
PHYSICAL REVIEW E VOLUME 47, NUMBER 2 FEBRUARY 1993

Microsphere-based short-wavelength recombination x-ray laser
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We describe a scheme for obtaining very short wavelengths (A ~ 10 A) in recombination lasers.
The rapid cooling rates necessary to achieve population inversion during recombination are attained
by adiabatic expansion of submicrometer spheres. The lasing region is made up of many such
spheres. The spheres are heated impulsively by a powerful picosecond laser. First, they ionize, then
as they expand, they cool and recombine. We have calculated the optimum sphere size and initial
temperature for maximum gain in the n = 3 to 2 transition of hydrogenlike ions of elements with
atomic numbers, Z, between 10 and 30. Gain of about 250 cm is calculated in aluminum at
38.8 A. Gain rapidly decreases with Z so that gain in titanium at 13.6 A is about 10cm . We have
calculated the required pump-laser intensity and found it to be attainable with current lasers. The
propagation of the pump through the "gas" of spheres is considered and the problems arising from
pump scattering by the spheres are discussed.

PACS number(s): 42.55.Vc, 42.60.Da, 42.70.Hj

I. INTRODUCTION

X-ray laser development is proceeding at a rapid rate.
Since the demonstration of lasing action at x-ray wave-
lengths in 1984 [1—3] there has been steady progress in
many areas, including achievement of increased gain-
length products and progression to shorter wavelengths.
The future holds the promise of widespread application
of these systems to areas as diverse as microlithography,
microscopy, and holography[4].

We propose here a method of achieving recombination-
purnped gain at lasing wavelengths of order 10 A. . The
laser is similar to other recombination-pumped devices
that operate successfully at longer wavelengths insofar
as a high-temperature plasma is created by irradiation
of a target medium with a so-called pump laser. Subse-
quently, the nonequilibrium conditions required for lasing
are achieved by cooling the plasma sufficiently rapidly to
reach a "superionized" state —one in which the ionization
stage exceeds that achievable under steady-state condi-
tions at the ambient density and temperature.

Production of the strongly nonequilibrium conditions
required for gain in recombination-pumped x-ray lasers
becomes problematic at short wavelengths. A picosec-
ond cooling rate is desirable for lasing at wavelengths ap-
proaching 10 A.. This rate can be achieved with adiabatic
expansion of submicrometer-sized targets. The rate can-
not be achieved with radiative cooling in a single-species
plasma. The fastest adiabatic cooling rate is achieved in
a spherical expansion (three-dimensional expansions cool
faster than two- or one-dimensional expansions). There
are, in fact, three main reasons why we expect small
spherical targets to be optimal. First, as we have said,
they have the highest adiabatic cooling rates and there-
fore the highest gains. Second, small spheres have a large
surface area to volume ratio and thus require less pump-
laser intensity to heat. Third, submicrometer spheres
are relatively easy to fabricate compared to, for instance,

submicrometer fibers.
In Sec. II we calculate gain in expanding isother-

mal spheres. The isothermal assumption is justified by
the short thermal conduction time. A simple similarity
model of the hydrodynamic expansion and a collisional
radiative model of the atomic physics are used. The ini-
tial temperature To, the initial radius Ro, and the atomic
number Z of the sphere are inputs to our calculation. We
calculate the gain g32 in the n = 3 to 2 transition of the
hydrogenlike ion. By varying To and Ro, we find the op-
timum values for maximum gain. The maximum of g3$
for a given element Z is plotted in Fig. 7. The pump
laser must heat the sphere to the initial temperature in
a fraction of the expansion time, i.e. , in a fraction of
a picosecond. The required pump-laser intensity is cal-
culated to be attainable with currently available subpi-
cosecond lasers (see Fig. 10).

While spherical targets provide an ideal cooling geome-
try, they do not, of course, provide an ideal lasing geome-
try. The lasing region should be long enough to provide a
gain length product of perhaps 10. It must also be narrow
enough to be optically thin to the "dump" transition for
the lower lasing level which, in our case, is the n = 2 to 1
transition. In aluminum these requirements yield the op-
timum lasing region to be about 400 pm long and 6 pm
across. This geometry can be accomplished with mul-
tiple submicrometer targets, "microspheres, " suspended
in a vacuum or low-density gaseous medium. Perhaps
the simplest method of suspending the spheres is to give
them sufficient kinetic energy that their pressure sup-
ports them against gravity. The "gas" of microspheres is
arranged to have a mean mass density equal to the mean
mass density of a single microsphere at the time of peak
gain. Clearly the optimum size of the microspheres and
their spacing can be obtained from the single sphere cal-
culations. The microsphere gas is placed in the focus of
the pump laser. The focal region defines the lasing ge-
ometry; see Fig. 1. The pump laser will propagate in the
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Sec. IIC we present the computational model and our
results, which are displayed in Figs. 5—8.

Pump Laser lasin A. Hydrodynamic evolution of microsphere

"Gas" of
rnicrospheres
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oo ooo
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FIG. I. Lasing geometry showing focal region defining
elongated gain structure.

II. CAIN IN A SINGLE SPHEB,E

In this section we consider the evolution of a single
sphere and the gain achieved in the evolution. We shall
calculate the optimum values of the initial sphere radius
Ro and initial temperature Tc for maximum gain. The
gain g32 in the n = 3 to 2 transition in hydrogenlike ions
is calculated. In Sec. II A we consider the hydrodynamic
evolution of a sphere (which fortunately decouples from
the atomic physics). A simple analytic calculation of the
atomic physics is presented in Sec. IIB. This calcula-
tion is not quantitatively accurate, but it does show the
scaling trends and it does aid our understanding. Re-
sults from the model are summarized in Fig. 3. There
we plot the maximum value of gsg and the values of Tg
and Bo which maximize gain, all as a function of Z. In

microsphere gas with some scattering and absorption. At
high Z the scattering makes the simple pumping scheme
of Fig. 1 inappropriate (see Sec. IIIE). Other pump-
ing geometries are therefore suggested for high Z. Thus,
with the appropriate pump intensity, spheres in the focal
region are heated to the optimum temperature for gain.
The heated spheres expand and fill the space, forming a
relatively uniform high-gain region. Our design raises the
possibility of efficient generation of shorter wavelengths
than are currently available.

In Sec. II, we consider the evolution of a single sphere of
initial temperature To and radius Ro. The hydrodynamic
similarity model of the expansion is discussed in Sec. II A.
In Sec. IIB, we present a simple model of the atomic
physics to aid understanding. The full computational
model is presented in Sec. IIC. In Sec. III, we discuss
the heating by the pump laser and the propagation of
the pump laser in the microsphere gas. The isothermal
assumption is justified in Sec. III A. The absorption and
scattering of the pump laser by the spheres is calculated
in Sec. IIIB. In Sec. IIIC, we calculate the required
pump intensity. The physical constraints on the size and
shape of the lasing region are calculated in Sec. IIID.
Finally we calculate the propagation of the pump laser
in Section III E. In the conclusion we discuss future work
and other applications of the microsphere "gas."

The objective is to heat the sphere of radius Ro to a
uniform temperature To—which for now we specify only
as being comparable to the ionization potential of that
ion stage which will subsequently lase —i'i a time short
compared to the disassembly time Cs/Rc. We shall be
dealing with fully stripped ions and hydrogenlike ions
with atomic numbers Z greater than 10. The initial
sound speed Cs is therefore given by Cs = (ZTO/2M) ~,
where M is the mass of the ion. The electron density in
a solid ( 10 cm ) greatly exceeds the critical den-
sity n, „, where the laser frequency u equals the lo-
cal electron plasma frequency u„„ for currently avail-
able lasers of the required intensity and pulse duration
(n, ,

„102i—10 2 cm s). Additionally, although the
optimal sphere radius can be substantially smaller than
the wavelength of the pump laser, it typically greatly ex-
ceeds the collisionless skin depth c/u~, . Therefore the
pump laser deposits energy at the surface of the sphere
in a layer of width c/u„, . The pump intensity required
to deposit this energy is considered in Sec. III C. If the
sphere is too large, the time for thermal diffusion from the
heated surface to the center will exceed the disassembly
time, with the result that the core will remain cold and
relatively weakly ionized. Cold matter will absorb the x
rays by bound-free transitions [5]. It is therefore desir-
able to keep the lasing medium relatively isothermal. In
Sec. III A we show that the isothermal assumption holds
for the spheres we consider. The atoms are ionized to
the hydrogenlike stages very rapidly. In modeling the
hydrodynamic expansion we make use of the large value
of Z. The change in electron density due to the ion-
ization from the hydrogenlike state is neglected since it
produces a relative density change of order Z . We also
neglect the energy involved in ionization, recombination,
and atomic transitions since it is typically a fraction Z
of the energy in free electrons. These approximations al-
low us to decouple the hydrodynamic problem from the
atomic physics. Thus we solve the hydrodynamics for the
temporal evolution of the electron density and tempera-
ture whose values are then used to compute the evolution
of the atomic physics. If the plasma is allowed to freely
expand into vacuum, then, after it increases its dimen-
sions to a size substantially larger than Ro, its further
evolution as a function of radius r and time t is found to
be well described by a similarity solution of the hydrody-
namic equations [6]. The isothermal similarity solution
has a Gaussian density profile of width R(t) [see Eq. (2)].
It is an exact solution of the hydrodynamic equations. Al-
though the similarity solution is observed to agree with
the true solution for R(t) )) Ro, it is not quantitatively
correct for R Ro (because the initial density profile is
not Gaussian). Since there is really only one scale in the
problem, Bo, it is expected that the behavior of the simi-
larity solution for R Ro is qualitatively correct. In our
numerical models we show that the maximum gain oc-
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curs at 9RO )R & 2RO for all elements between Z = 10
and 30 [see Fig. 8(b)j. For simplicity we shall use the
similarity model for all times, i.e., even for R Ro. We
expect this approximation to yield gain within 50'%%uo of
the true gain.

Within the similarity model, the current plasma size
R(t), on-axis density n(t) = n(r = O, t), and tempera-
ture T(t) are determined in terms of their corresponding
initial values Ro, no, and To by the simple relations

dzR(t)
dP R(t)

(„,) (1b)

(lc)

and where AT (A„) takes on the value 2d/3 (d) with
d = 1, 2, 3 in the case of planar, cylindrical, and spher-
ical geometry, respectively. From Eq. (la) we see that
fol R(t) )) RQ we have the simple result R(t) ROCst.
Equation (1b) follows from the conservation of entropy in
adiabatic expansion and Eq. (1c) follows from the conser-
vation of particles. Having obtained the density evolution
at the symmetry point r = 0, the ofF-axis density follows
from the similarity form

atoms are in the ground state of the hydrogenlike ion.
In fact, at this temperature, ionization to the heliumlike
state is very rapid. Ionization from heliumlike to the hy-
drogenlike state is roughly twice as fast as ionizing the
hydrogenlike ion to the fully stripped ion. Thus a more
accurate analysis would include the helium like stage.

Our simplified model for the hydrogenhke ion is illus-
trated in Fig. 2. The model consists of three levels in the
hydrogenlike ion and the fully stripped ion. The n = 1
ground state has the fractional population nq, the n = 2
and 3 excited levels have fractional populations n~ and
A3 respectively, and the fully stripped ion has a frac-
tional population n . Clearly, nq+ nz+ ns+ n = 1.

The fractional populations of the excited states n2 and
Fl3 are typically much smaller than the fractional popu-
lations in the ground state nq and fully stripped state
n~ Thi.s is just a result of the fact that the collisional
sources for these levels are typically smaller than the ra
diative decay rates. The analytic model contains the fol-
lowing transition rates between levels n = 1, 2, and 3:
the collisional excitation rate between n = 1 and 2, de-
noted Cq2, the radiative transition rate between 3 and
n = 2 (As2), the radiative transition rate between n = 2
and 1 (A2q), and the collisional deexcitation rate between
n = 3 and 2 (Cs2). The collisional excitation from level

(2) ///////////////////////////////

The radial velocity of the Quid element at (r, t) is

0=3

B. Analytic model

In this section we will examine a simple analytic model
of the atomic physics in an expanding sphere. (The quan-
titative results of this section difFer from our more de-
tailed numerical results, but the qualitative features are
correct. ) Let us consider the origin of the sphere only
and let us take the long-time approximation to R(t), i.e. ,

R(t) Ro+ Cst. We normalize Z to 10 (since we are
interested in Z between 10 and 30), Tc to the ioniza-
tion potential EH for the hydrogenlike ion, R to Rc, Rp
to 10 cm, and the initial density no to 10 4 cm
Thus Z = 10Z, To (eV) = 1360Z2To, x = R/Ro, Rc
(cm) = 10 sRO, and no ( cm s) = 1024no. We also take
the atomic mass number to be 2Z. The lasing wavelength
in these units is Asz (A)= 65.6/Z . In normalized units
the expansion rate is

S
goo

12

'32 "32 A
34

21

LASING

dx
dt

Cs
2 6 10&z Z~Tp= 2.6 x 10 — sec

During the early stages of the expansion we require ion-
ization to dominate so that a population of fully stripped
ions is obtained. The initial electron temperature must
therefore be comparable to the ionization potential of the
hydrogenlike ion (i.e. , To 1). We shall assume (both
for the analytic and numerical work) that initially all

FIG. 2. Diagram of four-level laser used in analytic inves-
tigation of gain.
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n = 2 is ignored as n2 (( 1 and the collisional deexci-
tation rate from n = 2 is unimportant compared to the
radiative decay. We consider single step ionization from
the n = 1 level only (CI~). Ionization from n = 2 and
3 is small when the radiative rates dominate and n2 and
n3 are populated less than the thermal equilibrium value.
[In fact a numerical evaluation of (C12/A21)C2 shows
that for parameters of interest it is less than CI~.] At
the densities of interest (n 1022 —10 4cm 3) three-
body recombination dominates radiative recombination.
The electrons preferentially recombine into the upper lev-
els of the atom. The upper levels are approximately in
Boltzmann-Saba equilibrium with the free electrons as
the collisional transition rates are high. The lower levels,
however, are dominated by radiative decay. One devel-
ops a picture of a recombining electron difFusing (ran-
dom walking) through the upper levels of the atom until
it reaches some critical lower level. At this critical level
n, radiative decay dominates and the electron rapidly
decays to the ground state. Obviously no population in-
version can occur in levels above n, because they are
in Saha equilibrium. The difFusional Hux of electrons
through the upper levels has been calculated by many
authors (see Zel'dovich [7] and Pert [8]) to be propor
tio11al to Z Il, /T ~ . I11 0111' Iiol'111allzed ilIlits this yields
the recombination rate due to this process,

—2

=13x10" ' x'sec '
T9/2 Z60

where we have used Eqs. (1b) and (1c) for T(x) and
n(x). (It is interesting to note that, in the recombin-
ing plasma, the electron-ion plasma parameter is only
somewhat larger than 1, especially at low Z. The modi-
fication to the recombination rate have been discussed by
Biberman, Vorob'ev, and Yakubov for a strongly coupled
plasma [9]. These corrections are small for the plasmas
under consideration here. ) We assume R~ gives the net
recombination rate and that a fraction 6 of this rate gives
the Aux of electrons from n & 3 levels into the n = 3 level.
Thus we have modeled the efFect of the levels with n ) 3
on the source for level n = 3. Note direct recombination
into the n = 3 level without passing through the higher
n states is relatively unimportant.

We will assume that the initial electron temperature is
smaller than the n = 2 to n = 1 transition energy. The
collisional rates Cq and Cq2 can be calculated using the
cross sections for ionization and excitation at threshold.
These cross sections are independent of energy and pro-
portional to Z . The rates C~~ and Cq2 are obtained
by averaging on over the Maxwellian (for more complete
approximations see Keane's thesis [10]). Thus in normal-
ized units

CI~ 20.6 x 10 —2exp (—=) seca2 no 1 x
Z3~TQ ~2

np 1 3x
C12 30 x 10 — —exp (——=) sec

Z3~TQ 2:2 4 Tp

The n = 3 to n = 2 collisional deexcitation, C32, is ob-
tained from C23 by detailed balance. Thus we find

C32 25 x 10 —
2 sec

Ap 1

Z TQ

The mean radiative rates [11] are

A2i ——4.7 x 10' Z sec

432 ——0 43 x 10 Z sec

(8)

(9)
(1o)

R~
n3 bn

(A32 + A31+ C32)
1

&2 —
A

(A32&3 + C12&1) ~

(12)

(13)

The ionization recombination balance in the model is

nl
dt

= R n —Cl ni.

Since n2, n3 &( nq, n, we set n = 1 —n~ and we use
Eq. (4) to replace d/dt = (dx/dt)d/dx. Thus

+8 — —exp
~

—= (1 —n ).
TQZ4 x2 ( Tp

(15)

Typically we shall be interested in situations where
Tp 1 (although we have assumed Tp ( 1 to derive
CI~ and C12) and Rp ~ 1. Clearly ionization dominates
Eq. (15) at x = l. As the sphere expands (x increases)
the ionization rate drops rapidly and the recombination
rate rises rapidly. Thus the evolution splits rather nat-
urally into two phases —the ionization phase and the re-
cornbination phase. The total fractional ionization after
the ionization phase n can be estimated by ignoring
recombination over this time. Thus

ni 1 —exp( —a;)

where

np Rp dx ( x2)n=8= — —exp
i

—=
Tp Z I z g Tpp

npRQ f' 1 l4 -4 exp
~

—=
Z ( Tp)

and we have evaluated n in the limit Tp & 1. Physically
u represents the amount of ionization in the first expan-
sion time. When Rp or Tp is small the sphere expands
and cools before significant ionization occurs. During the
recombination phase, typically when 2: && Tp, we may ig-
nore ionization in Eq. (15) and obtain

1
X4n~~n exp —P—oc

aDd

A» = O.55 x 1O"Z' sec-'

For values of Z of interest (Z 1.5) the radiative rates
A21, A32 and A31 are larger than the expansion rate and
the ionization and recombination rates. The populations
of the n = 3 and 2 levels are therefore in quasisteady
state, i.e. ,
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where

n2
p = 0.05 -s 7-

60np 1 5
Z7T'~' xz) (25)

is roughly the amount of recombination in the first ex-
pansion time.

There is, in fact, a third phase in the evolution where
ionization and recombination balance and the left-hand
side of Eq. (15) is negligible (the quasistatic situtation).
This occurs for parameters of interest when Px4 )) 1 and
n~ is small. In the quasistatic phase

(19)

dA S(A) = 1. (21)

As we demonstrate in the Appendix, the value of S(A„i)
for the lines of interest is

where

H(x) = 160 Z —exp
~

—=Tp'-, 1 (
np x' q Tp)

As we shall see, gain occurs during the recombination
phase and not during this later steady-state phase. If
P ) 1 (Tp (( 1 or Rp )) 1), then the recombination
phase does not exist —the initial ionization phase takes
the ion directly into the quasistatic phase.

The gain per unit length at line center g„t for a tran-
sition from level u to level t is

S(A„() n, 4 g„
gul = —A iA~i n nis~c Z "' " "

g)

Here S(A) is the line-shape function, normalized so that

is the "quenching coefBcient, " defined as the ratio of the
total deexcitation rate (collisional plus radiative) to the
radiative decay rate of the upper lasing level. The second
term in Eq. (24) is the excitation from n = 1 to 2 popu-
lating the n = 2 level and lowering the gain. For large To
and small x the second term dominates and the gain is
negative. Since g32 is a monotonically increasing function
of n~ and x it must increase during the ionization phase
when n and x are increasing. Substituting Eq. (19)
into Eq. (24) we see that the gain is always negative in
the quasistatic phase.

We have calculated (numerically) the maximum value
of gs2 from Eq. (24), maximizing with respect to x, Tp,
and Rp. In Fig. 3 we plot the maximum gsz as a func-
tion of Z, together with the values of Rp and Tp which
optimize g3~. In these computations, we estimate 6 by

A4s + C4s

(A43 + C43 + A4z + A4i)

which is the branching ratio into level 3 from level 4. The
maximum gal given by this model exceeds the numerical
result of Sec. II C by a factor of 10 for Z = 20. However,
since the model is rather simplified, numerical accuracy
is not expected.

A number of qualitative features can be understood
from this model. First let us consider the steep inverse
scaling of gsz with Z. At high Z the collisional rates are
small and therefore ns [R /(As2 + Asi)]n . Using
AAg oc AZ, A oc Z, and R oc Z and setting n2 0
and n~ 1 we obtain from Eq. (20), gsz oc Z 4. At
low Z collisional deexcitation dominates the decay from
the n = 3 level (Q )) 1), thus ns (R /Cs2)n and

where the linewidth

(22)
10'

10'

bAg=A
C

(23) 104

is due to the Doppler width caused by the expansion of
the spheres [12, 13]. The factor I"„i = 0.29 for the 3~2
and 0.67 for the 2~1 transition in H-like ions. In our
case, the degeneracies g~ = j . Using Eqs. (12) and (13)
and the rates, Eqs. (5)—(ll) we obtain

10

N 102

C)

10

10
CO

10 2

g32 ~ 46 x 10 Pip

Z8T'~' ~

n(~)b2:3 n~
T,"'Zs Q.

85n, ( 3x'i
exp

~

——= ~(1 —n ))ZsT"' & 4T.) (24)

The first term in the braces is essentially proportional to
the recombination rate, where the factor

10 15 80
z

30

FIG. 3. Variations edith atomic number Z as predicted by

the analytic model. Left scale: Maximum on-axis gain g32

(cm ), (solid line) optimized over both Ro and Tp. Right
scale: Initial sphere radius Rp (10 cm) (short-dashed line)

and initial electron temperature To (10 eV) (long-dashed

line) which lead to maximum gain.
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g32 Z . Note we have implicitly assumed that To
and n~ do not scale significantly with Z; their calculated
scalings are indeed mild. Clearly the dominant reasons
for the strong decrease in gain with increasing Z are the
scalings of R and A.

The existence of a maximum g3q can be understood,
again qualitatively, from our model. First consider the
initial temperature Tg. If Tp is small the amount of ion-
ization and therefore gain is small. Conversely, if To is
large, the recombination rate is always small, the n = j.
to 2 excitation rate is large, and the gain is consequently
small. Clearly an optimal temperature exists. Now con-
sider the initial radius Ro. If Ro is small the sphere ex-
pands very rapidly and cools before significant ionization
takes place. However, if Ro is large the cooling is slow
and the atom is in a quasiequilibrium where n = 1 to
2 excitation populates the n = 2 level and shuts off the
gain. Again we expect an optimum Ro. These opposing
tendenci=-s are sketched in Fig. 4.

The advantages of spherical expansion are also appar-
ent from our model. Clearly we hope to achieve signif-
icant initial ionization but insignificant ionization dur-
ing the recombination phase. Thus one wishes to have
an ionization rate and an n = 1 to 2 excitation rate
that decrease rapidly with 2: and a recombination rate
that increases rapidly with x. Now consider three types
of symmetrical expansion: planar (d = 1), cylindrical

(d = 2), and spherical (d = 3). The n = 1 to 2 excita-
tion rate is proportional to 2: +s exp( —3x +si4TO) and
therefore it decreases most rapidly with x when d = 3,
i.e., in spherical expansion. The ionization rate behaves
similarly. The recombination rate is proportional to x
and therefore increases most rapidly (with x) when d = 3.
Thus spherical expansion is preferable.

Recombination rate
too small

C. Numerical model

1. Numerical method

In the general case, the evolution of the atomic states
and radiation fields must be kept on a par with that of
the hydrodynamic variables. Fortunately, for our sys-
tem the power density associated with atomic excitation
and ionization is small compared to the cooling power
resulting from expansion. As we stated in Sec. II A, this
is a consequence of the large Z. This circumstance al-
lows an accurate computation of the evolution in two
independent steps. First, the hydrodynamic evolution is
computed neglecting the power flow into internal atomic
states. Then the density and temperature so computed
enter as time-dependent parameters in the computation
of the atomic state.

Given the time evolution of the Quid variables, the evo-
lution of the fractional populations of' the ground and
excited states of the hydrogenlike ion and of the fully-
stripped ion are computed in a Lagrangian frame

—=Vdr
dt (26)

with V(r(t), t) the local How velocity. We neglect ioniza-
tion from and recombination to lower ionization stages
on the grounds that during the heating phase, collisional
ionization from He-like ions will occur on a much shorter
time scale whenever significant gain is achieved, and that
during the recombination phase, recombination into He-
like ions will not afFect the gain calculations. With these
remarks, the governing equations for the bound-state
fractional populations are

After a discussion of the numerical method, we exam-
ine in some detail the time evolution of a single sphere.
This is followed by a discussion of the optimization of
gain with respect to initial radius Ro and temperature
To, given Z. Finally, the variation of optimized gain and
other critical quantitites, such as the optical depth of the
dump transition, with Z are presented.

Here

nj
dt

= S~+ C~ —I~+ B~ (27)

Not enough time
to ionize before

expansion

ai
Quasi - Equilibrium

S, = ) ~, ,n,' —) A„.n,
~'()i) i'(&i)

(28)

is the net spontaneous transition rate into level j, ex-
pressed in terms of the individual rates A~ ~ from j to
37

Ionization rate
too small

(29)

R

FIG. 4. Sketch illustrating competing effects which lead
to a maximum in gain as a function of initial sphere radius
Ro and temperature To for a given atomic number Z.

is the net rate of collisional excitation into level j from
all other bound states j' expressed in terms of the rate
coefBcient C~~~ from j to j',

(3O)
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is the ionization rate from level j, expressed in terms of
the ionization rate coefficient Cj~, and

Rj = &e&oo(&eo'tbj + o'radj ) (31)

is the sum of the three-body and radiative recombination
rates (a&& j and a«d j, respectively) into level j. All sums
over bound states are up to a level l which is varied to
check convergence. The rate coefficents are those given
by Drawin [14].

The equation for the evolution of the fractional popu-
lation of fully stripped ions is

(32)

where

I~ =) Ij

is the total rate of collisional ionization from, and

=) R, (34)

is the sum of recombination rates into, all bound states.
By virtue of the relations Eqs. (33) and (34) and the
additional evident relation

we have that the total population

n, —= ) n, +n
2

is conserved,

8. Time evo/upon

As an illustrative example, we present results for
the time evolution of a titanium sphere (Z = 22) in
Figs. 5(a)—5(e). The initial radius of the sphere Ro =
2.17 x 10 3cm. It is assumed initially at rest R(t =
0) = 0. The initial electron density on axis n(0) is set
to 1 x 10 cm, essentially solid density. The sphere
is assumed impulsively heated to an electron tempera-
ture Tg ——3.1 x 103eV, equal to 0.47 of the ionization

Af

Ch

By definition n& ——l.
There is a large variation in the magnitude of the rate

coefficients in the set of equations (27) and (32), both
with changes in temperature and in quantum number.
This variation could be expected to cause difficulty in
a numerical solution, but the set has been found to be
amenable to accurate solution with standard scientific
library algorithms [15]. The chosen algorithm conserves
density to machine roundoff (10 ).

Once the fractional populations are computed, the gain
at line center for the 3 to 2 transition follows immediately
from Eqs. (20)—(23).

potential of the hydrogenlike ion. The sphere is then as-
sumed to freely expand into vacuum. The evolution of
the sphere size R(t) is obtained by solving Eq. (la). T(t)
and n(t) are then obtained by evaluation of Eqs. (1b) and
(1c), respectively. All three are plotted in Fig. 5(a). We
note there the decrease of T(t) by more than a factor of
9 in 1.5psec.

Given the hydrodynamic evolution, the state popula-
tions are then computed as described in Sec. II C 1. We
have found that inclusion of seven excited states, with
principal quantum numbers n = 2, . . . , 8, adequately de-
scribes the hydrogenlike system for these purposes. This
was confirmed in two ways: First, sensitivity of com-
puted gain to changes was shown to be small. Second,
during the interesting time interval, the populations of all
but the first four or so levels were seen to be quite close
to Saha equilibirium (i.e. , within ~ 5%) with the free-
electron fully stripped ion populations. The evolution of
the fractional population of the ground state of the hy-
drogenlike ion ni and of the line-center gain at r = 0,
gsz, are presented in Fig. 5(b). Ionization proceeds to a
level of 12% in 320 fsec, followed by recombination with
an efFective rate of about 1.2 x 10 sec . Upon onset of
recombination, the gain rises rapidly to 11.1 cm at 860
fsec and then decays at a rate comparable to the fully
stripped population. Several characteristic features of
these profiles persist through our scans in Bp, Tp, and Z.
First, the width in time of the gain profile is comparable
to the delay in its onset after impulsive heating. This has
the important consequence that, in practice, producing
overlap among the gain profiles of an ensemble of similar
spheres is readily achievable. Second, especially at higher
Z's (say above 15) the optimal maximum fractional ion-
ization of the hydrogenlike ion is much less than unity
(as was assumed in the analysis of Sec. IIB). We find
that for such Z values, if ionization fractions of order
unity are achieved, then recombination-induced gain is
much less than optimal. This is simply a consequence of
the fact that, at large Z, the recombination rate drops
steeply with Z [see Eq. (24)], steeper than the n = 1
to 2 excitation rate. Thus the normalized temperature
Tp must be lowered to keep the 1 ~ 2 excitation small.
The ionization rate is therefore lower because Z rises and
To falls; see Eq. (6). The expansion rate is roughly con-
stant at high Z. Thus the amount of ionization (in an
expansion time) is reduced.

The fractional populations of the upper and lower las-
ing levels, n3 and nz, respectively, are shown in Fig. 5(c).
Again, consistent with the neglect of efFects of doubly ex-
cited states, fractional excitations are small.

Further diagnostics are presented in Figs. 5(d) and
5(e). There the line-center optical depth for the dump
transition, defined here as ~i2 = gi2(r = O, t)R(t), al-
though initially larger than unity, is seen to drop to
0.58 at peak gain. Similarly, the quenching coeKcient
atr=0,

Q(t) = [n, (o, t)C„+ A„]
1

(38)
32

drops to 0.46 at peak gain. Another potential gain
spoiler, excitation of level 2 from the ground state, is
plotted there as well. The relative excitation coeKcient
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represented by

n1 +12

nzAgi
(39)

This observation indicates that the total gain per sphere
G(t) = 2 fp g(r, t) dr is expected to be positive when
the gain at r = 0 is. Additionally, we have found
that G is well represented (to factors of order unity) by
g(r = o, t)R(t).

is seen to drop to 0.11 at peak gain.
We remark that separate computations of the gain

oK-axis (r g 0) show that, typically, regions of posi-
tive gain extend out to radii several times R(t) during
the time interval of appreciable gain on axis (r = 0).

8. Optimization

Within our model the evolution is completely charac-
terized by the parameters Rp, Tp, and Z. Optimization
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FIG. 5. Time evolution of hydrodynamic and atomic variables for titanium, Z = 22, which has a lasing wavelength of 13.6 A.
The initial conditions are those which yield the largest value of the maximum in g32(t). The initial radius Rp = 2.17 x 10 cm.
The initial electron temperature Tp = 3.1 x 10 eV. In all figures, the time ranges from the instant of heating (time = 0) to
2.5psec thereafter. (a) Evolution of hydrodynamic variables. Left scale: electron density n (10 cm ) (solid line), electron
temperature T (10 eV) (short-dashed line). Right scale: sphere radius, R (10 cm), as defined through Eqs. (la) and (2)
(long-dashed line). (b) Evolution of the fractional population of the ground state ni of the hydrogenlike ion (dashed line) and of
the line-center gain ga2 (cm ) at r = 0 (solid line). (c) The fractional populations of the upper and lower lasing levels n3 (solid
line) and n2 (dashed line). (d) The line-center optical depth 712 for the dump transisiton, defined here as g]2(r = O, t)R(t),
is 2 initially, but drops to 0.58 at the time (0.86 psec) of peak gain. (e) The quenching coefficient at r = 0, Q(t) (solid line),
defined by Eq. (38), drops to 0.46 at peak gain. The importance of excitation of the lower lasing level by collisional excitation
from the ground state is characterized by the relative excitation coefficient R,„(dashed line), defined by Eq. (39), which is seen
to drop to 0.11 at peak gain.
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visoBo Z Tp
C's &0&0

(41)
B. Pump scattering and absorption from the

microsp heres

We note that the argument given above to justify the
isothermal approximation applies even more strongly to
the collisionless skin depth —i.e., heat diffusion over the
collisionless skin depth is much faster than the time to
expand a collisionless skin depth. Thus the only scale of
interest in the expansion is Ro. Our estimate uses the
final temperature to estimate thermal conduction and
thus slightly overestimates the heat conduction. Since
we have a large ratio in Eq. (41) such details are not
expected to change the basic conclusion that the sphere
is isothermal for all the cases of interest.

4& u)p, E2

C Vg —Z(d
(42)

where cu„, = (47m, e2/m, )
~~ = 5.6 x 10 np sec is

the plasma frequency, u is the pump-laser frequency,
and v, is the electron collision rate. Since v, = 2.3 x

We shall take a simple linear electron response to the
field inside the microsphere (we treat the microsphere as
a dense plasma sphere). So the current J is given by
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FIG. 7. Variations with atomic number Z as predicted by the numeric model. (a) Maximum on-axis gain g32 (cm ),
optimized with respect to both Re and To. (b) Initial sphere radius Re (10 cm), which leads to maximum gain. (c) Initial
electron temperature To (10 eV), which leads to maximum gain.
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1 j, [(l + 1)j( r —lj(+r] R Fj('+ V(' [(~+ 1)ji-r —lji+r]'+ [(l + 1)ui-r —iVI+r]'
(45)

where x = kRo and j~(x) and y~(x) are the spherical Bessel functions [18]. The absorption cross section o.~b, is

1 1
o.,b, (x) = n(~) 2~Re ) (2l+ 1)— .2 2+, , = avrRo G(x)x j, +y, [(l+1 j~ r —ljI+r + l+1)r/I r —lM+r]

(46)

where

i
I
1+—

I&)

gation [19], are beyond the scope of this paper. Any
such enhancements would reduce the constraints on the
pumping geometry.

Re indicates that we take the real part of the expression
in the brackets. Clearly cI(a) is small and the absorption
cross section is small compared to the geometric cross
section. We plot F(x) and G(x) in Fig. 9. Note that for
kRp (( 1, o„(10/3vr)R(~)(krp)4 (Rayleigh scattering)
and o. b, 6vrRo n(w). Thus it is possible at long wave-
length for the scattering cross section to be smaller than
the absorption cross section.

We remark that, insofar as scattering is concerned,
the linear approximation should provide accurate results,
since, even for the rather collisional solid density plasmas
considered here, the absorption cross section is, in gen-
eral, very small compared to the scattering cross section.
Collective effects which may lead to enhanced absorption
will not appreciably acct the scattering cross section un-
less the effective collision frequency becomes comparable
to ur„„an unlikely circumstance. As for absorption, the
linearized calculation should provide a conservative esti-
mate. Calculations of the eKects of collective processes
on absorption, currently a subject of intensive investi-
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C. Intensity requirements for the pump laser

3/2 37l0Tp Z —2I = 2.2 x 10 W cm (48)

Note that the total energy delivered to each sphere is
ZznoRoTo pJ. Typically r/, (( a and a I/, /2ru„, .
Then

1/2T3z5
5 4 ~ 1017 0 0 W 2

G(*) (49)

When x = kRo~0, G(x) —+6. We see that the re-
quired intensity scales very unfavorably with Z. Cur-
rently available picosecond lasers can deliver as much as
10 Wcm . In Fig. 10 we have plotted the required in-
tensity of 0.25- pm light as a function of Z [using Eq. (48)]
for the optimal sphere with Ro(Z) and To(Z) as ob-
tained in Sec. Il C. Also shown there is the correspond-
ing maximum pump-laser pulse length 7~„~. We note
that at high Z the required intensity in fact approaches
10rs W crn . One may, therefore, be forced to use a less
than optimal value of T0 at high Z. We also note that
the pulse length requirement demands state of the art
picosecond lasers.

D. Constraints on lasing geometry: efBciency
estimates

The pump laser must heat the sphere before expansion
since one wants a hot high-density plasma initially. Thus
we shall assume that the laser pulse lasts for a time at
most equal to

B.o
&pump —= 0 5

Cg

Using Eq. (46) for the absorption cross section we obtain
the required laser intensity I (asuming that the energy
delivered is Io~b,~» ~), where

p&G. 9. Plots of single-sphere scattering function F(x)
(dashed hne) Eq. (45) and absorption function G(x) (s»id
line) Eq. (46) vs normalized pump-laser wave vector x = kR.

The lasing region must be long and thin so that the
induced emission is emitted preferentially in the direc-
tion of elongation. The width of the lasing region is con-
strained to be smaller than (or of order) the optical depth
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10

V
10

C)

I i l I I 3 fiuctuation in electron plasma frequency associated with
a given density inhomogeneity An .We conservatively
estimate b,n n with n = no/x', the mean density.
The angular width of the beam increases diffusively at
a rate Dg = (A8) /(spacing~ wl'tll /spacing —2%x ~

the
average intersphere spacing. The ASE beam scatters out
of the active region in a distance ls = R~/8, where the
accumulated angle 8 = (Dots) ~ . Combining results, we
have

(51)

10
10 15 20

I I I I I I I I 0
25 30

FIG. 10. Pump intensity I (Wem ) required to achieve
maximum gain vs Z, as calculated from Eq. (48) (solid line),
together ~ith the corresponding required maximum pump-
laser pulse length ~p„p (see), from Eq. (47) (dashed line).

of the n = 2 to 1 "dump" transition. The gain is spoiled
if this photon is reabsorbed and electrons are excited to
the n = 2 level. In colder material the n = 2 to 1 photon
is absorbed in bound-free transitions. Thus the photons
are absorbed in cold spheres that surround the hot lasing
medium of spheres. It is clearly desirable to have a well-
delineated width (of order the n = 2 to 1 optical depth)
to the region which is heated by the pump laser. We have
calculated the n = 2 to 1 optical depth numerically (see
Sec. II). In Fig. 8(c) we plot wi&, the number mean free
paths in a sphere radius for the dump transition photon,
at the instant of peak gain, for the optimum sphere, vs Z.
We note from Eq. (20) that the optical depth is inversely
proportional to A2iA&inin, Z oc Z n, ni oc Z x'
since nq 1, for all Z. The single maximum in r&&

for Z = 19 results from the rapid decline in x' between
Z = 10 and 20, and its essentially constancy for larger Z
7'ig. 8(b)]

The requirement that the dump photon escape freely
imposes a rather small upper bound on the width of the
amplifying region. The finite-width amplified sponta-
neous emission (ASE) beam will propagate out of the
active region because of difFraction and also because of
scattering on any density inhomogeneities which persist
during the gain interval. In order to estimate these ef-
fects, we compute the lengths l~ and ls for the ASE
beam to difFract and to scatter out of the gain region.
So long as these lengths exceed the gain length gzz no
auxiliary refocusing of the ASE beam is required.

The difFraction distance tD is simply related to the
width B~ of the active region through

jt~ ——
B~~

&ui

Individual scattering events are nearly forward because
cu„~ )& cu„, and A„~ && A. Each results in a defiection
in propagation angle 48 (Au„s/~„i)z with Aw„s the

Icy ~23 x 10 Z n3

ns —gsn2/gg
Wcm (52)

One may also estimate that t, 2gs2 ln(w/tc), where cu

is the width of the lasing region.
EKciency of the saturated ampli6er can be appre-

ciable. The input energy per ion is, roughly, E;„
Z(T + 2(E)), where (E) is the average ionization en-
ergy per electron ~ Z EH/3. The factor of 2 accounts
for the radiation on average of one resonance photon
per ionization event, which we assume, conservatively,
to escape. At saturation, each ion contributes an energy
(5/36)bZ E~ to the laser beam, taking account of the
branching ratio b into level 3. With T = ZzEH, the
resulting efficiency b/(12Z) is seen to approach 1%.

The full dynamics of the laser propagation is compli-
cated and we shall postpone any further discussion to a
future publication. We note that it might be appropri-
ate for some applications to make multiple parallel las-
ing regions simultaneously —this would effectively widen
the total beam diameter but still keep the width of each
"beamlet" narrower than the optical depth,

E. Propagation of the pump laser

Perhaps the simplest way to envisage heating the
spheres with the picosecond pump laser is to produce a
long focus and place the spheres in the focus (see Fig. 1).
In this scenario the spheres in the focus will be heated
and the shape of the lasing region is entirely de6ned by
the focus. As we have already stated, the width of the
lasing region is constrained to be less than the optical

Using the relation B~ = Box*/viz, we find that both
lsgsz and l~gsz decrease with increasing Z, from 102
for Z = 10 to 10 2 for Z = 30. Both become ~ 1 at
Z 20. Therefore, above Z = 20, refocusing of the ASE
beam is required to achieve gain.

The x-ray laser output intensity grows exponentially
with the length of the lasing region l for l less than a
critical length lc Speci.fically, for l ( t„ I exp(gs2l).
When jt = jt, the induced decay rate from level n = 3
is comparable with the spontaneous or collisional decay
rate. The front of the laser pulse continues to be ampli-
Ged for t & L„however, the response is no longer linear
since the populations of the levels are afFected by the laser
light. The laser pulse tends to steepen and the intensity
grows roughly linearly with length. At t = I, the laser
intensity has the critical value I„at line center, where
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depth of the n = 2 to 1 transition —this width is achiev-
able at the focus of 0.25- pm light. Unfortunately, the
scattering of light by the spheres broadens the focus and
creates a problem. Let us first estimate this effect. We
will consider alternatives subsequently. Let n, be the
density of spheres, Re the initial sphere radius, and Rf
the sphere radius at maximum gain. We may wish to
make n, (8Rsf) i so that the space is filled by the ex-
pansion and the gain is relatively uniform. The mean free
path of the pump laser light is A„(crscn, ) where the
scattering cross section is given by Eq. (45). The length
of the lasing region is effectively limited by A„. The total
gain times length g(,~t for a medium that is one mean free
path long is

f 3 1
gt t (g32Rl)(p ~(g@)

where F(kRO) is defined in Eq. (45). Substituting num-
bers from our optimal cases into Eq. (53) we find gq~t
15forZ=10(Z=1) andgtq 3x10 s for Z=30.
Since we would like gt t & 10 for a moderately eKcient

laser we conclude that the scattering is intolerable at high
Z.

There are several ways one might bypass the scattering
problem —we will briefly mention two. The spheres could
be placed in a narrow tube of width the optical depth.
The pump laser would be focused into the tube and the
scattered pump radiation would be reBected from the
tube walls. The tube walls would, of course, become
hot and expand, but in the time scale of interest this
expansion is less than the width of the tube. A second
possiblity is to use a line focus and illuminate the spheres
perpendicularly to the direction of gain. Achieving high
intensities with a line focus may be problematic. It is also
diKcult to imagine producing the very sharp gradient in
sphere density needed in such a scheme.

Placing the spheres in the appropriate positions may
not be too hard. If one just requires a cloud of spheres,
one can suspend them by their thermal motions to an
atmospheric scale height of approximately 50 pm. Alter-
natively, one may wish to drop the spheres into the path
of the pump laser —on the picosecond heating time scale
the spheres are stationary. Practical details such as these
are really beyond the scope of this paper.

IV. CONCLUSIONS

This paper extends recombination laser schemes to
shorter wavelengths. The crucial idea is to form a lasing
medium from many submicrometer spheres. The spheres
are heated by a powerful picosecond laser to tempera-
tures comparable with the desired ionization energy. The
material in a sphere is rapidly ionized and then, as the
sphere expands and cools, it recombines. The desired
nonequilibrium population inversion is obtained when
the cooling rate is faster than the recombination rate.
This cooling time is on the order of a picosecond and the
size of the spheres is chosen to achieve such cooling times.
Spheres are chosen chiefly because spherical expansions
produce the most rapid cooling rates. Many spheres are

needed to make a significant gain length product. A
schematic of one arrangement of spheres and pump laser
is given in Fig. 1.

We calculate the gain and other laser properties for
lasing in the n = 3 to 2 transition in hydrogenlike ions.
Ions with atomic numbers between 10 and 30 are con-
sidered. There is no reason why other lasing transitions
might not be considered —we chose the simplest.

In Sec. II we consider the evolution of a, single sphere.
The expansion of the sphere is modeled (see Sec. IIA)
by an isothermal similarity model with a given initial
temperature To density, no, and radius Ro. A simple
tractable model of the atomic physics is presented in
Sec. IIB. It is hoped that this model will aid under-
standing. In Sec. II C, we numerically calculate the gain
with a more complete atomic model. The peak gain for
a given Z is a function of To and Ro. We calculate the
optimum values of To and Ro (those values that produce
the largest gain) for each Z. In Figs. 7(a)—7(c), we plot
the optimum gain RD and To against Z. The optimum
gain falls rapidly from about 250cm i for Z = 10 to
about 0.lcm ~ when Z = 30.

In Sec. III, we consider the issues involved in heating
the microspheres with a picosecond laser. The isother-
mal assumption is justified in Sec. IIIA. In Sec. IIIB
the absorption and scattering of the pump-laser by a
sphere is calculated. The required pump-laser intensity
is calculated in Sec. III C. The width of the lasing re-
gion is limited to be narrower than the optical depth of
the n = 1 to 2 transition, as discussed in Sec. III D. Fi-
nally, in Sec. III E, we show that scattering of the pump
laser hearn limits the kinds of pumping schemes that are
possible.

The considerations in this paper involve a number of
physics processes and some of our models should be im-
proved. In future work we intend to consider a more com-
plete atomic model —specifically more ionization stages
and more detailed calculations of the pump propaga-
tion. Specificall, we should include the heliumlike ion
and model the ionization from the heliumlike state. In-
cluding the heliumlike ion will also provide a drain of the
hydrogenlike ground state during recombination, thus re-
ducing the n = 1 to 2 excitation. It may also be desir-
able to include the effect of a finite length heating pulse.
Of course, better modeling of the spheres will lead to
better estimates of the optimal sphere sizes and temper-
atures. The experimental implementation of this idea
is relatively straightforward, although the pump-laser re-
quirernents are at the forefront of current technology. An
important consideration is the reduction of prepulse to an
acceptable level. Energy in a prepulse can create a uni-
form warm plasma before the main pulse arrives. This
will destroy the scheme. There are many ways to reduce
the prepulse and we hope to try some of them on the
Princeton powerful subpicosecond laser in the future.

There are other possible uses of the microsphere "gas."
For instance, coincidence pumping of one transition by
another [20—22] requires the pump ion and the pumped
ion to be in different plasma conditions. This could be
achieved by making the spheres of the pump element a
different size than the pumped element. The sizes of
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the spheres are chosen so that they yield the appropri-
ate plasma conditions upon heating and expanding. The
spheres are intermingled and heated simultaneousely by
the pump laser. There are two advantages to this scheme.
First, the geometric coupling of pump photons with las-
ing ions would be close to 100%%up in such a scheme. Second,
the plasma conditions may be controlled with some pre-
cision by controlling the sphere sizes and the pump laser
intensity.

In summary, we believe that the calculations presented
here indicate that lasing can be achieved at wavelengths
of 10 to 40 A. with our proposed scheme.

Z

10
13
15
19
22
24
28
30

Linewidth at
QA, AAg
1.93 5.59
1.66 3.30
1.47 2.60
0.91 2.07
0.43 1.74
0.25 1.57
0.09 1.30
0.06 1.19

t' (10 ' cm)
AA,
40.03
42.79
44.19
40.33
24.45
16.36
8.00
5.52

Tp (keV)
1.37
1.36
1.50
2.44
3.10
3.57
4.58
5.05

8.76
4.60
3.24
1.95
1.78
1.78
1.77
1.82

TABLE I. Linewidth contributions at gain maximum.
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APPENDIX

Here we justify the use of expression Eq. (22) for the
value of the line-shape function at line center. There are
three contributions to the line-shape function: Doppler
broadening, Stark broadening due to ions (quasistatic
broadening), and Stark broadening due to electrons (im-
pact broadening).

The principal source of Doppler broadening is the gra-
dient in directed velocity over the plasma volume. As
viewed along a ray passing through the sphere center,
the Doppler shift is proportional to radius; see Eq. (3).
Taking account of the radial dependence of the plasma
density, Eq. (2), one obtains a Doppler profile of the form

8 Z„h
AA, =

( n„A„( (n„—n( )10 Z„mc (A2)

W

AA, = '(v)A2, pp 0.33+in
7CC po-

Here

and

T '/'
pm= 4, =&D

4+e2n,

Here Z„and Z„are, respectively, the net charge of the
perturber and the nuclear charge of the radiator, and n„
is the perturber density. For our single species plasma,
we take, to good accuracy, Z„= Z„= Z and n„= n, /Z.

Electron broadening results from random phase shifts
of the radiator wave function induced by the electric fields
of passing electrons. The resultant line-shape function is
Lorentzian and has a width [24)

(Al)

where AAq is given in Eq. (23).
The ion quasistatic broadening results from the linear

Stark shift of the energy sublevels of a given principal
quantum number in the radiating ion caused by the elec-
tric fields of nearby ions. Ions typically move suKciently
slowly so that the level shifts can be assumed to be deter-
mined given the current electric-field strength, i.e. , only
the positions of the perturbing ions are required, and not
their trajectories. When the shifts so computed are av-
eraged over sublevels, each weighted by its contribution
to the line intensity, and also over electric-Geld strengths
due to the statistical distribution of ion positions, the
result for the quasistatic width for transitions between
levels n„and nt in hydrogenlike ion is[23]

AA; » AAq & AA, (A6)

In the case of the H~ transition, there is a compo-
nent of the line, with intensity 0.29 of the total [25],
which has no linear Stark shift. For this component,
the width is determined by convolving the Doppler and
impact line-shape functions. Since the Doppler width is

predominant, we neglect the impact contribution and ob-
tain Eq. (22) at line center. A corresponding calculation
for the La (dump) transition produces the same result
for S, except that the relative intensity of the unshifted
component is 0.67.

In order to estimate the relative importance of these ef-

fects, we present, in Table I, results for the various widths
at the time t* of maximum gain as a function of Z for
optimum (Rp, To). In all cases
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