eqs. (9) and (10); insofar as we
will obtain an asymptotic approximation as

~ ko ~

~~, we
can drop all derivative terms that do not bring down a
factor k0 from the exponent:

can be neglected. Therefore we propose the quasiplanar
approximation to the radiation impedance operator for
such a BQ to be Z&+, where

0

Gk,+..,.k(ri rz) =Gk,0+ . 0+

= —ko(4~r, z) 'exp(+ikor, 2)

X [6,k —(r& 2) (rt 2)k], (53)

Zk+ ——Zk ———(i /ko )XaXk Xa .
0 0 0

(48) 0+ 0+
Gko me jk(rl 2) kO em jk( 1 2)

A correction to Zk derived by applying the linear term

in Mk on the rhs of Eq. (47) to Eq. (44) can be computed
0

with methods similar to those applied in Ref. [3], Sec. V,
but we shall not do so here.

= + ko(4nr, 2) 'exp(+ikor, 2)

«jjk(ri, ~)i . (54)

Moreover, in view of Eqs. (46), (1), and Ref. [4], Eq. (2.85)
[see also Ref. [1],Eq. (A5)], we have

(Xa Zk, Xa)jj(ra3 ra4) = ('/ko)(&k, )jj(ra3'ra4) (55)

exp(ikor3 a4)
hm (Xa)j~(ra3)[V3 (V3X )]pq (Xa )q((ra4»

2~k0 r,-r„ r3, a4
(56)
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where the limit is to be taken after an integral over ra4 is carried out; according to Ref. [4], p. 64, the same result is ob-
tained whether r3 approaches ra3 from 0'" or from Q. The first summand on the rhs of Eq. (49) reduces to

l —1

2
lim (Xa)l~(ra3)[V3X(V3X )]zq dAB4(r3 B47B42)

8n an

[ I3gk (ra4, 2 },(ra4, 2)k 1 if 0=e
X exP[iko("3, a4 "—a42),](Xa }q,(ra4) X .

+e,«ra42, if =m .
(57)

We find for this circumstance that in the two possible
geometrical arrangements (that is, r2 and r3 are on the
same or on opposite sides of the plane tangent to BO at
ra, ) and for both elliptic and hyperbolic cases, we have

~pa& =~par + l

Idet(Aya&„) I =2r3, ay Inaya 'r3, aya I

(59)

After applying Eqs. (58), (59), and (Al 1) to Eq. (57),
and effecting the limit r3~r» in all but one of the fac-
tors, we must evaluate the limit

+all a3) 'm
, [~lq ( 3, ay )l ( 3, ay )q]&a, q. (ra3)

3 r}3

(60)

For the cases that r2, ra+„r3 lie on a straight line we have
r3 ay + r2 a3 while if the three points lie on a broken
line, we have

We evaluate the integral in Eq. (S7) by the method of
stationary phase —see Appendix A. We obtain an esti-
mate for this integral as a sum over contributions from
points of stationary phase. Our approximation leads to
significant and incorrect contributions from stationary
phase points remote from ra3, since Eq. (48) does not ac-
count for the rapid decrease in magnitude of the exact
kernel (Zk )~k(ra3, ra4) as its arguments ra3 and ra4 be-+

come remote from one another on a convex BO. We shall
ignore these other contributions, and keep the contribu-
tion from the single stationary phase point ra+, for which
lra3 Iaya ~

~0 as r3~ra3 only the contribution, which
proves to be finite, from this point of stationary phase
yields a local contribution to the integral, in which cir-
cumstance we expect that the approximation Eq. (48)
will be valid. Close to the limit r3~ra3, the correspond-
ing matrix of Eq. (A8) is dominated by a single term:

Ayag7l [2r3, aya ] ['figq ( 3,aya ay/) 3,aya tayg}l

(S8)

l

large, for Eq. (57):

ko exp( iko"2, a3 } n( a3}'r2,a3
+a lq(ra3}

n ra3 'r2, a3

In(ra3) 'r2, a31

(64)

6
( —1) &k, .l, (ra3, r&) = —(Gk,+,amxa), l(rl'ra3)

n(ra3}.r, a3
X 1+ ', (65)

I n(ra3 } r l, a31

where we used the reciprocity property [Ref. [1],Eq. (51)]
for the causal free-space Green's function in deriving Eq.
(65).

Equations (64) and (65) generalize the physical optics
approximation [Ref. [15], Chap. I.2.13.4, Eq. (I.126)].
Note in Eq. (64) that if r2EQ'", the geometrically il-
luminated side and shadowed side of BQ are interchanged
in moving from the elliptic case (upper sign) to the hyper-
bolic case (lower sign), as is expected according to wheth-
er the signal diverges from, or converges to, the source
point r2. Note also that if r2&Q, Eq. (64) gives zero in
the elliptic case, consistent with the exact result Eq. (4)
for an outgoing electromagnetic field, the sources of
which lie entirely in 0, U BO.

(63)

2 a3}„] if g=e,
C

j —[fiqk (r2, B3)q(r2, B3)k ] l if l

We can now assemble results and, with the aid of Eqs.
(53) and (54), infer an estimate for the rhs of Eq. (49) and
the lhs of Eq. (50):

, i3, lk (ra3 r2 }= (Xa Gk,+,—P )lk(ra3 r2 }
O+

r3 ay, =+ [r2 B3 2n(ra3)[n(ra3} r2, B3]] (61)
VI. GEOMETRICAL OPTICS LIMIT

In all cases, therefore, the expression in Eq. (60) reduces
to

+B,lp(rB3)[~pq (r2, B3)p(r2, B3)q ]+B,q (rB3} (62)

We must now apply Eq. (62) to Eq. (57) and carry out the
indicated sums —we shall not display the details of the
computation —over Cartesian indices in the limit
r3~ra3, where the limit is taken after the integral is cal-
culated by the method of stationary phase. We find the
following estimate, which is asymptotic for lko~ very

In this section we shall obtain the geometrical optics
(that is, asymptotic for extreme short wavelength) ap-
proximation for the complete Green's function of Eq.
(13). In Sec. V we obtained estimates for the quantities
within parentheses in the last two summands of Eq. (13).
We shall again use the method of stationary phase to esti-
mate the remaining implied integrals, and assemble the
separate results; in particular, we shall verify approxi-
mately what might be called the extinction properties,
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whether exact (for the signal within the obstacle) or
asymptotic (for the signal in the geometrical shadow re-
gion with respect to the radiation source or sink and the
obstacle). Many of the results obtained in this section

I

could be obtained by ray optics methods, as described in,
say, Ref. I16].

According to Eqs. (13), (49), (50), (64), and (65), we
need to estimate the following integrals:

(i/2—) J dAa3G&+ „&(r,;ra3) 1+

Q+
Ga,+, ep, u, (ra3'r»

(&aGa, , p)ir ( a3 2)'

I n(ra3) rz, a3

n(ra3) ri a3(i—/2) f dAa3(G„~~Xa),v(ri;ra3) 1+
(3A In(ra3) r, a31

(66)

(67)

where the upper signs correspond to electric current sources of radiation (/3= e, which corresponds to y =e in Appendix
A) and the lower signs to magnetic current sinks of radiation (P= m, which corresponds to y= v in Appendix A).

We approximate the Green's dyadics in Eqs. (66) and (67) by Eqs. (53) and (54), and apply the method of stationary
phase as described in Appendix A. Two categories of stationary phase points r&z, emerge, according to whether r„r2,
and ra&, (i) do, or (ii) do not lie on a common straight line. In the straight-line case (i) the stationary phase estimates
take a simple form, as they do not depend on the local curvature of BQ at r&&, —the coefficient of the curvature matrix
in Eq. (A8) is zero. We shall sketch the evaluation of the stationary phase estimates for this category, both in the ellip-
tic and hyperbolic cases.

If r, , r2, and rzz, lie on a straight line, we define

za lr 1,ara —r2, a@a '' I l, aza —2, aza I
(68)

where we continue the sign convention as above for y= e, v. We infer from Eq. (A8) that in the notation of Eq. (A10),

~,.i =~,a2=+k, a/ o/I/ o

I&,.I
'"=2~i,a,a "2,a,./I("2, aya +r 1,aza )I n(ra, a ).ri, aiba ] I

~ ),gg~ —~2, gag gag ~
&, 2 ~+

(69)

(70)

(71)

Further simplifications of type (i) contributions to Eqs. (66) and (67) are straightforward according to the rules
developed in Appendix A, but careful attention to algebraic signs is needed. We combine these results and incorporate
them into an estimate for the rhs of Eq. (13):

Pfo+~p)q(r, ;r~) = I. 1 —
( —,

' )Bn(r, ) ]Gq*~p ~q(r„'r~) —( —,
'

)Gqo ~p p, (r(, r2)Bn(r2)

—( —I)™(—') g gr, G& ~p Jz(r&, r2)+ g I
type-(ii) contributions] .

(i),a (ii), b

(72)

We shall not make use of the contributions from type-(ii)
points of stationary phase beyond noting whether or not
they are zero, and hence we do not give explicit formulas
for them; these contributions will vanish in circumstances
determined by physical optics, that is, according to the
vanishing at a point of stationary phase of the factors in
square brackets in the integrands of Eqs. (66) and (67).

We remark that in Eq. (72), for /3=m, a straight-line
contribution can appear to be of retarded type (g„,=+1)
or advanced type (g„,= —1), according to whether rz or
r, is closer to r&„, respectively. This result can be under-
stood in physical terms: as the original wave converges
on the electromagnetic sink at r2, an outgoing scattered
wave is generated by the obstacle in the vicinity of (in
particular) ra„„which secondary wave propagates to r, .
Depending on whether r, is farther from or closer to r&„
than r2, the secondary wave reaches r& later or sooner, re-
spectively, than the original wave reaches r2, hence the
result. We can now verify the several extinction proper-

I

ties in the geometrical optics approximation.
We first consider the case of electric sources, that is,

/3=e, y=e. Because of the factors in brackets in Eqs.
(66) and (67), rays that bounce from the inside of Ml do
not contribute to Eq. (72); type-(ii) rays of this character
only are present in the geometrical cases that one or both
r& and r2 are in A, or that r, and r2 are both in A'" but
are mutually invisible. In these same geometrical cases,
zero, one, or two stationary phase points of type (i) will
be present, and it is straightforward to verify that the
various terms on the rhs of Eq. (72) will cancel in all these
geometrical cases. If r, and r2 are both in 0" and are
mutually visible, Eq. (72) shows that the signal at r, will
be the superposition of a direct wave, that is, the contri-
bution from 6&+ „plus a scattered wave resulting from
a nonzero type-(ii) contribution from a ray that bounces
from a specular point on BQ that is illuminated from rz
and visible from r, . The stationary phase point on the in-
visible side of BQ does not contribute.
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Next we consider the case P=m, which by our hy-
pothesis entails taking g= u in Appendix A and the lower
signs in Eqs. (66), (67), and (72). First, if both r, and rz
are in 0, there are no type-(ii) points of stationary phase,
and two of type (i), one of which has g„=+ 1, the other
g„,= —1. The rhs of Eq. (72) is therefore zero.

Continuing with P=m, we will make use of the follow-
ing geometrical property, which is implied by Eq. (A6):
Let rs,„be a type-(ii) stationary phase point, and consider
the plane determined by r, , r2, and r&,b. That tangent
direction to BA at rd, b which lies in this plane is the an-
gular bisector of the lines determined by the vectors r», b
and r2 &b, . Accordingly, if r2&Q", and if either r, &Q,
or r, is in 0" but is in the shadow zone of the obstacle
with respect to the sink at r2, there will be no contribu-
tions from type-(ii) stationary phase points, since the fac-
tor in brackets in Eq. (66) and that in (67) will each be
zero for such points. For the latter geometrical cases as
well, there will be one or two type-(i) stationary phase
points, both with g„=—1; accordingly, the rhs of Eq.
(72) again adds up to zero.

If rzEA and r& EQ'", the term —( —,
' )Gk+ on the rhs

of Eq. (72) will be cancelled by a type-(i) contribution,
and to the primary free-space signal Gk at r, will be

superimposed a scattered wave from type-(ii) contribu-
tions. In physical terms, the incoming spherical wave
converging on r2 propagates freely until it impinges on
BO, , whereupon secondary currents in BA U A generate a
signal in 0,, which cancels the free-space field in A. The
extinction property holds only in an incomplete sense in
this case.

Finally, if r2 H Q", and if r, H A" and is not in the sha-
dow of the obstacle with respect to the radiation sink at
r2, both the primary free-space signal and a secondary
scattered wave, which arises from type-(ii) contributions,
will be present at the field point ri. Moreover, if r, and rz
are such that the extended line through them intercepts
Ml (twice, since we exclude tangential contact), the net
signal at r„aside from type-(ii) contributions, will be

Gz (r, ;rz)+6k+ (r„r2), (73)

as there are two straight-line contributions, both with
g„=+1. In physical terms, the original incoming wave
induces currents on BO, , which currents generate a secon-
dary signal that, in the geometrical optics approximation,
extinguishes the incoming wave in the conelike shadow
between BA and the apex r2. This secondary signal is fo-
cused to a real image at rz, in fact precisely to a point
focus in the geometrical optics limit. (Note that if the
source and obstacle are both causal, the secondary signal
that extinguishes the outgoing wave in the geometrical
shadow has only a virtual image at the original source. )

This secondary signal continues to propagate beyond r2
into the other branch of the cone formed by BA and r2,
and (we can infer) is present at times later than the time
that the original signal is absorbed at r2', that is, it ap-
proximates a retarded signal generated at r2 within this
branch of the cone. In this qualified sense it is possible
for a radiation sink to give rise to secondary signals that

in a restricted domain closely resemble a retarded source
of radiation.

VII. OBSTACLE PLUS A LAYER

A. Outline

In this section we return to the general theory of Ref.
[I] and arbitrary ko&0, and analyze scattering from the
following setup: Suppose that we have found an operator
pair, as in Ref. [I], Eq. (35), that simulates the exterior
electromagnetic response of a given obstacle 0, by gen-
eralized Leontovich boundary conditions on its surface
BQ, —=X, . We augment the obstacle by a layer, say
2),&

CQ',", and define Q, U X, U2), &
—=0&. The layer 2),&

has inner boundary X, and outer boundary Xb', we
denote this relationship of the surfaces by XbL&X, . The
layer 2),&

is to be occupied by a medium, called M, with
given, and possibly nonuniform and nonsymmetric, ten-
sor constitutive parameters e k(r), yak(r), 0 ~(r); we note,
but do not denote, the fact that each of these can depend
on ko, subject to the limitations imposed by causality in
the time domain. We shall, using the methods of Appen-
dix 8, find an operator expression for Leontovich bound-
ary conditions on Xb that simulate the scattering engen-
dered by the combined obstacle within Ab as far as the
region exterior to Xb is concerned. A requirement of the
argument is the availability of a Green s function, of
outgoing-wave type, when the medium within 2),b is im-
agined to be extended in some physically appropriate but
otherwise arbitrary fashion so as to fill all space e; al-
though exceptional cases might be found, explicit closed-
form analytic expressions for such Green's functions will
normally be available only if the constitutive properties
of the medium are uniform and isotropic —cf. Ref. [I],
Appendix C. As a mathematical statement, however, the
following considerations apply whenever a suitable
Green s function exists in principle. Appendix 8 is in-
tended to be an introduction to the material in this sec-
tion. The analogs obtained here for the electromagnetic
case are more general than those in Appendix 8, as the
argument is carried through (except in Sec. VII G) for
media which can be lossy and for which the constitutive
properties and corresponding Green's functions need not
satisfy the principle of reciprocity.

The results derived in this section may be of use in
several circumstances, including the following: first, in
the analysis of the electromagnetic eA'ects of an optical
coating, or second, as one of a sequence of steps in which
a physical obstacle is approximated by an onionlike struc-
ture of layers 2),b, 2)b„X),d, . . . , such that each layer is
made up of homogeneous, isotropic substance, or third, if
Xb is an artificial boundary inserted in the medium, for
which extended medium —as empty space —the Green's
function is available, it will be the case that the derived
Leontovich boundary conditions on Xb will give rise to
the same scattered field outside of Xb as do the original
boundary conditions on X, . If in the second case, the
onion is more or less flattened, so that the interfaces be-
tween successive layers are noncrossing deformed planes,



TRANSITION OPERATORS IN. . . . II. 1347

B. Field equations and Green's functions

Maxwell's equations in a material medium are [Ref.
[19],Eq. (1.30), or Ref. [20], pp. 14—23]

+VXCB=p c J +VXM+ +J1 BE BP
c Bt 0 c Bt

(74)

—VXE—— =ppc J1 BcB
C

(75)

The rhs of Eq. (74) contains the vector sum of the con-
duction current J„the Amperian current V X M, the po-
larization current BP/Bt, and the electric source current
J, ; the rhs of Eq. (75) contains the magnetic source
current J . We presume the time dependence
exp( ikoct) ev—erywhere, multiply both sides of Eqs. (74)
and (75) by —i, presume the forms

the methods to be applied here can be used to obtain a
(formally exact) treatment of the propagation of the
Maxwell field in an optical system laid out along an axis,
and thereby give a precise antecedent of the approximate
"ray optics" and "wave optics" treatments of such propa-
gation, as described in, say, Refs. [17], [18], or [19]. In
the third case, the result stated —see Eq. (126)—
apparently entails for its application the equivalent of
determining the radiation impedance operator for the
geometrically complex inner surface, which requirement,
unless it can be circumvented or mitigated, may make it
impractical to transform the boundary problem from a
complex boundary to a simple one. (K') k

i(V X ),k

i(V—X ),„
( A.'),k

LPpCJe ~

lPpCJm ~.
(83)

The introduction of the second, "adjoint" system of field
equations follows a pattern suggested by Morse and Fesh-
bach (Ref. [24], Part I, Chap. 7.5). We shall make use of
these adjoint fields and the associated Green's functions
in what follows.

We introduce two completely causal Green's functions
I p,k(r„'r2) and I p jk(r&,'rz), which generalize those in
Eq. (7) and Ref. [1], Eq. (C5), and which represent the
propagation of electromagnetic waves in the material
medium M and M', respectively. (We have suppressed
the superscripts + + and the subscript kp in the interest
of notational simplicity. ) These satisfy the differential
equations

(r3)1, (r3;r, ) —i(V3X ) I,(r3;r, )

=5,5, 5'(r, —r, ),

ponents of E(r) and F(r), and the normal components of
~E and of A.F are continuous across a surface of discon-
tinuity of the constitutive tensors ~ and A, in the usual cir-
cumstance that there are no magnetic or electric source
currents or charges embedded in the surface of discon-
tinuity. The jump conditions at the surface of an ideal-
ized object of infinite electrical conductivity are treated
as an exception to the latter circumstance.

Corresponding to Eq. (82) we introduce a physically
distinct medium called M', the constitutive parameters of
which are the transposes of those for the medium M;
Maxwell's equations for the fields in M' are

(J, ), (r) =o,k(r%'k(r),

Mj(r)=[PO '5jk (P )jk(r)]&k(r» (77)
i(V3X )„ I, (r3', ri)+kzq(r3)1 qj(r3 ri)

=5,5 5'(r, —r, ), (85)

~, (r) = [~;(r)—
~O5, k Ãk(r» (78)

and introduce a new magnetic-field variable F(r) and new
constitutive parameters Kjk(r) and k,k(r):

(K') (r3)I,p k(r3, r2) —i(V3X )qpI peak(13 r2)

(86)

+J(r) =po(p )jkc~

K k(r) =koeo 'e k(r)+i poctr k(r),

~jk(r)=kopo pjk(r)

(79)

(81)

K~k

i(V X ),k

i(VX) k
—Ek lP0CJe .

LppCJm J
(82)

where the superscript distinguishes fields in the medium
M. We remark that spatially local, linear constitutive re-
lations of a more general character than those of Eqs.
(76)—(78) are physically realizable, and have been the sub-
jects of theoretical studies of electromagnetic-wave
propagation —cf. the treatments of so-called bianisotro-
pic media in Refs. [21]—[23]—but we shall not attempt
here to develop a theory at that level of generality.

We note that Eq. (82) implies that the tangential com-

Maxwell's equations (74) and (75) now read in matrix
operator form

i(V'3X)~)I p~k(r3 rz)+(A, ')q~(r3)I p~k(13 rz)

=5 „5 p5 (r3 —r2) . (87)

We want both Green's functions to satisfy outgoing-wave
asymptotic conditions at large distances: we assume that
the tensors o. , e, and p are asymptotically uniform, iso-
tropic, and positive definite (cr can be positive or zero), so
that

K k(RR) — K 5 k+O( 1/R3),
g ~ co

Ajk(RR) — A, 5jk+O(1/R2),
R ~ oo

and we define the complex wave number co to be

to —[K A, ]

(88)

(89)

such that Im(to ) ~0 for both ko)0 and ko(0. The
electric and magnetic fields emanating from each type
and orientation of source satisfy the asymptotic condi-
tions (compare Ref. [4], Corollary 4.9)
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E(RR) — E' '(R)exp(iso„R )/R +O(l/R ),
g ~ oo

F(R R ) — F' '(R )exp(i co R )/R +0 ( 1/8 ),
R~oo

E' '(R)= —(co /v )RXF' '(R),
F' '(R)=(co /A, „)RXE' '(R),

(90)

where E and F stand for any coupled pair of electric and
magnetic fields emanating from the same bounded source,
whether in the presence of the medium M or M'. We

take it for granted that the tensors o., e, and p are such
that both Green's functions exist and are unique, provid-
ed that Eqs. (84)—(90) are satisfied.

We shall obtain a relation between the two Green's
functions. Let us multiply both sides of Eqs. (84), (85),
(86), and (87) by I,&~k(r3 lp) I ~ppk(r3

, (r3;r, ), and I (r3;r, ), respectively, then sum
over repeated Cartesian indices and sum corresponding
sides of the resulting four equations. The terms involv-
ing ~ and A, cancel, and the remainder of the lhs forms a
perfect divergence. Exchanging the two sides of the
equation, we find

II jk(rl r2)5 (r3 rl ) 5 ~ p jk (rl r2)5 (r3 rl ) 5' ~p, jk(r2 rl )5 (r3 r2)+ 5p ~ji,jk (r2 rl )5 (r3 r2)

M' M M'
i —[l,p pk (r3, r2)~p„,'& q, (r3, ri )+I

p ~k(r3, r2)&~„q &, q, (r3 , r i ) ];'
X3r

note that the summation convention applies only for re-
peated Cartesian indices. We integrate both sides of Eq.
(91) over the interior of a large sphere S (R) centered at
the coordinate origin, apply the divergence theorem to
the rhs, and let R ~ ~; the surface integral tends to zero
as a result of Eq. (90). We infer that

the result that the terms involving ~ and A, cancel and a
perfect divergence appears on the lhs; we find that

5,4&, (r, )5 (r3 —r, )
—5 4&, (r, )5 (r3 —r, )

jM'=i [I,(r3;r, )e„„N, (r3)
Bx3„

I 13,k(r„r2)= . I
& kj(r2,'r, )= (I & )jk(r, ;rz), (92) +I, (r3;r, )e~„~+ (r3)] . (98)

where the upper sign (lower sign) holds if a=P (aAP),
and the transpose notation follows Ref. [1],Eq. (11). Let
us define the operator II—cf. Ref. [1], Eq. (43)—with
matrix elements

II ji,k(r„r~)—:(5,5,ii
—5 5 j3)5 k5 (r, —r2);

then Eq. (92) can be expressed as

(93)

(94)

The Green's function I™will be termed the adjoint to
I . If the constitutive tensors ~ and k are everywhere
symmetric, then I™is self-adjoint, or, in other words,
satisfies the principle of reciprocity —compare Ref. [1],
Eq. (44).

C. Representation theorems for the fields

We define a six-component electromagnetic field
(r) as follows [the symbol 4 .(r) is also used in the

sequel]:

(95)

We want + to be a solution of Maxwell's source-free
equations in an open subdomain SC 6, which is to be
specified, and which is occupied by the medium M:

(r3)C&, (r3) —i ( V3 X ) N (r3) =0,
i (73 X ) 4, (r3)+k (r3)@ (r3) =0 .

(96)

(97)

We can combine Eqs. (86), (87), (96), and (97) in a very
similar way to the steps that led to Eq. (91), again with

Now let X„Xb, and 2),& be as in Sec. VII A. We con-
sider two classes of solutions to Eqs. (96) and (97) and
corresponding domain 4': (i) 4 (r) is a regular solution
in the bounded domain Q&, which is the complete interi-
or of the surface Xb, and (ii) 4 &+(r) is an outgoing-
wave solution in the domain 0'", which is the complete
exterior of the surface X, . In case (i), we integrate both
sides of Eq. (98) over IIb, and apply the divergence
theorem to the rhs; in case (ii), we integrate both sides of
Eq. (98) over the domain between X, and a large sphere
S (R) centered at the origin of coordinates, apply the
divergence theorem, and let R ~ ~, whereupon the sur-
face integral over S (R) tends to zero. As in Eq. (1), we
define the linear operators X& and Iz, which map a gen-
eral vector field defined on the surface X into a tangent-
vector field on X by restriction and tangential projection

X~(r~)—:n~(r~) X

Ix —=—(X~ ) (99)

where n(rz) is the outward normal to X at re& X. (If the
vector field is originally defined and continuous in a
neighborhood of X, we consider that the operator has the
additional function of first restricting the field to its
values on X; successive application of these operations is
therefore well defined. ) Also, we multiply both sides of
each equation by the operator II defined in Eq. (93). The
outcomes of these manipulations are the following in-
tegral formulas for N and N in terms of their limit-
ing tangential components on X& and X„respectively,
and the Green's function I
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(r, )e„(r,)=+if dAx [(I II), (r, ;rx )(Xz ) (rx )e (rx )+(I™II) „(r,;rz )(Xz ) (rx )e, (rx )),
b

(100)

1+(r, )e,„(r,)= i f—dAx [(I™11),(r„rz )(Xz ) (rx )4 ~ (rz )
a a

+(I™II) (ri, r~ )(X~ )qq(rx )@
q (r~ )] (101)

D. Propagators and projection operators

Let us now restrict the argument r, to X, in Eq. (100)
and to Xb in Eq. (101), and extract tangential com-
ponents of the vectors on both sides. It is expedient to
define and employ certain limiting tangential components
&5 z~ (rz), of an electromagnetic field on a surface X,
where Q =M or Q =M':

(Ix&PP)J(rx) if a=e
—(Xx+g ), (r~) if a=m .

L

(102)

We now define two operators PP z and Pg+~, which

will be called an inward and an outward propagator, re-
spectively, in terms of two-by-two matrices of dyadics as
in Eq. (7), as follows, again with Q =M or M':

ii, (r~), X, —

+iX, (r~) X,

iI, (r~)„i, —

+iX, (r~),I,

We note that the above formulas give zero for propaga-
tion in the "wrong" direction, that is to say, outward for

and inward for N +; in effect, we have in each case
used the field values on a surface to define source current
distributions on that surface that give rise to zero elec-
tromagnetic fields in the exterior of Xb in Eq. (100) and in
the interior of X, in Eq. (101). The present method gives
no information on an "analytic" extrapolation of a regu-
lar electromagnetic field outward from a surface, or of an
outgoing field inward from a surface.

We can define a six-component field N, (r ) in terms of
the fields E, (r) and F (r) as in Eq. (95), and presume
that the fields satisfy the source-free version of Eq. (83).
We combine the latter equations with Eqs. (84) and (85)
in a similar manner to the steps that led to Eq. (98). Us-
ing Eq. (94), we can infer the representation theorems for
the adjoint fields in terms of their tangential values on a
surface and the adjoint Green's function; we shall not
display these results, as they are simply a repetition of
Eqs. (100) and (101) with M' substituted for M every-
where.

In terms of the limiting values of Eq. (102) and the propa-
gators of Eqs. (103) and (104), Eqs. (100) and (101) and
their adjoint equivalents specialize to

(p PO —pgO (p PO
a a' b b

(p p+ cpp+ (p g+
a

(105)

(106)

What are by now standard manipulations of Eqs. (91)
and (94) can be made to yield the following results:

PP PP =PP if X,D X„L&X,

PP+~ PP+~ =P$+~ if X, l&Xi, I&X,

PP+~ PP ~ =0 if X,L&X, and X~L&X,

PP x P$+~ =0 if X, l&X, and X, L&Xb .

(107)

(108)

(109)

(110)

X , Xb X Xlim P~ =I - P~-
b a

(112)

where Q =M or M'. The "overcircle" accent means an
operator in the linear space formed from the direct sum
of two tangent-vector fields on X„as in Eq. (102), and
0

Iz is the identity operator in this space —compare Ref.
a

[1], in the final paragraph of Sec. II and Eq. (74). The
operator p z

+ has as its unit space all tangential fields

0& z~+ derived from outgoing-wave solutions to Eqs. (96)

and (97) in 0',", and as its null space all tangential fields

4z derived from regular solutions (in I1, ) to Eqs. (96)

and (97):

p M+4 M+ (pM+
X X X (113)

We let the layer 2),b have uniform thickness, in some
suitable sense, and let the thickness tend to zero, which
process we denote correspondingly by limz zz . It can

b a

be inferred from Eqs. (107)—(110) that in this limit the in-
ward and outward propagators tend to projection opera-
tors:

lim PP+, =I'g
b' a ab& a

(103) p M+4 MO
X X (114)

pQ+
Xb, X

+iIx (I ~), Xx

—iXx (I ~) X~

+iI, (r~)„I,
+iX, (r~),i,

(104)

In terms of the tangential fields of type 4 P and 4& P+,
a a

the Leontovich boundary conditions for an interior regu-
lar solution [cf. Ref. [1],Eq. (35)] and the definition of the
radiation impedance operator [cf. Ref. [1],Eq. (61)] in the
medium Q =M or Q =M' now take the form
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~g 4 g', +cg cg' =0,
a a' a a™ (115)

@a+,=za ep+
a' a

(116)

where both Zz~ and Az~ Zz~ +Cz~ must be invertible,
a

but the reciprocity conditions that Zz and A g (Cg )'
a

be symmetric [cf. Ref. [1],Eqs. (55) and (64)] are normal-
ly invalid in the present, more general, circumstances-
see Sec. VII F for further discussion on this matter. We
infer from Eqs. (113)—(116) that the projection operator
must have the following matrix of dyadics:

p Q+
zg (i~ z~ +c~ )-'~~

a a a a

(~ ( zg +c g )-'~a
zg (~,'zg +c,' )-'c,'

a a a

(~~ Za +C~ )-'C(
a a a

(117)

which does not depend on the choice among equivalent
operator pairs in Eq. (115) representing the Leontovich
boundary conditions, and which generalizes Ref. [1],Eq.
(C24). We could, in fact, use the "normalized" operator
pairs taken directly from the first or second row of opera-
tors on the rhs of Eq. (117) to state the Leontovich
boundary conditions Eq. (115).

We have now reached a point at which, to the degree
of generality provided by the present context, we can
prove the unproved assertion in the paragraph following
that containing Eq. (37) in Ref. [1], Sec. III; that is, that
any physically plausible obstacle with a linear response to
electromagnetic signals can be simulated in the respect of
its scattering by an equivalence class of Leontovich

I

boundary conditions Eq. (115). Let us replace the medi-
um M in the exterior of X, by empty space, without
changing the composition of the inside. Then the linear
space of regular solutions of Maxwell's equations inside
of X, does not change, that is, Eq. (115) must continue to
hold for the total electromagnetic signal (impinging wave
plus scattered, or response, wave) with no change in the
operators; but the response of the exterior region is now
characterized by the vacuum value Zz & for the radia-+

a' 0

tion impedance operator. We construct a new projection
operator Pz from the modified ingredients, where the

a

superscript J means that M only occupies the interior II,
of X„while the exterior 0,,' is now a vacuum:

pQ+
X

'z~ (~~ z~ +c~ )-'i~
a a a

(~ g z~ +c g )-'~t2

z~ (a~ z~ +c~ )-'c~ ~

a a a

(~ 2 za +c~ )-'c g
a

(118)

In view of the fact that

PM+P M$+ P M+
r. r.. r, (119)

K. Solution to the layer problem

both projection operators have the same null space, but
generally have distinct unit spaces —compare Eq. (813),
below. When we recall that the tangential components of
E and F will be continuous across X, even if the exterior
medium is empty space, we infer that either row of the

0

projection operator P z +, which was derived on the as-
a

sumption that the medium M fills all space, nevertheless
provides an operator pair that fulfills the requirements
for a simulation of the electromagnetic scattering of the
obstacle embedded in otherwise empty space. The limita-
tion of the generality of this construction corresponds to
the limitation of the generality of the constitutive rela-
tions Eqs. (76)—(78).

We can now obtain a solution to the problem posed in
the first paragraph of this section. We suppose initially
that the material medium M fills all space; that part of it
contained in 0,, is removed and replaced by an obstacle
:" of unspecified internal properties, but which is simulat-
ed on its boundary X, in the respect of its scattering
properties by Leontovich boundary conditions of the type
of Eq. (115),with a nontrivial operator pair A z, Cz, for

a a

which the dependence on ko is implicit. Since the exteri-
or region is still occupied by the medium M, the radiation
impedance operator for X, remains the same, that is,
Z& . Accordingly, we have the associated projection

a 0

operator P z+..
a

Z (A Z +C )

(A~ Z~ +C~ ) 'Az

ZxM (~z ZMx+C~ )-1C

(Az Z~ +C~ ) 'Cz
(120)
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This projection operator has the same unit space as that
of Eq. (117), that is, any set 4 z

+ of limiting tangential
a

values of an outgoing-wave solution of Eqs. (96) and (97)
in the region exterior to X . The new projection operator
has a null space that diA'ers from the old in the following
manner: let a generic &0 '(r), where the r superscript
stands for total, be a solution of Eqs. (96) and (97) for all
r&A', ", where

a suitable operator pair to specify Leontovich boundary
conditions on Xb that simulate the combined obstacle "
in 0, plus a surrounding layer of M filling the region X),b
between X, and Xb. The difficulties connected with ap-
plications of Eq. (126) have been mentioned in Sec. VII A;
more insight can be gleaned from scrutiny of the analo-
gous theory for the Helmholtz equation in Appendix B,
where Eq. (126) has a counterpart in Eq. (B49).

@Mt( ) C MO( )+q&M+( (121) 0
F. Introduction of the "symplectic" form J&

and such that it satisfies the given Leontovich boundary
conditions on the surface X, of the obstacle =:

Mt +g: @Mt OXa Xa e Xa Xa m (122)

In Eq. (120), 4& is the specified impinging wave that
would have been the complete solution if the obstacle =
had not replaced the medium M within X„and N + is
the additional scattered wave that is uniquely determined
by the impinging wave and the boundary conditions Eq.
(122). The determination can be made as follows. Since
we have

In this subsection we shall establish further analogies
between the formalism in the electromagnetic case and
that of the acoustic case treated in Appendix B. We shall
continue to assume that the constitutive tensor properties
given by o, e, and p are nonsymmetric, so that the results
obtained here will be of a more general character than
those in Appendix B. For a generic bounding surface X
we now define the electromagnetic analog Jx to the sym-
plectic [25] form Jz of Eq. (B2):

0

(J~) 11,„(r~ „r~ 2)
—=(5,5 P

—5 5,P)(I~),k(r~ „.r~ 2) .

P "+@Mt
X X

P =+(P M+ @M+
X X X

(123)

(124)

(128)

Straightforward computations with Eqs. (103), (104),
(92), and (128) lead to the following results, the analogs of
Eq. (B36):

we infer from Eqs. (121)—(124) that

(y M+ P =+(P MO
X X (125)

We can now apply Eq. (101) to compute @ +(r) every-
where in the exterior region 0,",and, in particular, on Xb
via Eq. (106).

It is now straightforward to compute a projection
0 =U b+operator P x

' that engenders the same scattered

wave as that derived from Eqs. (125) and (101),but which
operates on the values N x of the impinging wave re-

stricted to tangential components on Xb. We state the re-
sult and then prove it:

P ab P M++ pM+ P:-+pMO
Xb Xb Xb X X X , Xb (126)

In view of Eqs. (105) and (106), and the results corre-
sponding to Eqs. (113)and (114) on Xb, we infer that

P ab
q&

Mt —(P M++pM+ P:+pMO )(@MO+@ M+
)Xb b b b' a a a' b b b

(p M++ pM+ P:"+(p MO

b b' a a a

tI M+ pM+ (y M+
Xb Xb X X

pM'0 j (pM+ )t(j )
—1

Xa, Xb Xa Xb Xa Xb

pM'+ j (pMO )t(j )
—1

b' a

(129)

We can take limz zz of either line of Eq. (129), and ap-
b a

ply Eqs. (111)and (112) with the result

PM+ j. (PM+)t(j )
—1

a a
(130)

We note in this connection that the last equality in Ref.
[1],Eq. (79), is incorrect: The operator X defined in Ref.
[1], Eq. (78), is a symmetric operator in a place that a
skew-symmetric operator, defined with both constituents
X& having the same sign, is needed to make the last part
of Eq. (79) of Ref. [1]valid.

We define the skew-symmetric, "Wronskian" inner
product of two kinematically allowable electromagnetic
fields 4(r) and %(r) (these need not be solutions to any
Maxwell equations) with respect to the surface X to be,
using Eqs. (102) and (128),

'N~(@ It):—I dA~, J dAx2X(4~) (r~, )
X ' X '

p
@M+ @M+ O

b b
(127) 0

X (Jy )~p, p, (ry, 1', r/, 2)

We can also show, using Eqs. (107)—(110) and their limit-
ing forms [cf. Eqs. (111) and (112)], that the operator

0 "U2) b+P z
" specified in Eq. (126) is idempotent. The opera-

tor of Eq. (126) therefore provides the sought-for result:
for if we now replace the medium M in the region exteri-
or to Xb by empty space, the argument made in connec-
tion with Eq. (119) shows that either of its rows provides

X (4 ~)ii k (r~ ~) . (131)

We let tIt satisfy Eqs. (96) and (97), and let @ be a
solution of the corresponding adjoint equations, in an
open domain including X, U2), b U Xb. Familiar manipu-
lations of the difIerential equations now lead to the result
that the Wronskian of N and 4 does not depend upon
the surface on which it is computed:
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cg (q M'. A)M) cg (q M'. qIM)
a

(132) ( Tg )
'= Jg( Tz )'(Jg ) (138)

Evidently the Wronskian of N and 0 is invariant un-
der the choice of surface in a class of surfaces; each sur-
face in a class must be equivalent to every other by the
following requirement: there should exist a chain of (say,
N) intermediate surfaces, X, =X„Xz, . . . , Xiv ——Xi„such
that adjacent pairs in the chain form, in either order, the
inner and outer boundary of a domain such as 2), , + i, and
such that Eqs. (96) and (97) are satisfied by ql, and the
adjoint equations by N, in an open set covering each
domain and its boundary.

In particular, if N and + are regular solutions in
the medium M' and M, respectively, in the entire geome-
trical region inside of X, we can show that their Wronski-
an vanishes:

( q) M'0. qiMO ) () (133)

( C M'+. qiM +
) () (134)

We expect, on the other hand, that if both N + and 4
are nontrivial, then their Wronskian on X can be
nonzero, and similarly for the Wronskian of N and

M+

If Eq. (134) is written out in terms of its electric- and
magnetic-field constituents, and since the (say) tangential
magnetic fields on X can be chosen arbitrarily for an out-
going wave, we infer that the radiation impedance opera-
tor Z z is the transpose of that when the exterior of X is
filled with the medium M:

Z M (Z M)v.

Similarly, if N + and 4 + are respective solutions of
outgoing-wave type in the exterior of X, we can show
that

CFurthermore, if Pz is the "canonical" projector

I~ 0~

O~ 0~
(139)

then we have

pM+ (
T'M

)
—lpCT'M (140)

T'Mc MO
0

(lgU)(rg)
(141)

T'M@ M+
X X

(Iz V )(rz )

0 (142)

where the nonzero matrix entries can be any sufficiently
well-behaved tangent-vector fields on X. It follows from
Eqs. (140), (141), (105), (106), and (129), now, that there is
an operator Sz +z, which propagates tangent vectors (as

opposed to a pair of such vectors) from an inner surface
X, to an outer one Xb through the medium M, such that

gM+ 0Xb, X
T'M pM+

(
T'M

j
—i

b' a a
(143)0 0

TM'pM'0
(

T'M'
j
—i

~0 0
0 (gM+

Xb, X
(144)

analogous to Eq. (B20).
We note that Eqs. (139) and (140) can be generalized in

a way that the symplectic transform ations achieve a
block diagonalization of the propagators. It is an im-
mediate consequence of Eqs. (115), (116), and (138), that
for any regular solution @ (r) and any outgoing-wave
solution ized +(r), we have

Moreover, using the form Eq. (117) for the projection
operators Pz and Pz as well as Eq. (130) we can
show for any representative pairs of operators 2 ~, C ~
and 3 z, C z that another adjointness condition is
satisfied:

Evidently we have from Eq. (140) that

Xbxr
(145)

g M'( ( M
)

q —("M'
( g M

)
7. (136) G. Analog to Schrodinger theory

Equations (135) and (136) characterize the relationship
between the exterior and, respectively, interior simula-
tions of the medium M and the adjoint medium M' in
terms of operators on the dividing surface X. When
M =M, we recover the reciprocity conditions generaliz-
ing Ref. I 1], Eqs. (64) and (55).

generalizing Eq. (816), we can now find adjoint sets of
invertible transformations that reduce to symplectic
transformations when the reciprocity conditions are
satisfied. We define, for Q =M or M',

(i ('z(-'+ c (-') 'i (-' (i (--'z(-'+ c'(-') 'c(-'-
—I~ ZQ

(137)

It follows from Eqs. (128), (135), and (136) that

We conclude the section by addressing the question of
establishing an electromagnetic analog to the considera-
tions near the end of Appendix B. Suppose that the prin-
ciple of reciprocity is satisfied and that the medium
M =M' is lossless, that is, o. =0, and e and p, and hence

and k, are all symmetric, real tensors everywhere.
Ciiven a suitable one-parameter family of surfaces X(a),
and restricting oneself to the subspace of purely
outgoing-wave solutions to (the now self-adjoint) Eqs. (96)
and (97), does there exist a surface-independent, sesquilin-
ear inner product law for any pair of solutions that
defines a positive-definite norm? Electromagnetic energy
is now conserved, so that a surface integral of the normal
component of the Poynting vector is a plausible candi-
date for the desired positive-definite norm of an outgoing
wave, and the construct generalizes to yield a sesquilinear
product law for pairs of outgoing waves. We note that
with the given restrictions on ir and X, if cI& +(r) is an
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outgoing-wave solution to Eqs. (96) and (97), then the
time-reversed field [II@ +]*(r) is also a solution, of
ingoing-wave type. W'e define

(146)

It is straightforward to show that Eq. (146) reduces to

(147)

( [g. FM+ ]» i [ZM+ +(ZM+ )t]X FM+ )

(148)

where we used the inner product notation of Eqs. (2) and
(3). We proved in Ref. [1],Appendix B, that the vacuum
radiation impedance operator Z&~, ~ k has a positive-

definite Hermitian part; it is plausible that the same re-
sult holds in the present, more general circumstances.
Accordingly, the sesquilinear inner product law Eq. (146)
defines a so-called pre-Hilbert space [26] on the complex
linear space of tangential electromagnetic fields associat-
ed with outgoing-wave solutions; moreover, the inner
product thereby obtained between a pair of solutions does
not depend on which of the surfaces in the family is used
to evaluate it. Although this matter has not been investi-
gated, it is plausible that a Schrodinger-like theory can be
established for the propagation of time-harmonic elec-
tromagnetic waves along a one-parameter family of sur-
faces, where the parameter plays a role analogous to that
of the time in time-dependent nonrelativistic quantum
mechanics. In turn, the "classical, " or short-wavelength,
limit of such a theory could yield a Hamiltonian form of
geometrical optics. The resulting theory would presum-
ably be more general than that derived in Ref. [19],Chap.
III, where the one-parameter family of surfaces employed
is taken to be the family of wave-front surfaces of a step-
function electromagnetic source.

The above construct would also be more general than
those that depend on the separability of Maxwell's equa-
tions or the Helmholtz equation, for which one of the
three families of coordinate surfaces serves as the set
along which Maxwell's equations are propagated; the
propagator Pz +z from Eq. (104) serves as the analog of
the time evolution operator exp[ iH(rt, —t, ) liri—] of
Schrodinger theory, where H is a time-independent Ham-
iltonian. In the present case the "Hamiltonian" is not
given, but could be computed from the limiting derivative
of the propagator, and will generally depend on the time-
analogous parameter a that labels surfaces in the family.

VIII. DISCUSSION

Several lines of investigation are suggested by the ma-
terial presented herein, in the forms either of
(re-)derivation of previously established or accepted re-
sults, or of exploration and application of the methods
proposed here with the hope of facilitating the treatment
of a range of previously refractory problems.

P
0

(149)

which operator is obtainable as a limit of the associated
propagator of Eq. (104), where the role of I i,

+ is now

played by the complete Green's function. Perhaps
asymptotic estimates for the radiation impedance opera-
tor can be inferred from the integral representations. We
note that the nonlocality of the operator means that, con-
sidered as a two-point kernel, the radiation impedance
operator couples points on distinct faces, as well as on the
same face, of the wedge. These results may in their turn
suggest ad hoc extensions that plausibly represent short-
wavelength approximations for the radiation impedance
operator for curved wedges, and provide an alternative,
and arguably more rigorous, derivation of a range of
diffraction phenomena now treatable by the geometrical
theory of diffraction.

Other old problems that may yield more readily to the
methods presented here are those of inferring the projec-

First, it is clearly of interest, and appears to be
mathematically feasible, to obtain a better [than Eq. (48)]
short-wavelength approximation to the radiation im-
pedance operator for a sphere immersed in a uniform iso-
tropic medium by approximately summing the series (or
their generalizations for a medium other than empty
space) of Eq. (37), or Eqs. (41) and (42), when ~koa ~

)) l.
Similar to the sums in Ref. [3], Eqs. (Al) and (A2), the
Sommerfeld-Watson transformation (Ref. [15], Chap. 10;
Ref. [27]) is a good candidate for effecting this approxi-
mation. This result in turn may be applied to give an al-
ternative derivation of that subspecies of the
"geometric(al) theory of diff'raction" [28] that concerns
diffraction from smooth-surfaced, convex, perfectly con-
ducting obstacles, and the theory of so-called creeping
waves. We note in the present connection that the rhs of
Eq. (37) is made up of two parts that annihilate one
another, that have distinct singularity structure for near-
by points on the sphere, and that exchange roles when
the inverse operator is computed according to Eq. (5). It
is an open question if such a decomposition exists for a
more general surface, whether or not it has the topology
of a sphere.

Another set of canonical problems (Ref. [28], Part II)
that lie at the foundation of the geometrical theory of
diffraction is that of diffraction from a perfectly conduct-
ing wedge with an aperture angle from just above zero to
2m (in the latter case the obstacle is a half plane). From
the point of view of the transition operator approach to
diffraction, we need to find a suitable approximation to
the radiation impedance operator for a wedge-shaped
surface in order to reduce Eq. (13) to quadratures. In-
tegral representations are available —cf. Ref. [10], Chap.
6.5, and references given therein —for the Hertz vectors,
and hence the complete electromagnetic Green's func-
tion, associated with arbitrarily oriented electric and
magnetic dipoles in the presence of a perfectly conduct-
ing wedge. For a perfect conductor with boundary X, the
projection operator of Eq. (117) reduces to
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tion operator Eq. (118) in connection with a half space
filled with a good, but not perfect, conductor —say the
earth, locally flat; Eq. (125) could then be used to infer
the surface values of the scattered wave for a radiating di-
pole above the earth, neglecting surface curvature. More
generally, it appears to be feasible to obtain Leontovich
boundary conditions for the case that the obstacle is a
half space filled with a homogeneous but possibly aniso-
tropic medium. One could then infer the projection
operator Eq. (120) in the two-dimensional wave-vector
space associated with the planar interface, and thereby
the surface values of the scattered wave generated by any
chosen impinging wave. These considerations would gen-
eralize those of Ref. [29], Chap. IX, and afford a means of
describing the external response of anisotropic absorbing
crystals, as those described in Ref. [9], Chap. 14.6.

A class of problems for which the methods developed
here may facilitate treatment is that in which a perfectly
conducting object has the highly nonconvex geometry
that the obstacle surrounds a cavity that is connected to
the outside by a relatively small aperture. A special case
was considered in Ref. [1], Appendix C; the treatment
there depended on the partial separability of Maxwell's
equations in cylindrical geometries, and on the case that
the aperture was taken to be a plane section of the cylin-
drical cavity. Such partly analytical methods will gen-
eraHy not be available: for example, if the obstacle is a
thin spherical shell with a small aperture removed. The
latter problem could nevertheless be approached by first
dividing it into exterior and interior problems with
respect to the complete sphere. We have discussed the
exterior problem, which is solved in principle by the radi-
ation impedance operator of Sec. III. The interior prob-
lem may be best handled numerically: we need a numeri-
cally complete set of regular interior solutions to
Maxwell's equations for a given ko such that the tangen-
tial electric field is zero everywhere except on the aper-
ture, which set of solutions would provide a nontrivial re-
lationship of the form of Eq. (122) between the tangential
electric and magnetic fields on the aperture. As in Ref.
[1], Eq. (C28), the latter results provide a pair of Leonto-
vich operators that simulate the complete obstacle plus
cavity inside the sphere, and the problem reduces to one
of the general type treated in Ref. [1]. As the class of ex-
amples of Ref. [1], Appendix C, shows, the operators in-
volved in this process are not necessarily representable as
continuous kernels, so that the numerical process
sketched out will likely encounter difhculties in practice.
A theoretical approach that may facilitate the treatment
of this class of problems is an analog to Wigner's A-
matrix theory, as sketched at the end of Appendix B.

We conclude with remarks on a comment by Cho (Ref.
[30], final paragraph in Chap. 9.8). Cho observes that
conventional integral equation methods for electromag-
netic scattering from perfect conductors are based on in-
tegral equations that, notwithstanding their successes
both in theory and application, fail to have unique solu-
tions at frequencies equal to interior cavity eigenfrequen-
cies. Cho considers that a principal roadblock to pro-
gress along these lines is the lack of suitable integral rep-
resentations for the scattered fields such that these new

representations yield integral equations free of the stated
defect. The theory presented here and in Ref. [1] in effect
addresses this problem, but goes about it in a nonstraight-
forward way: In the integral equation treatment, the in-
tegral operators are known, but suffer from a defect that
make their use problematic. In the approach embodied
in Eq. (149), or more generally in Eq. (118), the operators
that solve the problem can be proved formally to exist
whenever Im(ko) =0 and ko&0, in particular when ko is
a cavity eigenfrequency; these operators are not "off-the-
shelf" entities, however, and the present theory redirects
attention to the determination of suitable approximations
to the projection operators that map the boundary data
inferred from a given impinging wave directly into the
sought-for boundary values from which the scattered
wave can be constructed.

APPENDIX A: METHOD OF STATIONARY PHASE

We wish to evaluate an integral of the type

d A &3f(r&3)exp[ikodz(r&, 'rs3 rz) ],
an

(A 1)

d~(r, ;rs3, rz) = '

r&, a3
—

r~3 2 i y=v . (A2)

If ~ko~ is sufficiently large, we can obtain an asymptotic
estimate for this integral by the method of stationary
phase (Ref. [9], Appendix III.3). We need to obtain the
set of stationary points of the function d, (r„'rs3 rz) or
d, (r, ;rs3, rz) for r, and rz fixed, as rs3 ranges over BII.

The points of stationary phase can be characterized in
the following geometrical terms. We first consider the el-
liptic case. Let 5 be a length parameter with
4 ) ~r, —rz~. For each such b, the locus of points r3 such
that

(A3)

is a prolate ellipsoid of rotation with r, and r2 as its foci.
Any point of tangency of one of this family of ellipsoids
with BA, or any point of intersection [31] of the interior
of the straight-line segment between r, and r2 with BQ, is
a point of stationary d, (r, ;rs3', rz). In the hyperbolic case,
let b, be a parameter such that —~r, —rz~ (b, ( ~r, —rz~.
The locus of points r3 such that

(A4)

is a one-sheeted hyperboloid of rotation that has r, and r2
as its foci; any point of tangency of one of these hyper-
boloids with BQ, or any point of intersection [31] of BA
with the extended straight line connecting r, and r2 and
lying exterior to the closed line segment between r, and
rz, is a point of stationary d, (r„'rs3 rz).

We shall denote the stationary points of d, (d, ) by rs„
(r&„),with a =1,2, . . . . We define

n(rs, ) =n, , (A5)

and suppose that tz, &, /=1, 2 are orthogonal vectors

where y= e corresponds to the elliptic case and g= v to
the hyperbolic case:

r, ~3+ra3, 2
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tangent to BA at rsvp, . We use the notation of Eqs. (51)
and (52); then

r, s~a. tea&
—+r2 s~a t~, &

for (=1,2

Ir~ s&a 'nba I

= lr~ s&a 'nba I

(A6)

+O(u'u ) (A7)

where 0 (u', u ) is a neglected term of third order in

u ', u; the 2 X 2 matrix Kz, &„ is the curvature matrix of
at r&z in the chosen coordinates, where positive cur-

vatures correspond to convex BQ. We define the 2 X 2
matrix Az, &„ associated with a stationary phase point

rajya as follows:

Agape —( 2 ) I( ],Qya —2, spa ) ya+yaCq

+(1/ri, a~a )[6&&
—

(r&, saba 'tz, &)(ri, spa 'tq q) j

+(1/r2, axa ) [5&„—(r2, a~a 't~ g)(r2, a~a tx, „)]},
(A8)

where the upper signs (lower signs) belong to the case
g=e (y= v). With Eqs. (A7) and (A8) we can expand the
distance function of Eq. (A2) in powers of u ', u:

2

dx(r„'rs3, r2)=dx(r„rsza, rz)+ g A~, &„u u
g, g= 1

+0 (u', u ) . (A9)

We presume that the eigenvalues of the A&, &„ matrix
are A,&,&, with (=1,2. Both eigenvalues are taken to be
nonzero in order that the stationary phase approximation
to be used here is valid. We take

det(Ax, g„)—:A~, =A,x„l,x,2&0,

o&,g=kp~&, g/lkp~&, gl for (=1,2 .
(A10)

Then the stationary phase approximation for the integral
of Eq. (Al) is

&f(.„.)(~/lk, I ) I A,.I

-'"

X exp[ikpdz(r&', r&& r2)a+i (n/4)(o & &+ car+ 2)] a.

(A 1 1)

We conclude this appendix by noting that there is a re-
lationship between the topology of BQ and the properties
of a phase function, as that in the exponent in Eq. (Al),
at its collection of stationary points. We fix r, and r2, or-
der the stationary points ra~, of kpdx(r, ;rs3, rz) so that

where the upper sign (lower sign) corresponds to y=e
(y= v).

As in Ref. [3], Sec. III, we introduce local coordinates
( u ', u ) in a neighborhood of r&3

= r&z, such that

r&3=RE, (u', u )

2 2

rsxa+ X " tlag p X I(:xagqu»xa
/=1

increasing a = 1,2, . . . , corresponds to increasing
kpdx(r„rsvp„'rz), and assume that the kpA&, are nonzero
for all a =1,2, . . . . Then kpdz(r, ;r&3, rz) can be con-
sidered to be a so-called Morse function (named for the
mathematician Marston Morse) for c)Q, that is, a smooth
mapping of BA into the reals for which all stationary
points (called critica/ points in this context) are nondegen-
erate. The pair of algebraic signs o.&„,o.+,2 can be called
the signature of the critical point, and the number of
—1's (be it 0, 1, or 2) among the oz, &

is called the index
of the critical point. Then Morse theory asserts that the
manifold BA can be reconstructed up to homotopy
equivalence from the ordered sequence of indices of its
critical points —see Ref. [32], Part I. This property can
be used as a partial verification that all the points of sta-
tionary kpdz(r, ;rs3, r2), as r&3 ranges over BQ, have been
collected, and the signatures computed properly.

APPENDIX B: HELMHOLTZ PROJECTION
OPERATORS, SYMPLECTIC TRANSFORMATIONS,

AND PROPAGATORS

In this appendix we shall establish a theoretical struc-
ture analogous to that of Sec. VII, but for the case of
time-harmonic acoustic-wave scattering. We choose to
append this material, as the argument for scalar fields is
more transparent than that manufactured for the vector
fields of the electromagnetic case. The theory in this ap-
pendix depends primarily on that of Refs. [2] and [3] and
can be read independently of the electromagnetic theory
in the remainder of the paper. We shall find that projec-
tion operators, symplectic geometry (in function space),
and propagators play a corresponding role in both cases.
As in Sec. VII, a principal result is a formula that permits
impedance boundary conditions on an inner surface,
which conditions simulate an interior obstacle's acoustic
scattering properties, to be transformed into impedance
boundary conditions on a circumscribing surface. We
note that analogous methods may be of use in scattering
theory for time-harmonic elastic waves and for the time-
independent Schrodinger equation.

As discussed in, for example, Ref. [33], Vol. II, pp.
228 —23 1, the Cauchy problem for an elliptic partial
di6'erential equation (PDE) is ill posed in the sense of Ha-
damard, although the initial surface and initial values are
taken to be analytic: that is, elaborate strategems are
needed to estimate the behavior of the solution function
away from a small neighborhood of the initial surface,
and the solution is unstable to general small variations of
the initial values. This extrapolation process may be
compared to analytic continuation in the complex plane;
the results that we shall obtain are in some respects rem-
iniscent of the Laurent expansion in the theory of analyt-
ic functions of a complex variable. (See Ref. [34] for a
discussion of, and references to papers on, the solution of
a range of ill-posed problems. ) The methods that will be
developed here and in Sec. VII circumvent the instabili-
ties of the Cauchy problem, but are dependent on the
availability of a Green's function; to this extent the
methods will ordinarily be practicable only for propaga-



1356 G. E. HAHNE

Y(rx)
,(r, )

—= aY
(rx)

Bny

(81)

where r& E X, and 8/Bn & stands for the gradient of a
function in the outward normal direction to X. The linear
mapping defined by Eq. (Bl) will be an explicit or implicit
part of a number of the constructions below.

We define J&& to be a skew-symmetric operator that
maps V + into itself linearly, in terms of a two-by-two
matrix of operators in 7, as follows (the S stands for
complex-valued scalar functions):

0~ I~
(82)

where Oz and Iz are the zero operator and the unit opera-
tor, respectively, on 7 . The operator Jx~x establishes a
nondegener ate Wronskian bilinear inner product
Wx(Y', Y ) between pairs of functions Y'(r) and Y (r),

~x(Y' Y') = (Y x' Jxex Y x)xex
= —Wx(Y; Y'),

(83)

(84)

in an obvious notation. The Wronskian Wx(Y'; Y ) is
evaluated by restricting the functions and their gradients
to their limiting values and limiting normal components,
respectively, on a particular choice of surface X, which
can be any surface within the domain of definition and
good behavior of both functions. The value of the Wron-
skian normally depends on the choice of X.

Let us now consider two surfaces X, and Xb in 6,
such that X, is entirely inside of, or at most touching, Xb,'

we denote the domain between the surfaces as Q,b C 6 .
(If both X, and X& are unbounded, what is "inside" or
"outside" is a matter of choice. ) Let Y'(r) and Y (r) be
two complex-valued solutions of the scalar Helmholtz

tion of solutions in domains within which the acoustic or
electromagnetic properties are uniform, although the
mathematical structure is valid for more general situa-
tions. Only a partial solution to the Cauchy problem for
the Helmholtz equation is achieved: the linear space of
boundary values (taken in a suitable sense) is decomposed
by a projection operator into a direct sum of two sub-
spaces such that one subspace can be propagated in a
characteristic direction away from the initial surface,
while the complementary subspace can be propagated in
the opposite direction. The method affords no direct in-
formation on the propagation of either subspace in the
respective "wrong" direction.

Let 2 be the space of complex-valued functions
defined in X; we call the two-component direct sum space
V + —= V~e V . Let Y(r) be a complex-valued function
that is defined on, and continuously differentiable in, a
neighborhood of a closed surface X in e . From the
space of functions of type Y we construct a linear map-
ping into the space 9' + by the following operations.
We associate with each Y the entity Y&H V +, which
comprises the two-component function of limiting values
and normal derivatives of Y on X:

equation in an open domain that covers X, UX),b U Xb ..

(V' +ko)Y (r)=0 for a=1,2 . (85)

Familiar manipulations —see Ref. [24], p. 804, Eq.
(7.2.2)—of Eq. (85) lead to the result

Wx ( Yi; Y') = Wx (Y', Y') .
a

(86)

Equation (86) establishes an invariance principle for the
chosen symplectic inner product of two solutions to the
scalar Helmholtz equation: for solution pairs of Eq. (85),
the Wronskian is independent of the choice of X, at least
when the choices are subjected to the aforementioned
geometrical constraints. In fact, if we generalize the no-
tion of equivalence of a pair of surfaces to be contingent
on the existence of a chain of domains as described fol-
lowing Eq. (132), and such that both solutions satisfy Eq.
(85) in open sets covering the closures of all the domains,
then the Wronskian is independent of the choice of sur-
face in an equivalence class.

If Eq. (85) is satisfied in the complete exterior of X, ,
and both Y' and Y are of outgoing-wave type, we keep
X, fixed and let X& tend to infinity; the rhs of Eq. (86)
then tends to zero. If Eq. (85) is satisfied in the entire in-
terior of Xb, with both functions regular, we keep Xb
fixed and shrink X, to a point; the lhs of Eq. (86) then
tends to zero. (If X, is unbounded, the latter assertion
applies to pairs of functions that represent waves that are
outgoing toward "minus infinity. ") We expect that if Y',
say, satisfies Eq. (85) and is not identically zero and regu-
lar within Xb, and if Y satisfies Eq. (85) and is not iden-
tically zero and of outgoing-wave type outside of X„then
their Wronskian can be nonzero.

Hence, given the limitations on the behavior of Y' and
Y with respect to X and 6, we have identified two linear
subspaces of 7 + that (we could plausibly show) are dis-
joint except for the zero vector and whose direct sum
spans V + . This decomposition can be termed a sym-
plectic decomposition of V +: that is to say, the sym-
plectic inner product of pairs of elements is always zero
when both belong to the same subspace, while if the ele-
ments are both nontrivial and belong to different sub-
spaces, their symplectic inner product can be nonzero. If
the surface X is compact it may be possible to obtain a
complete symplectic coordinate system in the sense of
Ref. [25] in the space V +, that is to say a countably
infinite-dimensional analog to the coordinate system that
exists in the finite-dimensional case whenever the
coefficient field is of characteristic zero (cf. Ref. [25], p.
166); we shall not attempt this construction here.

We consider a geometrical configuration as described
in Ref. [2], Sec. II, and assume that free-space acoustic
propagation prevails everywhere in 6; note that the inte-
rior of BB need not be connected, but the exterior must
be connected and unbounded. We fix the surface X:—i)II,
and have recourse to the theory of Ref. [2], Secs. 111A
and III C, that there is a projection operator Px+ (the su-
perscripts F and + signify free-space solutions and the
outgoing-wave case, respectively), where
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PF+
X

—,'(Ix+ Vx „)
—,
' Wz ko

—
2 Ux, k,

—,'(Ix —Vx k )
(87)

(rx)=0,

where, in contrast to Ref. [2], we make the surface depen-
dence of the operators explicit. The pair of operators
Az k, Bz k are representatives of an equivalence class

the operators U& k, Vz k, Vz k, and 8'& k are defined

in Ref. [2], Eqs. (18)—(21), respectively.
The operator Pz+ is the similarity transform of the

operator P defined in Ref. [2], Eq. (42) by the operator X
of Ref. [2], Eq. (43); the operator P is defined with
respect to singlet and doublet layers on X, while Pz+
operates directly on the linear space of limiting function
values and normal derivatives as defined above. The
operator Pz+ has as its unit space the limits on X of the
values and derivatives of outgoing-wave solutions in the
exterior of X, while the null space of Pz+ comprises the
limiting values and derivatives of solutions to Eq. (85)
that are regular within X.

Next we suppose that the interior of X contains an
unspecified, and possibly complex, substance and struc-
ture that responds linearly to acoustic signals. Acoustic-
wave functions that are regular in the interior of X are
called Y (r) (the superscript R stands for Robin —cf.
Ref. [2]), and continue into free-space solutions in the ex-
terior region, whose exterior limiting values and deriva-
tives on X satisfy the following boundary conditions of
generalized impedance, or Robin, type on X:

(A, k Y )(r, )+ BxR BY (88)
0 o Bny

with respect to simultaneous left multiplication of both
by any invertible operator Yx of the type that maps px
into itself; this class of operator pairs is supposed to have
a structure such that if, and only if, an acoustic-wave
function satisfies Eq. (88), it is necessarily of the type that
extends to a regular solution in the interior of X. We
denote the acoustic radiation impedance operator for the
surface X by Z& k

—note the superimposed "hacek" ac-
O

cent, as distinct from a "breve" accent in the electromag-
netic case; we note that Zz k is invertible and

0

symmetric —cf. Ref. [2], Eqs. (28) and (30). Wave func-
tions of outgoing-wave type comprise those solutions
Y+(r) of Eq. (85) in the exterior of X that satisfy
Sommerfeld's radiation condition —cf. Ref. [4], Eq.
(3.7)—at infinity, and whose limiting values on X therefore
satisfy

YY (rx) — Zxk
Bng

(rx)=0 . (89)

(810)

exist —cf. Ref. [2], Appendix.
We can now construct a projection operator that gen-

eralizes Eq. (87) to the case that the interior of X is an
acoustically complex entity that is simulated by Robin
boundary conditions Eq. (88) on X, with the exterior be-
ing free space:

We assume that the three operators are such that a
unique left and right inverse operator and its adjoint

(Ax, k Zx, k +Bx,k )
' [Zx, k (Ax, k )'+(Bx,k )']

Px+ ( Ax „,Bx „,Zx „)=
—1

Zx, k, (Ax, k, Zx, k, +Bx,k, ) Ax, k,

( Ax, k Zx, k +Bx,k ) Ax, k

Zx, k, (Ax, k, Zx, k, +Bx,k, ) Bx,k,
1

(Ax, k Zx, k +Bx,k ) Bx,k
(811)

The unit space and the null space of the operator
Px (Ax k, Bx k, Zx k ) comPrise the vectors Yx(rx) of
Eq. (Bl) derived, respectively, from outgoing-wave solu-
tions Y+(r) in the unbounded exterior of X, and regular
solutions Y (r) in the acoustically complex interior of X.

In the latter connection, we note that the projection
operators have certain algebraic properties. We fix X and
ko, and dispense with these subscripts and the hacek ac-
cent on the arguments. Then we have

Px+(A, ,B„Z)Px (A~, B2,Z)=Px+(A2, B2,Z),
(812)

and Px+(A, B,Zz) have the same null space. These
mathematical results reAect the physical circumstances
that, in the case of Eq. (812) we are dealing with two
scattering problems with diA'erent obstacles but the same
exterior environment, while in the case of Eq. (813) the
two scattering problems dealt with have acoustically
identical obstacles embedded in distinct external Quid en-
vironments.

A canonical (C) form Px for projection operators for
the space of vectors as that in Eq. (Bl) is defined to be

(814)

Px+ ( A, B,Z, )Px+ ( A, B,Z2) =Px+ ( A, B,Zi ) . (813)

The result Eq. (812) and the corresponding result with
( A &i, B &

) and ( A z, Bz ) interchanged imply that the opera-
tors Px (A&, B&,Z) and Px+(A2, B2,Z) have the same
unit space, while Eq. (813) and a corresponding equation
with Z, and Z2 interchanged imply that Px+ ( A, B,Z, )

Ax k (Bx,k, ) =Bx ko( A x ko
)' (815)

[Ref. [2], Eq. (A8)] is satisfied, the answer is affirmative;

It is natural to ask whether the projection operator of Eq.
(Bll) is equivalent to that of Eq. (814) via a similarity
transformation. At least if the reciprocity criterion
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indeed the transformation, which is suggested by the re-
sults of Ref. [1], Sec. IV, and by an analogous computa-
tion in the acoustic case, is equivalent to a symplectic
transformation in V + . A linear operator Tx that maps

into itself is said to be symplectic if
(Tx)'~xexTx =Jxex .

We define

(816)

V'

, ko Bx,ko Zx, k

Bz,j,
—[Zx „(Ax k )'+(Bx k )'] ' [Zx I, ( Ax k )'+(Bx k )'] 'Zx k

(817)

=Jxex[Tx( Ax, k»x, k, »x, k, )]"(Jx+x)
'V 'V

Zx, k, (Ax, k, Zx, k, +Bx,k, )
—(Bx,k, )

(Ax, k, Zx, k, +Bx,k, )

(818)

(819)

moreover,

We can, using Eq. (815), easily verify that the inverse
operator is

[Tx( Ax „,Bx k~, Zx ko)]

ls
Kx „(Xx)=

X

yS

Kx i(Xx)—:
X

pS

(823)

(824)

pending on whether (i) the exterior environment (i.e. ,

Zx k ) is kept fixed and the interior (i.e., Ax k and

Bx k ) is permitted to vary, or (ii) the fiuid occupying the

exterior of X is permitted to vary in a way that is con-
sistent with the existence of a varying Zz k operator,

0

while the acoustic response of the interior region is kept
fixed. We note first that the operators Kx „(Xx) and
Kx i(Xx ), wlleie

=[Tx(Ax, k, Bx,k, Zx, k, ))

XPxTx( Ax, ko Bxi, ko~Zx, ko ) ~ (820)

are each symplectic if Xz is any symmetric operator that
maps 2 into itself, and each type belongs to an Abelian
subgroup of the full group of symplectic transformations
on Vx+x:

0~
xex[ x]— 0s (yX

(821)

We note that, even given the requirement that T& is
symplectic, it is not uniquely determined by the require-
ment that Eq. (820) be satisfied, as left multiplication of
Tz by a block-diagonal symplectic operator of the form

Kx, (Xx)Kx, ( Yx)=Kx, (Xx+ &x), (825)

where a =l or a =r. Now we drop the subscripts X, ko
and accents on the arguments, and consider operators
Tx'(A, B,Z) and Tx( A, B,Z). For case (i) we find, with
the aid of some algebra, that

where I'x is any invertible linear operator in V, does not
change the outcome Eq. (820). In particular, we define

R' 'V

Tx (Ax, k, »x, k, »x, k, )

—=&xex[(Ax, k, Zx, k, +Bx,k, )

X T~x( A x, k, »x, k, »x, k, ) .

Tx'(A„B, , Z)[Tx'( Ai, 82, Z)]

=Kx „[—( A, Z+8, ) 'A, ]

XKx, [(A2Z+8~) 'A~] .

For case (ii), we find that

Tx( A, B,Z, )[Tx( A, B,Z, )]

(826)

The latter form of the symplectic transformation is in-
dependent of the choice of representatives 3 z &,Bz k

for the Robin boundary conditions Eq. (88).
The symplectic transformations defined by Eqs. (817)

or (822) have a certain group-theoretical property, de-

=K,[(Z, A +8') '(Z, —Z )( AZ +8) '] . (827)

The argument of the rhs of Eq. (827) decomposes in a
manner analogous to the rhs of Eq. (826) if either A or 8
is invertible:

(Zi A +8') '(Z, —Z~)(AZAR+8)

—(AZ, A'+ AB') '+(AZ~A'+BA') ' if A ' exists

(BA'+BZi '8') ' —(AB'+BZ2 '8') ' if 8 ' exists . (828)
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I have not been able to achieve an additive decomposition
comparable to the rhs of Eq. (826) in the general case
that neither A nor B is invertible, always assuming that
the current Z ' and (AZ+8) ' exist, and that Z and
AB are symmetric.

The property Eq. (826) means that the class of opera-
tors Tx'(A, B,Z) for fixed Z all belong to a common
right (sometimes called left) coset of a certain Abelian
subgroup of the symplectic group on V + . (We follow
the definition of the right cosets in Ref. [35], pp. 60—61.)
Similarly, Eq. (827) implies that the class Tx( A, B,Z) for
fixed A and B belong to a common right coset of another
Abelian subgroup of the symplectic group on V +

These results can be understood partly on the grounds
that an operator of the form Kx „(X) leaves the unit
space of Px invariant, while a Kx &(X) leaves the null
space of Pz invariant, corresponding to holding fixed the
acoustic properties of the exterior and interior region, re-
spectively, to the surface X. These mathematical results
may simplify applications of the theory when acoustic
scattering in a family of geometrically invariable systems
with variable interior acoustic properties is studied.

Now let us formulate the qualified notion of propaga-
ting the boundary values of a solution of the Helmholtz
equation between surfaces. We consider two surfaces X,
and Xb in 6, such that X, lies within Xt, with a we11-

defined domain 2),b between them, and assume free-space
propagation of sound waves everywhere. Let G„+(r,;rz)

0

be the Green's function of outgoing-wave type, which
satisfies the differential equation

(Vz+ko )G„+ (r&,'r2) =5 (ri —r2), (829)

and has the analytic expression

Gk+ (r„'r2) = —(4n~r& —
r2~ ) 'exp(iko ~r&

—
rz~ ) . (30)

Yx (rx )=I Px x (rx;rx )Yx (rx )dAx (831)

Yx (rx )= J Px+x (rx;rx )Yx (rx )dAx
a

where we have used the definitions

Px x (rx;rx )

I aG+
ko

(rx , rx )
Bn&

a'G+
ko

(rx , rx )
Bn& Bn&

a b

—Gl+, (rx. rx, )

aG+
ko

(rx;rx )
Bnz

a

(833)

Suppose that Y (r) is regular within Xi, and that Y+(r) is
regular outside of X, and is of outgoing-wave type. Then
manipulations of Eqs. (85), (829), and (830) along the
lines of Ref. [24], following Eq. (7.2.6) on p. 805, and the
use of the notation of Eq. (81), lead to the following re-
sults:

Px'x (r, ;rx )

aG+
ko

(rx ;rx )
Bny

G~+, (rx, rx. )

$2G +
ko

(rx;rx )
Bny Bny

b a b

BG+
ko

(rx, rx )
Bn b' b

(834)

We call the entities

Px', x (rx 'rx» Px+, x (rx 'rx ) (835)

the free-space inward and outward propagators for scalar
waves, respectively. Since Eq. (86) holds for arbitrary
pairs of solutions of Eq. (85), straightforward manipula-
tions lead to the result

Px'. , x, =~x.ex. (Px,', x. )'(~x, ex, )
' (836)

We can infer from Ref. [2], Eqs. (18)—(21), that as the
surface Xb shrinks down uniformly to coincide with X„
the limiting behavior of the propagators is, referring to
Eq. (87),

PF+ PF+
b& a

(837)

and

Xa, rb ra%ra Xa
li P =I P-

Xb ~X

=~x.ex. (Px.+ )'(~x.ex. ) (838)

where the notation & means that the limit is taken as Xb
maintains a given distance from X, along the family of
normals to X„which distance is then allowed to tend to
zero uniformly over X, . Therefore, Eq. (836) generalizes
Ref. [2], Eq. (44). Moreover, Eqs. (836) and (837) and
the discussion following Eq. (87) show that the propaga-
tor Px x annihilates boundary functions Y+ that be-

long to outgoing-wave solutions, and propagates the reg-
ular solutions of the Helmholtz equation only from an
outer surface X& to an interior surface, while the propa-
gator Px+x annihilates boundary functions Y that be-

long to solutions that are regular in the interior, and
propagates outgoing-wave solutions correctly from an in-
terior to an exterior surface. The method therefore
achieves an incomplete solution of the Cauchy problem
for the elliptic PDE Eq. (85): the linear space of bound-
ary values, of the type of Eq. (Bl), is divided into two
subspaces such that an explicit construction can be given
for the propagation of each subspace in a stable (and mu-
tually opposing) direction. The method in effect achieves
a nonlocal decomposition of the elliptic PDE into two
parabolic problems analogous to the heat equation, which
two have oppositely directed "time" senses. (The latter
notion can be made analytically explicit with Fourier
transform techniques if the surfaces X, and X& are paral-
lel planes. ) The above construction yields zero, and
hence zero information, for attempted propagation in the
wrong, or unstable, direction for each subspace. Singu-
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larities, which can be construed as inhomogeneous terms
on the rhs of Eq. (85), can exist in the contrary direction
for a given type of solution, and extrapolation of bound-
ary values to the vicinity of such singularities is a diScult
task, which is not encompassed by the methods estab-
lished here.

We infer from Ref. [2], Eqs. (36), (34), and (32), that we
can recover the free-space projector of Eq. (87) from that
of Eq. (811)by a choice of arguments:

Y (r)=Y (r)+Y+(r), (844)

be the total signal, impinging free-space signal, and scat-
tered wave, respectively. Equations (81), (88), and (89)
imply that

cerned, to simulate the original obstacle by Robin bound-
ary conditions on Xb.

En the region exterior to X, let Y (r), Y (r), and
Y+(r), where

Pg+ =P~+( —,'W'~ g, —,'(Iz —V~ k ),Zz k ) . (839)

We can specialize the symplectic operator of Eq. (817)
correspondingly:

pR+ YR 0X X

pR+ Y+ Y+

(845)

(846)

hence the inner boundary values of the scattered wave are

—,
' Wz k —,'(I z

—Vz k )

+ pR+ YO
X X X (847)

ZX, ko

(840)

0S 0S
F FO FTx Px, x (Tx ) 0s (QF

b' a

QF 0S (841)

The symplectic operators for X, and Xb applied to the
propagators of Eqs. (833) and (834) afford a generaliza-
tion of Eq. (820). That is, there exists a ko-dependent
operator Qz z, which propagates one-component scalar

b' a

functions from X, to Xb, such that

Using the properties Eqs. (831) and (832) of the inward
and outward propagators, we can easily infer from Eq.
(847) that

+ pF+ PR + pFO (848)

PR+ PF+ +pF+ PR+ pFO
b b b' a a a' b

(849)

We have now obtained the values of the scattered wave
on Xb. Comparison of Eq. (848) with Eq. (847) suggests
the following guess for the definition of the corresponding
Robin projector Xb.

TF pF+ (TS )
—1

b b' a a 0S 0S where the Pz+ is the free-space projector of Eq. (87).
Since

lim Qz z =I@
b' a ab& a

(842)

A computation shows that if X, and Xb are concentric
spheres of radius a and b, respectively, we have

Q~ ~ (brb ar )

=a g 1'& (rb)[1'I (r, )]*ht (koh)

where 0 is the zero propagator for one-component scalar
functions. As Xb shrinks down to X„we must recover
Eq. (820) from Eq. (841), that is,

pFO PF + () pFO pF + ()a' b b a' b b' a

PF+ pF+ pF+ pF+ PF+ pF+
Xb Xb Xa Xb Xa Xb Xa Xa Xb. Xa

(850)

pR+ YR (PF+ +pF+ PR+pFO )(YO +Y +
)

b b b b' a a a' b b b

+ +pF+ PR+YO
b b' a a a

the rhs of Eq. (849) is idempotent, and acts as the unit
operator on any outgoing free-space wave. We need to
show that P x

+ annihilates Y x .

l, m

X [h,'" (kOa )]

+ pF+ Y+
Xb Xb X X

=Y+ —Y+ =0
Xb Xb (851)

where the notation for spherical harmonics and spherical
Hankel functions follows that of Ref. [3],Appendix.

We are now in a position to deal with the problem set
in the first paragraph of this appendix, the reformulation
of a Robin boundary-value problem from an interior sur-
face X, to an exterior surface Xb, where the Quid medium
occupying the domain between the two surfaces is here
taken to be free space. Let Px + denote the projector, as

a

in Eq. (811), that simulates the scattering obstacle interi-
or to X, . We want to find a corresponding projector
Px + that generates the same scattered wave from a given

initial free-space wave as the former projector; then we
shall be able, as far as the domain exterior to Xb is con-

where we used Eqs. (831), (832), and (847).
In deriving Eq. (849), we made use of the circumstance

that Eq. (832) yields the values Y z from the values Y z
of the scattered wave. It follows that these methods do
not aAord a contribution to the inverse scattering prob-
lem, that is, do not permit a set of Robin boundary condi-
tions on an outer surface to be replaced by an equivalent
(in an obvious sense) set of Robin boundary conditions on
an interior surface.

Let us examine the result Eq. (849) more closely when
it is applied to a cornrnon set of problems. That is, sup-
pose that X, is an approximately planar surface, as a
slightly rough surface or an acoustic diAraction grating.
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We suppose further that on X, either homogeneous Neu-
mann (N) boundary conditions (that is, Az k =Oz and

a

Bz ), =I+ ) or homogeneous Dirichlet (D) boundary

conditions (that is, Az ), =I@ and Bx k =Oz ) area' 0 a a' 0 a

satisfied in Eq. (88). We want to obtain the surface
values and derivatives Y z of the scattered wave on a

planar surface Xb that lies entirely above X, ; we consider
Xb to be the plane of observation. We note that the cor-
responding projection operators on X, are

pN+
0s

a

(852)

IS 0S
pa+x (Z )

—1 Os
a' 0 a

(853)

Moreover, we infer from Eq. (87) and Ref. [2], Eqs. (32)
and (34), that these can be reexpressed as follows:

0S pS

pN+ pF+
0 2(I~ —V' )

pD+ pF+
a X

L

a

2(Iq +Vq (, )
'

Ox

(855)

2Y (r~ )

0

0

of
Bn&

a

(856)

for the N case and the D case, respectively, while Eqs.
(854) and (855) entail taking the corresponding densities
to be

Let Y (r) be the impinging wave; then Pz+ annihilates

Y z and Pz z transforms it to Y z, so that the rhs of
b a' b a

Eq. (848) reduces to —Pz+z P+ + Y z, where X =N or
b' a a a

X =D. Since X, is approximately planar the operators
Vz k, Vr k are small, as argued in Ref. [3], Sec. II, so

that the derived formulas are well adapted to the use of
perturbation theory. Note that the conventional physical
optics approximation entails taking the source density on
BA for the scattered field to be

case, the boundary values of a regular free-space solution
(and hence the difference functions are annihilated by
Pz+ ), either approximate choice of boundary values will

yield the same scattered wave in corresponding cases,
apart from numerical errors in a practical computation.
The present method has therefore achieved an expression
for obtaining perturbative corrections to the physical op-
tics approximation, which approach is sometimes used to
treat the scattering of waves from rough surfaces —see,
for example, Ref. [36], and references cited therein. If a
nonperturbative approach is required, one can have
recourse to Eqs. (854) and (855) if the surface is un-
bounded in a way that there are no cavity eigenfrequen-
cies, or to Eqs. (852) and (853) for general geometries.

An item of unfinished business in the theory presented
thus far is the question of how the elaboration of the
theory of the Helmholtz equation described in this appen-
dix can be viewed as leading, in the extreme short-
wavelength limit, to the Hamiltonian version of geometri-
cal optics presented in Refs. [17] and [18). Evidently an
analog to the Schrodinger equation, which is known to
lead to c1assical Hamiltonian mechanics in the short-
(deBroglie) wavelength limit, should be inherent in the
formalism. The following considerations suggest that
such an analog exists.

Let us imagine a family of nonintersecting surfaces
X(a) that depend on a real parameter a, such that the
surfaces X(a +5a) and X(a) have a normal separation
that is linear in 5a, and that is uniformly bounded above
and below, as 6a —+0. It should, therefore, be meaningful
to compute derivatives of wave functions and operators
(such as the propagation operators) with respect to the
upper or lower limits. We restrict ourselves to outgoing-
wave solutions to Eq. (85). If Y'+ and Y are two such
solutions, we know that their Wronskian is independent
of the choice of surface in the family, and in fact is zero,
according to the remarks following Eq. (86). A slight
modification of this computation leads to a useful result:
We note that the complex conjugate ( Y )

* of an
outgoing-wave solution of Eq. (85) is also a solution, and
in fact is an ingoing-wave solution. Moreover, as the ex-
amples of plane and spherical waves show, the Wronski-
an of such a solution with its complex conjugate is
nonzero. Let us adopt the following definition, therefore,
for the sesquilinear inner product of two outgoing-wave
solutions Y'+(r) and Y +(r) with respect to a surface
&(a):

or
—2Y (r~ )

(857)

Inasmuch as the differences of the alternative sets of
boundary values are, both in the N case and in the D

l

The inner product is independent of a, as noted, and is
defined in Dirac notation as the matrix element of a cer-
tain "weighting" operator p&(, ). Let us evaluate the rhs
of Eq. (858) by Eq. (89). We find the result

+lpga( )l
+

&
= f d~x( ) 1 f g~1+

(r,(g), )
n g(~)

V' + V + 2+
X [Zk —(Zk ) ](rx(, ) ), rx(, ) 2) (rz(, ) z)

Bn g(a)
(859)
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It follows from Ref. [2], Appendix, that the Hermitian
operator

(V +ko)U+(p, so)=0, (862)

(&ko ~2) [Zk —(zk+ )'] (860)

is positive definite for ko&0, a result connected physical-
ly with the positive outward acoustic energy flux associat-
ed with any nonzero outgoing wave. Moreover, a compu-
tation shows that our definition of the inner product en-
tails

such that

lim U+(p, so) = —5(s —so),~-~c" (863)

where so is the position of a 6 source on the boundary.
The limiting normal derivative of this solution is the
DBO

(T2+j j~l+ ) [(Tl+
j

jT2+ ) ]e (861) aU+
qc(s sQ)=

g
(pc(s) so)=

one(s
(864)

The mathematical system formed by adjoining the inner
product Eq. (858) to the linear space of outgoing-wave
solutions to the Helmholtz equation therefore satisfies the
axioms of a so-called pre-Hilbert space —see, for exam-
ple, Ref. [26], Chap. II. (A pre-Hilbert space is a Hilbert
space if it is complete, i.e., every Cauchy sequence within
the space converges to a limit in the space. ) We have
therefore defined a conserved (with respect to the param-
eter a) sesquilinear inner product that is similar
to a quantum-mechanical transition amplitude in
Schrodinger theory, where time is the parameter. This
result suggests that it may be possible to establish an ex-
tended analogy of the wave optics of outgoing waves with
nonrelativistic quantum mechanics, such that position
and momentum operators, etc. , can be defined in favor-
able geometries. In turn, the short-wavelength limit of
this hypothetical theory will plausibly yield the Hamil-
tonian form of geometrical optics. This possibility
remains to be investigated both in the acoustic case and
in the similar electromagnetic case, as remarked in Sec.
VII G.

We note finally four bodies of published work on
acoustic, electromagnetic, or quantum scattering theory
that were overlooked or incompletely cited in Refs.
[1]—[3], and that have common elements with the scatter-
ing theory proposed in Refs. [1]—[3] and elaborated in the
present work. The first group of papers are those con-
cerned with the so-called delta boundary operator (DBO)
method —see Refs. [37]—[42]. The method was first pro-
posed for treating the scattering of electromagnetic waves
impinging at right angles to perfectly conducting cylin-
drical obstacles, such that the component of the
magnetic-field vector parallel to the cylinder axis is
zero —this state of affairs is not changed in the scattering
from a perfect conductor, and the wave is called a trans-
verse magnetic (TM) wave in waveguide nomenclature
(some authors, as in Ref. [37], call it a TE wave). The
problem reduces to a D-type boundary-value problem for
the two-dimensional Helmholtz equation, and hence is
appropriately discussed here rather than in Sec. VII. We
call the cylinder C, which is the surface of the conductor,
let z be the axial direction, let p=(x,y) be the position
vector in an orthogonal plane section, and let s be an
arc-length parameter along a section of C, measured from
any fixed initial point on C, such that pc(s) is the
parametrized position of the cylinder. Maystre [37] con-
siders an outgoing-wave solution U+(p, so) to the
Helmholtz equation (we have changed Maystre's notation
in part)

where nc(s) is the outward normal to C at s. Evidently
the DBO Pc(s, so ) is the two-dimensional analog of minus
the inverse radiation impedance operator, that is, of—(Z& ) ', for the surface C. Analytical expressions for

gc(s, so) have been obtained [cf. Ref. [37], Eqs. (29) and
(42)] for C a plane or circular cylinder, which are the
two-dimensional analogs of Ref. [3], Eqs. (54) and (A2),
respectively. Different approaches to treating the singu-
larity in the DBO are proposed in Refs. [37] and [3]. An
empirical fit to the difference between the DBO for a
plane and that for a circular cylinder was presented in
Ref. [37], Eq. (89). The DBO method was extended to
enable the treatment of scattering from dielectrics and
imperfect conductors with cylindrical boundaries, and of
TE as well as TM impinging waves, in Ref. [41]. Approx-
imation schemes that are based on the results for planes
and circular cylinders were proposed for the DBO for
more general cylinders, including rough surfaces and
gratings, and numerical studies were carried out, with
generally favorable results, in Refs. [38—40,42].

The second group of papers is concerned with the nu-
merical treatment of the propagation of pulsed signals in
seismological work, for which either the acoustic or elas-
tic wave equation are the modeling theories. We cite
three papers, that is, Refs. [43]—[45], among a body of re-
lated work: Ref. [43] deals with the two-dimensional
problem of the scattering of sound waves from a right-
angled wedge, and Refs. [44] and [45] are concerned with
establishing nonreAecting boundary conditions for the
scalar wave equation on the edge of a grid, in Ref. [44] by
a condition that in effect approximates the time-domain
radiation impedance operator, and by an apparently com-
pletely different method in Ref. [45].

The third group of papers comprises those that are
concerned with the electromagnetic version of
Waterman's method, also called the T-matrix method,
the null-field method, or the extended boundary-
condition method. The relationship between Waterman's
method and the transition operator approach was dis-
cussed for the case of acoustic-wave scattering in Ref. [2],
Sec. III D. Waterman also proposed [46,47], and others
have further discussed or applied —cf. Refs. [48—51] or
the citation in Ref. [7], Note 4.1.2—a method of treating
medium-to-long-wavelength electromagnetic-wave scat-
tering from nonspherical obstacles based on truncated ex-
pansions, as Eqs. (34) and (35), of the electromagnetic
field in terms of the multipole fields. Waterman's method
can be obtained in the case of electromagnetic-wave
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scattering from a perfectly conducting and approximately
spherically shaped obstacle in a manner analogous to the
treatment of the acoustic case presented in Ref. [4],
Theorem 3.45. That is, in Eq. (134) let M'=M be empty
space, let +„+, n = 1,2, . . . , N, be a suitable set of
N & ~ outgoing-wave multipole electromagnetic fields
[as in Eqs. (31)—(33), with the origin inside the obstacle],
and let N be the scattered wave, of which the tangen-
tial electric component on the surface is known and the
tangential magnetic component is to be determined. As
in Ref. [4], Eqs. (3.92) and (3.93), Eq. (134) now estab-
lishes a moment problem for the unknown tangential
magnetic field of the scattered wave on the surface of the
obstacle. The numerical solution of this moment prob-
lem for a sufficiently large class of electric fields on the
surface amounts to the determination of an approximate
inverse radiation impedance operator —cf. Eqs. (4) and
(5). We note also that Waterman [52] proposed a third
version of the method for the scattering of elastic waves
from nonuniformities in solids.

The fourth group of papers concerns the so-called %-
matrix method, the founding of which is due to Wigner
and Eisenbud and Duke [53—55], and which has been
used extensively in the theory of nuclear reactions
[56—58] and other applications of quantum-mechanical
collision theory [59—65]. In the present context, the A-
matrix method could be realized along the following
lines. The obstacle, presumed bounded and penetrable, is
enclosed by a r)O that is a sphere S (a) of radius a, such
that the exterior region is free space. Wave functions for
all r, and in particular for r =a, are expanded in spherical
harmonics (Helmholtz case) or vector spherical harmon-
ics (Maxwell case), so that the linear operators defined
elsewhere herein, which map fields defined on S (a) into
other such fields, are now realized as matrices, albeit of
countably infinite dimensionality. The A matrix is
defined as the matrix of the operator that, in the
Helmholtz case, maps the normal derivatives on S (a) of
the regular interior wave functions into the correspond-
ing wave-function values on S (a); in the Maxwell case,
an analogous entity could be defined (with ko&0) as the
matrix of the operator that maps the tangential magnetic
field into the tangential electric field, where both tangen-
tial fields are derived from regular interior solutions to
Maxwell's equations. Hence, the A matrix for the regu-
lar interior solutions is a counterpart to the radiation im-
pedance operator for the exterior solutions of outgoing-
wave type; unlike the latter entity, the % matrix can be
singular. In the operator notation of Eqs. (B8) and (122),
we have

( As/(
) k ) Bs2( ) k

(Helmholtz case)S (a), ko S (a), ko

—
(A~2(. )

) 1Cs2(.)
(Maxwell case)

(B65)

Once the % matrix is determined, the S matrix can be
determined by a solution matching across S2(a). Al-
though the % matrix, taken as a function of ko, has a
singularity whenever the null space of the operator

(or Az,
( )

) is nontrivial, the derived S matrix isS (a), ko S (iJ)

well behaved.
The standard %-matrix method is equipped with an ap-

proach to solving the interior problem in a manner that
yields an estimate for the % matrix: Corresponding to
the conservation of probability and the unitarity of the 5
matrix in quantum scattering processes, we presume that
the scattering medium is lossless, and that a convenient
set of artificial homogeneous boundary conditions can be
chosen on S (a) such that a self-adjoint (in the Hermitian
sense) eigenfunction or eigenvalue problem is established
in the interior of S (a). Remarkably, a complete set of
eigenfunctions and eigenvalues for this problem yields a
formula for the A matrix, despite the fact that the indivi-
dual eigenfunctions by construction satisfy a different set
of boundary conditions on S (a). This method was origi-
nally established to treat the cases of—in general,
many —scattering resonances that occur in nuclear reac-
tions as the energy (frequency) is varied, and a suitable
variant may find applications to classical wave scattering
where analogous resonance phenomena occur, as scatter-
ing from an impenetrable obstacle with a cavity, as de-
scribed in Sec. VIII.

As advocated by Breit (Ref. [57], Sec. 29), the essential
character of the %-matrix method derives not from a par-
ticular scheme chosen to treat the interior problem, but
from its property as a representation of the action of the
interior region in determining the exterior properties of
the wave function. We can take this interpretation to
comprehend the possibility of lossy structures in the inte-
rior region, which are more characteristic of classical
than of quantum-mechanical scattering problems. In this
sense the impedance boundary-condition approach for
simulating an obstacle that was introduced in Refs. [1,2]
is an alternative version of %-matrix theory, restricted in
the number of dimensions of the position space to three
or fewer, but generalized in the respect of the geometry of
the surface that divides the interior and exterior regions.
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