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I. INTRODUCTION

In this work, the equilibrium partition func-
tions of monatomic (Dy, Ho, Tm and Dy+, Ho+, Tm+)
and diatomic (DyI, HoI, TmI, DyBr, HoBr, TmBr and
DyI+, HoI+, TmI+, DyBr+, HoBr+, TmBr+) gases are
calculated. The negative rare-earth halide LnX ions are
not considered because of the lack of reliable spectro-
scopic data for these ions. (In most cases, negative ions
do not inhuence the kinetic properties of low-temperature
plasmas with high electron densities [1,2]. However,
some negative molecular ions containing metal atoms can
be stable [3].)

Knowledge of the partition functions studied here is
essential for understanding some light sources operating
on mixtures of mercury (the "background" gas) and
rare-earth halide molecules LnX ( Ln =Dy, Ho, Tm,
X=I,Br). These sources have high radiative output
power, but controllability of their frequency spectrum is
poor because of the lack of thermodynamic and kinetic
models of these plasmas. Even though rare-earth halide
plasmas are of major importance in high-pressure light
sources, neither statistical nor thermodynamic evalua-
tions of the plasma partition functions are available at
present.

The light sources based on the rare-earth halides have
a broad range of pressure (typically, below l atm) and a
gas temperature well below 10000 K. In most cases, the
source gas is close to local thermal equilibrium [4].
Therefore, one can assume that in the source
T, = T+ = T, where T„T+, and T are the temperatures
of electrons, ions, and neutral species, respectively. Also,
at high electron densities, the Debye radius is very small
and the plasma is electrically neutral in all the regions
where the model of local thermal equilibrium at tempera-
ture T is valid. Thus, one can say that n, =n+, where n,
and n+ are the electron and positive-ion particle densi-
ties, respectively.

II. ATOMIC, MOLECULAR, AND IONIC
QUANTUM STATES

The energy levels of the atoms and atomic ions con-
sidered here were taken from Ref. [5]. The rotational, vi-
brational, and electronic states of the rare-earth halide
molecules are unknown. The calculation of the molecu-
lar rotational and vibrational spectroscopic constants and
of the electronic levels is very dificult because of the
large number of low-lying electronic states. Practically,
the only approach capable of dealing with this problem
(with an accuracy acceptable in the applications of the
present work) is the ligand field theory [6,7]. In general,
the ligand field model gives reliable predictions of' elec-
tronic structures of heavy molecules with predominantly
ionic chemical bonding. Thus, it is well suited to study
the electronic structures of LnX and LnX+ molecules

III. LIGAND FIELD APPROACH

In the ligand field model, the low-lying molecular elec-
tronic states of LnX and LnX+ are interpreted as elec-
tronic states of the Ln+ and Ln + metal ions, respective-
ly, perturbed by the strong electrostatic field of the X
ion. All (two-center) metal-ligand exchange and overlap
interactions are neglected. The ligand field has three im-
portant effects on the Ln+ and Ln + states: (l) the rela-
tive energies of the Ln+ and Ln + electronic
configurations are altered in the X field and the com-
pact 4f orbitals are destabilized much more than the
more diffuse 6s orbitals [6]; (2) the L,S,J terms of each
Ln+ (or Ln +) configuration are split into their MJ com-
ponents in the X field; (3) the ligand field causes some
intra- and interconfiguration mixing. With X approxi-
mated as a point charge located at a distance R,"from
Ln+ (or Ln +), the effects on the states of the metal ion
can be evaluated quantitatively by expanding the electro-
static interaction in the spherical harmonics at the metal
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TABLE I. The calculated energies (in cm ') of the DyX configurations below the ionization limit; g
is the total statistical weight of the configuration, AE is the energy range of the states included in the
configuration, and 6E is the density of the states per 1000 cm

Configuration

9S2

f 'ds

f9d2

f10d

f'ps
f"p
f'dp

'Reference [27].

+a

0
12 300
10600
19 000
14 800
36 000
25 200
38 000

DyBr

0
900

3400
16000
19000
23 100
23 700
29 300

DyI

0
1800
4100

16400
18 700
24 100
23 800
30 100

2002
2002

40 040
90 090
10010
24 024

6006
120 120

55 000
35 000
75 000
60 000
70000
70 000
60 000
80 000

34.6
57

534
1500

143
343
100

1500

center. R," is the equilibrium internuclear distance of
the molecule in the ith electronic state [i =1 for the
ground electronic state; we omit the superscript (i) in
cases when i = 1].

The ligand field Hamiltonian for the molecule LnX or
the molecular ions LnX+ is expressed as [6]

8= y Co" (e, , V, )Bo"(r, )+H.
where the sum is over all of the electrons on the metal-
ion center, Co is a modified spherical harmonic, and Bo is
a radial one-electron operator. H„& is the total Hamil-
tonian of the free metal ion including all single-center
electrostatic and spin-orbit interactions. The molecular
electronic structure is best analyzed by partitioning the
ligand field term into two parts: the monopolar term
CoBo, and the higher terms CoB0

The low-lying ionic configurations of Ln+ are [5]
4f 6s (ground configuration), 4f+ '6s, and
4f '5d6s. Simple electrostatic calculations show that
the 4f '6s and 4f '5d6s configurations are stabi-
lized (see Tables I-VI) in the field of the X point charge
by 10000 cm ' and by 5000 cm ' relative to the 4f 6s
configuration. The Bo ligand field term is greater than
zero (thus, totally destabilizing) and serves to reorder
these configurations from their free-ion positions. In
LnX with Ln in the second half of the lanthanide series,

the Ln+ f 's and f s levels are predicted (see Table
VII) to occur at the lowest energy. This stabilization of
the f 's configuration relative to the f s
configuration originates from the difference in the Bo
term for the final metal-centered electron. The value of
the Bo term is significantly larger (that is, destabilizing)
for the compact 4f orbitals (( r ) '~ =0.3 A) than, for
example, the 6s orbital, where (r )' =3.4 A (see Ref.
[6]).

The second half of the Ln+(f s) configuration is best
described by the J,j atomic coupling scheme because of
the large spin-orbit interaction between the 4f "core"
electrons. The large spin-orbit interaction splits the f
configuration into the LfSfJf terms separated by about
4000 cm '. The 6s electron interacts weakly with the 4f
electrons, through the electrostatic exchange term in the
atomic Hamiltonian, to split the + 'LJ levels into

Jf +
2

and J Jf p
atomic states. The Slater-

Condon parameter that describes this splitting is the
two-electron exchange integral 63(4f, 6s) (see Table
VIII).

IV. MOLECULAR STRUCTURE

The second part of the ligand field Hamiltonian serves
to remove the 2J, +1 (the subscript a denotes atomic

TABLE II. The calculated energies (in cm ') of the HoX configurations below the ionization limit; g
is the total statistical weight of the configuration, AE is the energy range of the states included in the
configuration, and 5E is the density of the states per 1000 cm

Configuration

f 10S2

11

f"ds
f 11d

f"d
f 11p

f"ps
f 10dp

'Reference [27].

10000
0

11 500
15 800
23 000
25 500
34 000
39 000

HoBr

0
1400
5700

21 400
21 400
25 400
22 500
31 700

HoI

0
500

5500
20 200
20 900
24 600
22 600
31 600

1001
728

20 020
3640

45 045
2184

12012
72 072

55000
55 000
70 000
70 000
80 000
65 000
70 000
80000

18
13

286
52

563
34

172
900
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TABLE III. The calculated energies (in cm ') of the TmX configurations below the ionization limit;

g is the total statistical weight of the configuration, AE is the energy range of the states included in the
configuration, and 6E is the density of the states per 1000 cm

Configuration

y "s
I12 2

g 12ds

y13d

f"I
f"ps
y12d 2

I12d+

I14

'Reference [27].

Tm+ '

0
12 457
16 568
17 625
25 980
38 225
30 509
44 838
34 000

TmBr

0
1057
9400

21 800
24 500
25 300
27 500
36 100
45 400

TmI

0
1957

10 100
21 500
24 600
26 300
27 900
36 900
44 500

28
91

1820
140

84
1092
4095
5460

1

10000
33 000
55 000
20 000
15 000
40 000
60 000
60 000

0

2.8
2.6

39
7
5.6

27
68
91

TABLE IV. The calculated energies (in cm ') of the DyX+ configurations below the ionization lim-
it; g is the total statistical weight of the configuration, AE is the energy range of the states included in
the configuration, and 5E is the density of the states per 1000 cm

Configuration

10

'd
's

f's
y8d2

f 'ds
8 2

'Reference [27].

Dy2+ a

0
17 500
25 000
6O0OO

71 000
91 000

112000

DyBr+

0
10 300
13 600
47 100
50 000
72 400
89 200

DyI+

0
11 000
14 500
48 100
58 000
74 000
91 000

1001
20 020

4004
12 012

135 135
60 060

3003

50 000
60 000
50 000
65 000
80 000
80 000
4O 000

20
334

80
185

1690
750

75

TABLE V. The calculated energies (in cm') of the HoX+ configurations below the ionization limit; g
is the total statistical weight of the configuration, hE is the energy range of the states included in the
configuration, and 6E is the density of the states per 1000 cm

Configuration 2+ a HoBr+ HoI+

y 10~

y9d 2

f 'ds
y9 2

"d
y 10$

'Reference [27].

0
57 500
79 000
96 000

117000
18 100
21 800

0
44 600
64 600
77 400
94 200
10900
10400

0
45 600
66 000
79 000
96 000
11 600
11 300

364
6006

90 090
40 040

2002
10010

2002

50 OOO

60 000
60 000
75 000
35 000
70 000
55 000

7.3
100

1500
534

57
143
35

TABLE VI. The calculated energies (in cm ') of the TmX+ configurations below the ionization lim-

it; g is the total statistical weight of the configuration, AE is the energy range of the states included the
configuration, and 5E is the density of the states per 1000 cm

Configuration
13

y 12+

y 1 ld 2

pl ld

y 1 1 2

y12d
y12

'Reference [27].

2+ a

0
62 000
85 000

100000
115000
22 900
25 300

TmBr+

0
49 900
70 600
81 400
82 200
15 700
13 900

TmI+

0
50 100
72 000
83 000
94 000
16400
14 800

14
546

16 380
7280

364
910
182

10000
35 000
70 000
70 000
soooo
50 000
35 000

1.4
16

234
104

7.3
18
5.2
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TABLE VII. Stabilization energies (in cm ) for the second-
half lanthanide series LnX molecules and their singly charged
ions; r is the Ln-X distance in LnX3 (gas phase) and

y = r [Gd-X]/r [Gd F]-

TABLE IX. The parameters (in cm ') for the Hamiltonian
[Eq. (1)] for the ground f s superconfiguration.

DyBr+ Ho Br+ TmBr+ DyI+ HoI+ TmI

F
Cl
Br
I

2.053'
2.488'
2.641'
2.840'

1

1.22
1.3
1.4

X r[Gd-X] (A) y f s-
14 760 5460
12 100 4500
11 400 4200
10 500 3900

p-s f d-
—2000 9300
—1700 7600
—1500 7200
—1400 6500

Bz
B4
B6
(,0

2550
390
120

1900

2450
350
100

2170

2180
250

55
2300

2070
320
100

1900

2070
290

75
2170

1740
210
45

2300

'Reference [14].

TABLE VIII. The parameters (in cm ') for the Hamiltonian
[Eq. (1)] for the ground f s superconfiguration.

Bq
B4
B6

G3

DyBr

1173
75

9
1900

150

HoBr

1147
72

9
2170

150

TmBr

1077
64

8

2300
150

DyI

954
53
6

1900
150

HoI

922
50

5
2170

150

TmI

864
44

5

2300
150

quantum number) degeneracy of the atomic states. The
energy of a given MJ =0 level is determined by the

orientation of the f and d electrons relative to the nega-
tively charged ligand. The magnitude of the splitting of
the levels is largely determined by the magnitude of the
radial one-electron ligand field parameter 80. The effects
of the higher-order terms (Bo and Bo) in the point-charge
expansion are significantly smaller than those of the lead-
ing quadrupolar (Bo) term.

The ligand field parameters, and therefore the magni-
tude of the splittings of the free-ion levels, can be com-
puted by evaluating the radial integrals, using the
Hartree-Fock wave functions, for the 4f electron-density
distribution (Tables VIII and IX). These values can be
inserted directly into the effective molecular Hamiltonian
for the 4f 6s, 4f '6s, and 4f ' configurations,
along with the values of G3(4f, 6s) and g(4f ) obtained
from the corresponding atomic spectra [10]. The energy
levels up to 2000 cm ' calculated in this way, with no ad-
justable parameters, are shown in Tables X—XV. Eight
important configurations lie below the ionization limit
V;,„of each LnX and LnX+ molecule. The molecules
DyX, HoX, and TmX (X=Br,Br+, I, I+) have about
100000, 60000, and 10000 Q-components [Hund's case
(c)], respectively. In order to simplify calculations of the
molecular partition functions, we combined all Q-states
above 2000 cm ' and below 8000 cm ' and placed them
at energy 5000 cm, with statistical weight correspond-
ing to the total statistical weight of these states. Similar-
ly, all 0 states above 8000 cm ' and below 22000 cm
were placed at the energy 15000 cm ', all states above
22000 cm ' and below the V;,„(LnX) and 48000 cm
for LnX+ were placed at energy 35000 cm ', and all
states LnX+ above 48 000 cm ' and below the
V;,„(LnX+) were placed at energy 75000 cm '. [We
took the ionization potential V; „(LnX+ ) = V;,„(LnF+ ).]

TABLE X. The calculated term energies T," (in cm '), the
statistical weights g;, 0"-numbers, and configurational paren-
tage labels y; for the DyBr and DyI molecules.

T(i)
e

0
65

116
157
189
215
234
247
253
622
693
747
788
820
844
860
868
900

1062
1200
1312
1400
1465
1506
1527
5000

15 000
35 000

DyBr

2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

2100
16 600
80 000

8.5
7.5
6.5
5.5
4.5
3.5
2.5
1.5
0.5
7.5
6.5
5 ' 5
4.5
3.5
2.5
1.5
0.5
7.5
6.5
5.5
4.5
3.5
2.5
1.5
0.5

T( t')

e

0
52
93

126
152
173
189
200
205
621
677
721
754
781
800
817
820

1800
1932
5000

15 000
35 000

DyI

2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

2100
16 600
80 000

Q(l) y

8.5
7.5
6.5
5.5
4.5
3.5
2.5
1.5
0.5
7.5
6.5
5.5
4.5
3.5
2.5
1.5
0.5
7.5
6.5

In all these cases, the statistical weight of each combined
state was taken as equal to the total statistical weight of
all the combined states.

The vibrational frequencies and internuclear distances
associated with the f s, f 's, and f 'ds molecular
configurations are not expected to be very different near
the Ln X atomic-ion-in-molecule limit. Using the ex-
isting experimental data for the LnF and LnF+ molecules
(Table XVI), we estimated the spectroscopic constants of
the LnX and LnX molecules (Tables XVII and XVIII,
respectively).

Dissociation energies of the LnX and LnX+ molecules
were calculated by using the following simplified model
[11,12]. Since the LnX molecules with X=I,Br have

f s-type ground configurations, we are interested in the
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TABLE XI. The calculated term energies T,"(in cm '), the
statistical weights g;, 0"-numbers, and configurational paren-
tage labels y; for the HoBr and HoI molecules.

TABLE XIII. The calculated term energies T," (in cm '),
the statistical weights g;, and the 0,"-numbers for the DyBr+
and DyI+ molecular ions.

T(i)
e

HoBr

T(i)
e

HoI

T(i)
e

DyBr+

T(i)
e

DyI+

0
68

120
161
193
217
235
245
249

1400
1404
1414
1431
1456
1487
1528
1580
1649
1869
1874
1887
1910
1941
1983
5000

15 000
35 000

2
2
2
2
2
2
2
2
1

1

2
2
2
2
2
2
2
2
1

2
2
2
2
2

800
5070

43 000

8
7
6
5
4
3
2
1

0
0
1

2
3
4
5
6
7
8

0
1

2
3
4
5

0
53
95

128
154
174
188
196
199
500
503
511
525
545
571
604
646
699
969
973
983

1002
1027
1061
1106
1164
5000
15 00

35 000

2
2
2
2
2
2
2
2
1

1

2
2
2
2
2
2
2
2
1

2
2
2
2
2
2
2

800
5070

43 000

8
7
6
5

4
3
2
1

0
0
1

2
3
4
5

6
7
8
0
1

2
3
4
5

6
7

T(i)
e

TmBr

gi
T(i)

e

TmI

TABLE XII. The calculated term energies T,"(in crn '), the
statistical weights g;, Q"- numbers, and configurational paren-
tage labels y; for the TmBr and TmI molecules.

0
75

132
176
210
237
256
268
272

5000
15 000
35 000
75 000

2
2
2
2
2
2
2
2
1

120
5000

12 000
97 000

0
59

105
141
169
191
206
216
219

5000
15 000
35 000
75 000

2
2
2
2
2
2
2
2
1

120
5000

12 000
97 000

T(i)
e

0
9

26
51
85

129
187
266

5000
15 000
35 000
75 000

HoBr+

2
2
2
2
2
2
2
2

44
2100
5400
6500

0.5
1.5
2.5
3.5
4.5
5.5
6.5
7.5

T(i)
e

0
7

21
41
69

104
151
212

5000
15 000
35 000
75 000

HoI+

2
2
2
2
2
2
2
2

44
2100
5400
6500

0.5
1.5
2.5
3.5
4.5
5.5
6.5
7.5

TABLE XIV. The calculated term energies T," (in cm '),
the statistical weights g;, and the 0"-numbers for the HoBr+
and HoI+ molecular ions.

0
28

137
170
255
337
469
618
772

1057
1071
1115
1190
1302
1452
1644
5000

15 000
35 000

1

2
2
1

2
2
2
2
2
1

2
2
2
2
2

40
480

4300

0
24

111
170
235
271
405
495
651

1957
1971
5000

15 000
35 000

1

2
2
1

2
2
2
2
2
1

2
40

480
4300

T(i)
e

0
121
349
663

5000
15 000
35 000
75 000

TmBr

2
2
2
2
6

170
620

8800

0.5
1.5
2.5
3.5

T(i)
e

0
95

276
528

5000
15 000
35 000
75 000

TmI+

2
2
2
2
6

170
620

8800

0.5
1.5
2.5
3.5

TABLE XV. The calculated term energies T,"(in cm '), the
statistical weights g;, and the 0"-numbers for the TmBr+ and
TmI+ molecular ions.
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TABLE XVI. Molecular constants of LnF molecules (cm ').

LnF Ln+(f ~+'s)F Ln+(f ds)F Ln+(f s )F

BaF
LaF
CeF
EuF
GdF
TbF
DyF
HoF
YbF
LuF

R, (A)

2.159 27'

2.080"

2.007'

2.016'

AGii2

465 ~
3'

493.1

505.0'

501.9'

R, (A)

2.055'
2.046"

2.000

537.1'
543.8'

557.3

R, (A)

2.025'

1 965
1.960'
1.905'
1.940'

1.917'

AGin

570'

602. 1

611.i'
605. i=

615.3'

611.8'

'Reference [13].
Reference [28].

'Reference [31].
Reference [29].

'Reference [30].

dissociation energies for the following processes:

Ln+(f s)X ~Ln(f s )+X(p ) . (2)

Ln=Gd) [14]. Subsequently, one can scale the values of
the stabilization energies as follows (EL„~ denotes the
stabilization energy of the LnX molecule):

Do(LnX) Do(BaX)
7

Do(LnF) Do(BaF)
(3)

where values of Do(BaX) are taken from Ref. [13]. The
calculated dissociation energies Do are shown in Tables
XIX and XX.

Values of the (f s), (d-s ), (p-s), and -(f d) stabilization-
energies are roughly proportional to [R,"] '. Unfor-
tunately, the values of R, in the LnX molecules having
X—= I,Br are not available. Therefore, we assume that
these distances are equal to the average Ln-X distance re-
sulting from electronographic studies of LnX& (where

However, the DyF, HoF, and TmF molecules have the
Ln+(f 's 'F -type ground configuration. Values of
Do for the Ln+(f s)F molecules with Ln=Dy, Ho, Tm
can be obtained, by interpolation, from a plot of
Do[Ln+(f s)F ] versus X (for Ln =—Ba, Pr, Nd, Sm, Eu,
and Yb) because all these molecules have the f s ground
configuration. Subsequently, we can scale the values of
Do as follows:

EL„x(f s) R, (L-nF)

Es „(fs) R, (LnX)
(4)

EL~(d-s ) 1

E„„p(ds)-

EL„p(f d) =EL„p(f-s)-—ELgp(d-s) =9760 cm (6)

This value is close to the experimental value of the stabil-
ization energy for the LaF+ molecule, E „+(fd)-
=9300 cm '. Therefore, we assume in our calculations
that EL„p(f d)=E „~(f d-). Since 4f and-5d are inner

and so on.
The stabilization energy of the second half of LnF was

calculated in Ref. [15] as EL„p(d s)=5000 c-m ', while
the calculated (from the lowest states of configurations
f ' s and f s of Dy+ and DyF) value of
EL„p(f s)=14760 cm '-(the latter value was calculated
in Ref. [16] as 12400 cm '). Thus,

TABLE XVII. The spectroscopic constants of the rare-earth halide molecules in the ground elec-
tronic states; V;,„ is the ionization potential, and the other constants have their usual meaning.

Do (cm ')

co, (cm ')

, , ( ')

R, (A)
p (a.w.u. )

a, (10-' cm-')
ae(10 cm ')

DyBr

25 700
46 900

219
0.4
2.66

53.56
4.45
1.1

HoBr

25 400
47 600

219
0.4
2.64

53.83
4.49
1.1

TmBr

24 400
49 000

219
0.4
2.62

54.24
4.53
1.1

DyI

21 400
47 200

157
0.4
2.85

71.26
2.9
0.6

HoI

21 100
47 700

157
04
2.84

71.72
2.9
0.6

TmI

20 300
49 200

157
0.4
2.82

72.47
2.9
0.6
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TABLE XVIII. The spectroscopic constants of the rare-earth halide molecular ions in the ground
electronic states; V;,„ is the ionization potential, and the other constants have their usual meaning.

D (cm ')

co, (cm ')

co,x, (cm ')

R, (A)
p (a.w.u. )

8, (10 cm ')

a, (10 "cm ')

DyBr+

26 500
94 100

246
0.6
2.58

53.56
4.72
1.4

HoBr+

26 200
95 200

246
0.6
2.56

53.83
4.76
1.4

TmBr+

25 200
97 200

246
0.6
2.54

54.24
4.80
1.4

DyI+

22 000
94 100

176
0.35
2.77

71.26
3.07
0.76

HoI+

21 700
95 200

176
0.35
2.76

71.72
3.07
0.76

TmI+

20 900
97 200

176
0.35
2.74

72.47
3.07
0.76

orbitals, this assumption seems to be reasonable. Conse-
quently, one has EL„„(ds)=EL-„„(f-s ) EL„„(f—d). -

The obtained values of the stabilization energies for the
(f-s), (d-s), (p-s), and (f d) configu-rations of the LnX
molecules and singly charged molecular ions are given in
Table VII.

As said before, the lowest electronic configuration for
DyI, HoI, TmI, DyBr, HoBr, and TmBr molecules is
4f 6s. Using this configuration, the ligand field parame-
ters for the ground f s configuration were calculated (see
Table VIII), as well as the molecular electronic energies
and the statistical weights of all states with energies up to
2000 cm '. We assumed, when calculating the spectro-
scopic constants, that the equilibrium internuclear dis-
tance in the LnX molecules is close to the Ln-X distance
in the LnF3 molecules in gaseous phase [14]. In our cal-
culations, the following scaling law for the vibrational
constants co, was utilized:

ro, (LnX) co, (BaX)
co, (LnF) co, (BaF)

(7)

and

ro, (LnX+ )

co, (LnX)
co, (LaF+ )

co, (LaF)
(8)

R, (LnX+ ) R, (LaF+ )

R, ( LnX ) R, ( LaF )

where Ln =Dy, Ho, Trn and X:—I,Br; ro, (LaF) and
R, (LaF) are given in Ref. [13], co, (LaF ) and R, (LaF )

in Ref. [17],and co, (LnX) and R, (LnX) are given in Table
XVII.

Calculation of the spectroscopic constants of the LnX

(10)

where f, is the molecular force constant, and ZL„and
Zz are the charge numbers of Ln and X, respectively. In
the integer valence model, the differences between the
equilibrium internuclear distances for electronic
configurations are within 5%, so one can assume that

molecules in the excited electronic states is difficult.
However, taking the constants for the excited electronic
states as equal to those for the molecular ground states
introduces an inaccuracy in the partition functions that is
acceptable in the applications [18]. Therefore, we assume
in our calculations that the R dependences of the in-
tramolecular potentials U"~'(R) (see below) for the elec-
tronic states of a LnX molecule are close to each other.
The assumption that the spectroscopic constants of the
upper electronic molecular states can be approximated by
the corresponding constants for the molecular electronic
ground state can be analyzed by using the integer-valence
model [6]. The regularities in the vibrational frequencies
(see Table XVI) of the LnF molecules suggest that the
typical states of the lanthanide component (Ln+) of the
halide diatomic molecules in the gas phase do not differ
much from the Ln + component existing in the con-
densed phase. In the diatomic molecules, the 6s orbitals
are polarized into the region behind the Ln ion, exposing
the Ln ion (the charge on the X ligand is equal to le) to
an effective charge larger by +1 or +2 than it would be
in the "formal" ionic model of Ln+X (see Fig. 1). The
Ln+(f s) component "looks" to the X component like
a doubly ionized ion, while the Ln+( f 's ) component
"looks" like a triply ionized ion.

The vibrational spectroscopic constants can be given as
1/2

ZL„Zg
co fe e R e

X

F
C1
Br
I

Ba

47 600'
35 700'
29 300'
24 400'

1

0.75
0.616
0.513

Dy

41800b
31 400
25 700
21 400

Ho

41 200
30 900
25 400
21 100

Tm

39600b
29 700
24 400
20 300

'Reference [13].
Corresponds to the process Ln+ (f s )F ~Ln(f s ') +F(p ').

TABLE XIX. Dissociation energies Do[LnX] (in cm ');
A, = Do [BaX]/Do [BaF].

X+

Br+
I+

Dy

26 500

22 000

Ho

26 200

21 700

Tm

25 200

20 900

TABLE XX. Dissociation energies Do[LnX+] (in cm ').
Do[LnX+]=Do[LnX]+ V;,„[Ln]—V;,„[LnX]; V;,„ is the ion-
ization potential.
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[+2e] [-1ej rotational spectroscopic constants B, of the upper elec-
tronic states of the molecules considered here are the
same as the rotational constants of the electronic ground
states of the molecules.

Ln (f )

(o)
Ln (f s)

( b. )

V. PRESSURE IONIZATION
AND PRKSSURK DISSOCIATION

FICx. 1. Polarization of the 6s orbitals of the Ln+ ion in the
LnX rnolecules: (a) no 6s orbitals, (b) one 6s orbital, (c) two 6s
orbitals.

Thus, the ratio of co, for the f 's configuration to co,
for the f s configuration is close to

~ (f 's') R (f s)
M (fNs) R (f N is2)

At high temperatures, one can assume [19] that

Q„.b =kT Ihcco, , Q„,=kT/hcB, ,

(12)

(13)

Q„;b[Ln+(f 's )X ] =(1.22)
Q„;b[Ln+(f s)X ]

(14)

Thus, one introduces less than about 22% inaccuracy in
the vibrational partition functions when assuming that
the vibrational spectroscopic constants m,"of the upper
electronic states of the molecules considered here are the
same as the vibrational constants of the electronic ground
states of the molecules.

As indicated above, the equilibrium internuclear dis-
tances R,"for different electronic configurations differ by
about 5%, and the rotational spectroscopic constants B,
differ by about 10%. Consequently, the ratio of the rota-
tional partition functions for the Ln+(f 's )X and
Ln+ (f s )X configurations is

Q [Ln+(f N —1 2)X—
]

Q„,[Ln+(f s )X ]

(fNs)

(fN —1 2)

R2(f N —ls2)
=0.9,

R, (f s) (15)

because

1B-
R e

(16)

Thus, one introduces less than about a I0% inaccuracy in
the rotational partition functions when assuming that the

where Q„;b and Q„, are vibrational and rotational molec-
ular partition functions, respectively, k is the Boltzmann
constant, h is Planck's constant, and c is the speed of
light. Using the above, one can estimate the high-
temperature (say, T=7000 K) ratio of the vibrational
partition functions for the Ln+(f 's )X and
Ln+(f s)X configurations as

E~ =Ep 5c~ ) (17)

where Ac.„represents the reduction of the ionization en-
ergy, and i and n denote energy levels (i =1, for the
ground state).

Different models of the reduction of the ionization en-
ergy are discussed in Ref. [20]. We chose for our calcula-
tions the model of Ecker and Kroll [21] because this
model seems to be the most consistent. Using a combina-
tion of statistical and thermodynamic approaches, Ecker

The potential distribution in and around a particle im-
mersed in plasma is influenced by its own bound elec-
trons, free electrons, and free ions, and by bound elec-
trons of other heavy particles. Any particle exposed to
these interactions requires less energy to be ionized (the
pressure ionization) than the energy needed for ionization
when the particle is in a vacuum. Similar remarks can be
made about the inAuence of the plasma interactions on
the dissociation energies (the pressure dissociation) of
molecules and molecular ions.

The pressure ionization and pressure dissociation in
dense gases and plasmas are a very complex problem. All
existing theories do not include external field and bound-
ary effects, and they assume that the gas contains only
"free" particles (free electrons, ions, and neutral ions) and
"bound" particles (the electrons and nuclei in the heavy
particles). Consequently, the interactions between parti-
cles are divided into three categories: (1) "free-free" in-
teractions neglecting strong correlations and quantum-
mechanical effects, (2) "free-bound" interactions (which
are also responsible for the broadening and shift of the
energy levels), and (3) "bound-bound" interactions. Even
though such a classification includes most of the plasma
particles, it is incomplete and ambiguous, because there
can be a group of particles that are neither completely
free nor completely bound, and that can be treated in
terms of weak or strong pair correlations. (However, a
satisfactory quantum-mechanical theory for the kinetics
of particles with higher-order correlations is not avail-
able. ) In addition, the electrons can be "free" for one
phenomenon (for example, pressure) but not necessarily
so for another (for example, conductivity). Adding to the
difFiculty in the description of the electric potentials in
the vicinity of interacting particles, it is obvious that the
concepts of the pressure ionization and the pressure dis-
sociation have some uncertainty in their definitions and
their numerical values.

If we denote the series limit i ~ oo (equal to the ioniza-
tion energy of the particle under consideration) by
Ep= V;,„, then the highest energy level existing in the
particle (as a result of the reduction of the ionization en-
ergy) will have the energy e„(with respect to the particle
ground state) equal to
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(2+ e2)1/2
Gk =2.2 ~ 1/3

( k T )
I /2 (20)

and the critical density N„ is
3

3 kT
Cf

e
(21)

The dependence of the reduction energy hc.„on plasma
temperature T and density X, is given in Fig. 2. As can
be seen from there, the pressure ionization has little im-
pact on the partition functions as long as the electron
density in the gas is not too high.

As discussed above, any molecule exposed to plasma
interactions requires less energy to be dissociated than is
needed for dissociation of the molecule in a vacuum.
However, the reduction of the dissociation energy in the
plasmas considered is negligible [22].

and Kroll developed a method to estimate the reduction
of the ionization energy by the microfields of plasma
charges. They employed the semiclassical approximation
and formulated a generalized Saha equation as a function
of the Helmholtz free energy and, consequently, as a
function of the chemical potentials of the plasma corn-
ponents. The electrostatic contribution to the plasma
chemical potentials was then expressed in terms of the
average electrostatic micropotentials (obtained from a
solution of the Poisson equation) at a given plasma parti-
cle. The final expression of the Ecker and Kroll model
for the reduction of the ionization energy of a particle in
plasma in local thermal equilibrium is given as

e /pD when N, X„,
2Gke /d, when N, )X,„'

where X is the electron density,
' 1/3

3
4m.X,

VI. PARTITION FUNCTIONS

The total energy e, of an atom is

&a =&tr+&e)+~s ~ (22)

where

(2mmkT) V
Ztr

h
(24)

m

Z,t= g g, exp( —e;/kT), (25)

where m is the mass of the atom, V is the volume occu-
pied by the gas, g; is the statistical weight of atomic level
i of energy E; (g; =2J, +1, where J, is the quantum num-
ber of the total electronic angular momentum of the atom
in the ith level), and where the sum is taken over all (i )

electronic levels existing in the atom. One should men-
tion that if some levels, other than those given in Ref. [5]
were added in the sum (25), then the partition function
Z ] would be somewhat greater than that obtained in the
present work.

The atomic (ionic) nuclear-spin partition function Z,' '

for the 1th atomic (ionic) isotope is

Z' '=2I' '+1 (26)

where I,'" is the spin quantum number of the atomic nu-
cleus of the isotope. (The natural abundance of the Ln
and X isotopes is given in Table XXI.)

where c„and c.,~
are translational and electronic energies,

respectively, and c,, is the nuclear-spin energy. Thus, the
total atomic partition function Z can be taken as the
product of the atomic translational partition function
Z„, the atomic electronic partition function Z,&, and the
nuclear-spin partition function Z„

(23)

lO'

io' =

10'9 cm

TABLE XXI. Atomic constants. Z is the atomic number, 3&
is the mass number of the lth isotope, M& is the isotope atomic
mass, I,'" is the corresponding nuclear spin, and a& is the natural
abundance (fraction) of the Ith isotope.

C

CI lO-1

lo3000
I

4000

10"cm '

Ne= 10 cm

I

5000
I

6000 7000

Atom

Dy

Ho
Tm

Z

66
66
66
66
66
67
69

AI

160
161
162
163
164
165
169

M

159.925 193
160.926 930
161.926 795
162.928 728
163.929 171
164.930 319
168.934 212

0.023
0.189
0.255
0.249
0.282
1.000
1.000

I( I)
S

0
5
2

0
5
2

0
7
2
1

2

Temperature (K)

FIG. 2. Typical reduction, resulting from the presence of
charged particles in the plasma, of the ionization energy of the
LnX molecules; N, is the electron density.

Br 35
35

53

79
81

127

78.918 336
80.916289

126.904 473

0.507
0.493

3
2
3
2

5
2
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The expressions for translational, electronic, and
nuclear-spin partition functions of atomic ions are similar
to those given by Eqs. (24), (25), and (26), respectively;
the ionic partition functions will be denoted hereafter by
the superscript + (Z,+, , Z,+, , and Z,+ =Z, ).

Plots of the electronic partition functions Z, 1
for the

rare-earth halide atoms and ions can be found in Fig. 3.
The temperature range for these functions (and for the
other partition functions of this work) is from 3000 to
7000 K.

The total energy of a diatomic molecule is assumed to
be

I5Z0

01K

I
/ . (i)

1 ~i, v=0, J=Q,

O

0
O

Em tr+ ~el+ ~vib, rot+ ~s (27)

Qt. i =«.Q.iQ. b, -tQ. (28)

where c.„and c,&
are translational and electronic energiesgies,

respectively, c„b „t is the vibrational-rotational energy of
the molecule in the given electronic state, and c,, is the
nuclear-spin energy. Therefore, the total molecular parti-
tion function Q„, can be written as

0
0

0

Y ~i=1, v=Q, J=Q,

l

I

(i=1)
e

O

CJ
QJ

100—

I
C0
U
C

LL

0

0
CL

60

40

20

0— Tm+

where &Q,„, Q,~, Q„;b „„and Q, are the molecular transla-
tional, electronic, vibrational-rotational, and nuclear-spin
partition functions, respectively.

The molecular translational partition functions Q„can
be obtained from an expression similar to that given in
Eq. (24), with m being the mass of the molecule under
consideration.

The lowest level of the internal (electronic + vibration-
al + rotational) energy of a diatomic molecule is denoted
by i = 1 (the electronic ground state), u =0 (the vibration-
al ground state), and J=Q"' (the rotational ground
state), where u is the vibrational quantum number and J
is the molecular rotational quantum number
(J=Q, 0+1, II+2, . . .). The level (i= 1, u =0, and

(1)J=Q ) of the molecular energy is denoted in Fig. 4 as
the level 0'; it is convenient to use the bottom
of thehe i —1, J=A intramolecular potential curve

FIG. 4. Some intramolecular potentials U" '(R) for the
ground (i = 1) and for an excited {i) electronic state of a diatom-
ic molecule. R is the internuclear distance.

&(i, v, J) T(i)+G (i, u) +F(i, v, J)
e 0 0 ~

where

(29)

U(l =1,J=Q )(R) as the reference level (the level 0' in
Fig. 4) in consideration of the molecular energy.

The lowest curve, representing the intramolecular po-
tential in the molecules in the &th electronic st t th

(i)curve with J=O ' (see Fig. 4). As the rotational energy
of the molecule increases, the well depth of the potential
becomes shallower, which rellects the increasing (with J)
contribution of the centrifugal energy. This contribution
causes the dissociation energy D"' ' of the molecule in a
given i, U, Jth electronic-vibrational-rotational state to be
a reciprocal function of the rotational quantum number
J. (The dissociation energies of the rare-earth halide mol-
ecules and their ions in the ground electronic-
vibrational-rotational states are given in Tables XVII and
XVIII, respectively. ) One can see from Fig. 4 that a mol-
ecule in the ith electronic state and in the (u, J)th
vibrational-rotational state is stable if its vibrational-
rotational energy level G""'+F""' ' is below the corre-
sponding dissociation limit (the level 0' in Fi . 4). If
G(i, v)+F(i, v, J) becomes greater than d ', the molecule
disso ciates.

A particular (i, u, J)th energy level (the thick horizontal
line denoted by i, u, J in Fig. 4) of a molecule can be given
as

3000
I

4000
I

5000
I

6000 7000 G G(i =1, u =0)
0

F(i =1, v =0, J=Q )
0 (30)

Temper ature (K)

FIG. 3. Electronic partition functions for Ln and Ln+ atoms
and ions.

where all quantities are in cm ' T" is this e energy
difference (see Fig. 4) between the minima of the in-
tramolecular potential curves of the (i,J=0") and the
i =1, J=Q'") molecular states; G"" is the vibrational



47 PARTITION FUNCTIONS OF RARE-EARTH HALIDE PLASMAS 1295

energy, measured from the bottom of the in
t' 1 fthe, o e molecule in the ith elec

uth ibrational state F"' ' '
e egyos a e; ' ' is the rotatio

tational state.
in e st electronic, uth vibrational d J ha, an t ro-

The vibrational and rotational ener lev
given, respectively, as

'
na energy levels can be

G(i, V) (i)=co, (u+ —) —(u x'"(u+ —,') +e e (31

F(l) v, J)—g (l, v) [J(J+ 1)—(0") ] D,"J—(J+ 1) +

two parts,

U(' )(R)=U(')(R)+U(' )(R), (37)

where U" is the intramolecular potential curve for th
molecule in the ground (J=Q"

Ass
rotational level.

ssuming that the Morse rotatin og osc to s a ccu
e o t e rotational-vibrational motion of the d'-

atomic molecules consid d h
no e

Morse potential can be
i ere ere, the three--parameter

can e assumed for the term U "(R) '

q. (37),
cane, in

where

g(i, u) —g(i) ~(i)(u+ (
)2

Taking the ab
'

g above into account, the int
(1 oM - o 1-

f
J( ') ( ', J)

m m m

Q,„(=g g g p(i, v, J)
i=i J=~() V =O

X exp [
—hc [ T,"+G""+F"'

—G() —F() ]/kT],

(32)

(33)

(38)

where

,
( )

A' J(J+1)—(0") ]
2pR

7 (39)

f71 iPl2p-
al ) +Pl2

ii'( '
)

where D" gyis the dissociation ener ref
inimum, o t e oscillator with J=Q" R"

the equilibrium bond len
is

n ength of the oscillator and P" '

e orse constant.
is

Neglecting the higher-order terms th e second (centri-

given as
g par of the intramolecular potent' 1 (3o en ia 7) can be

(34)

where p(i, u, J) is the statistical wei ht oeig of the molecule ex-

el,
e I,, u, e ectronic-vibrational- t te iu ' ' -roaiona lev-

p(i, v, J)=g;(2J+1),
where

»f n"'=0
gi= 2 otherwise . (36)

It should bee mentioned that, because of the lar

is quite insensitive in t

lowest levels, one has J(J+ 1))) 0"
e ectronic levels taken into con-The number i of el

sideration in the sum (34) is limiis imited to the number of lev-
e s existing in the particular particle. As d's iscussed ear-

m er may depend on the reduction of the
ticle ionization energy.

e par-

The maximum rotatiational quantum number (J") f h
molecule in the ith elece ectronic state can be calculated from
t e intramolecular potential f
quantum number J"for a iv

curves or the state. The

ed b th
er or a given electronic state is limit-

e y the value of the molecular dissociati
e; is issociation ener de en

~ ~

gy see e ow) of the molecular rotation; that
is, it depends on the rotational uanturn

The effec
'

ective intramolecular potential U" ' of a m
cule in the ith electronic j.evel cronic eve can be given as a sum of

is the reduced mass of the molecule.

tained from a solution of the Schrodin er e ua
the Ifective potential (37)

'
.

' s.
(32) have been verified for a lar e nu
molecules

ri e or a large number of diatomic
es, one can use the potential

'
n o t e potential curves for the ro

vibrational motion f th
'

n o emo ecules.
e rotational-

The maximum vi
'

rational quantum number
the molecule in thein e sth electronic level and the Jth rota-
tional level can be obtained from the

'

tential U" '(R
rom t e intramolecular po-

) for the level [see Eq. (37)].

2000—

C5
C
.o ~ooo
O
C

C0

0
CL

0.0—

3000
I

4000
I

5000

Hol+
TrnI+

I

6000

Dyl+

7000

Temper atur e (K)

FIG. 5. Electronic apartition functions for LnI and LnI+
ecules and molecular ions.

an n mol-
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2000—
C5

0
U
C 1000—

C0

0—0

3000
I

4000
I

5000

HoBr+

TmBr

TmBr+

I

6000 7000

C0
U
C
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0
CL
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10e

107
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4000 5000
I
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DyBr

7000
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FIG. 6. EElectronic partition functionion unctions for LnBr and LnBr

Teemper ature (K)
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(41)
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where I,'" and I' ' are spin quantum
1 1 1 i. (Th

T bl XXI

(43)
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6Q,„,=2 X 1.1 X l. 22 =2. 7 [ln(2. 7) = 1] or 6Q;„,=0.5

XO. 9 X 0.78 =0.35 [ln(0. 35)= —1]. One of the most im-
portant and most frequently evaluated thermodynamic
functions of gases in equilibrium is the gas free energy,
which can be given as F= —R T In(6Q„, ), where R is the
gas constant. The inaccuracy of calculating the function
Q„, is associated with the inaccuracy of calculating Q;„,.
Thus, 5F=5F;„,. Since F

~
) ~F;„,~, the relative error of

calculating the free energy F in the gases considered here
is close to the ratio

~gF
~

5F,„, ~ 1n(5Q;„, )

ln(Q, „,) 22. 8
(45)

2

UD-
P'D

1/2
4m%,

kT
(46)

where e is the elementary charge and k is the Boltzmann
constant.

As said before, a plasma containing singly charged par-
ticles will not be a "coupled" plasma if UD «kT, that is,
if

One should add that the rare-earth atoms and the
rare-earth halide molecules considered in this work have
relatively low ionization energies (about 6 eV). There-
fore, the degree of ionization of the considered gases can
become significant, depending on the gas density, even at
temperatures below 10000 K. This can be seen when
studying ionization of the Dy atoms and Dyar molecules,
which have the lowest (of all the particles considered
here) ionization energies: 47900 cm ' and 46900 cm
respectively. Assuming that gas particle density No is
2.7X 10' cm, the degree of ionization x of the Dy gas
in thermal (Saha) equilibrium is about 0.1 (at T=7000 K)
and 0.6 (at T= 10000 K). The corresponding values of x
in the DyBr gas are 0.06 and 0.4, respectively. (One
should remember that x is proportional to Xo '

whereas the electron density N, is proportional to Xo
Thus, an increase of the gas density X~ by an order of
magnitude causes an increase of the electron density only
by a factor of 3.) In general, a gas with a degree of ion-
ization higher than about 0.1 should be considered a
highly ionized gas, that is, a gas in which the presence of
charged particles cannot be ignored. Such highly ionized
gas (plasma) should be treated, during calculations of the
gas thermodynamic functions, as a mixture of neutral and
charged particles. Also, the high density of electrons in
the gas causes the plasma properties to be dominated not
by the binary collisions but by the collective interactions
of the electric charges. Properties of such "coupled"
plasma differ substantially from those described by the
thermodynamic or kinetic models of the collision-
dominated plasmas. The transition from the collisional
plasma to the "coupled" plasma occurs when the poten-
tial energy UD of the interaction between two plasma
charges separated by a distance close to the Debye radius
rz becomes close to, or greater than, the mean thermal
energy 3kT/2 of the charges. The energy UD can be
given as

where N, and No are given in cm, and kT and V; „(the
first ionization potential of the neutral particles) in eV,
and where q„and q, are partition functions of the neutral
particles and their singly charged ions, respectively.
Combining requirement (47) and Eq. (48), one can say
that partially ionized plasma is not "coupled" if the parti-
cle density in the plasma at temperature T is

No «10 (kT) ~ exp(V;, „/kT)(q„/2q;) . (49)

The value of the right-hand side of relationship (49) in
the Dy gas is about 6X10' cm (at T=7000 K) and
4X10' cm (at T=10000 K). In the case of the DyBr
gas, these values are 6.5X10' cm (at T=7000 K) and
5 X 10' cm (at T=10000 K). We assumed in our cal-
culations that, in the Dy gas, q„/q, =1, and in the DyBr
gas, q„/q;=7. [The corresponding values of the right-
hand side of the relationship (49) are somewhat higher in
the case of the other gases considered in this work. ]

Summarizing the above discussion, one can say that
the present approach is valid in the intended applications
in the study of typical rare-earth light sources. In high-
density, highly ionized rare-earth halide plasmas, the
present approach may lead to inaccurate values of the
partition functions. This results from the fact that such
plasmas should be treated as nonideal plasmas (dominat-
ed by many-body interactions), in which the assumptions
of the ideal-gas canonical and grand canonical distribu-
tions are unjustified. In addition, in highly ionized plas-
mas, the contribution of the scattering state to the total
partition function becomes important [23]. Also, in
dense plasma, some mechanisms other than those men-
tioned here should be included in calculations of thermo-
dynamic properties of the plasma [24—26].

N, «, or N, «10 (kT)(kT) i9 (47)
4~e

where N, is given in cm and kT in eV.
The importance of the Debye radius in the above dis-

cussion results from the fact that in most plasmas the
number of charged particles in the Debye sphere centered
around a charge is sufficient for an effective screening of
the Coulomb interaction of the charge with another
charge at a distance not smaller than the Debye radius.
In such a case, the interaction between the two charges is
through the Debye potential, which is of much shorter
range than the Coulomb potential. Consequently, the in-
teraction of the two charges at the distances r ~ ra can be
treated as a binary collision (if UD «kT), and the equi-
librium properties of the plasma can be obtained from
thermodynamic or kinetic models of the ideal gas. If the
density of plasma electrons is high, then, according to re-
lationship (46), the potential energy UD of the two
charges can become comparable to, or greater than, the
mean thermal energy of the charges. In such a case, the
requirement (47) is not fulfilled —the plasma is "coupled"
and it cannot be treated within the framework of the sta-
tistical mechanics of ideal gases.

The density of electrons in partially ionized and electri-
cally neutral gas in Saha equilibrium is

N, =10"No~ (kT) exp( —V;,„/2kT)(2q;/q„)', (48)



1298 R. HOLBROOK, L. A. KALEDIN, AND J. A. KUNC 47

ACKNOWLEDGMENTS

This work was supported by the National Science
Foundation through Grant No. CHE91-20339 for the
Chemistry Department of the. Massachusetts Institute of

Technology, through a grant for the Institute for
Theoretical Atomic and Molecular Physics at Harvard
University and Smithsonian Astrophysical Observatory,
and through ZRIF Grant No. 22-1514-9445. L.A.K.
thanks the National Academies of Science of the USSR
and of the United States for 6nancial support.

*Present address: Department of Chemistry, Emory Uni-
versity, Atlanta, Georgia 30322.

fPresent address: Department of Aerospace Engineering
and Department of Physics, University of Southern Cali-
fornia, Los Angeles, California 90089-1191.

[1]J. A. Kunc and W. H. Soon, Phys. Rev. A 40, 5822 (1989).
[2] W. H. Soon and J. A. Kunc, Phys. Rev. A 43, 723 (1991).
[3] D. R. Bates, Adv. At. Mol. Opt. Phys. 27, 1 (1991).
[4] H. R. Griem, Plasma Spectroscopy (McGraw-Hill, New

York, 1964).
[5] W. C. Martin, R. Zalubas, and L. Hagan, Atomic Energy

I.euels: The Rare Earth Elements, Natl. Bur. Stand. (U.S.)
Circ. No. 60 (U.S. GPO, Washington, DC, 1978).

[6] R. W. Field, Ber. Bunsenges. Phys. Chem. 86, 771 (1982).
[7] S. F. Rice, H. Martin, and R. W. Field, J. Chem. Phys. 82,

1(1985).
'

[8] L. A. Kaledin, J. G. Block, M. McCarthy, and R. W.
Field, in Proceedings of the 47th International Symposium
on Molecular Spectroscopy, edited by T. A. Miller (The
Ohio State University, Columbus, 1992).

[9] L. A. Kaledin, C. Linton, B. Simard, T. E. Clarke, K.
Beyea, and R. W. Field, in Proceedings of the 47th Inter
national Symposium on Molecular Spectroscopy (Ref. [8]).

[10]Z. B. Goldschmidt, in Handbook of the Physics and Chem

istry of Rare Earths, edited by K. A. Gschneidner and L.
Eyring (North-Holland, Amsterdam, 1978), p. 1.

[11]L. L. Ames, P. N. Walsh, and D. White, J. Phys. Chem.
71, 2707 (1967).

[12] S. Smoes, P. Coppens, C. Bergman, and J. Drowart, Trans.
Faraday Soc. 65, 682 (1968).

[13]K. P. Huber and G. Herzberg, Molecular Spectra and
Molecular Structure IV: Constants of Diatomic Molecules
(Van Nostrand Reinhold, New York, 1979).

[14]E. Z. Zasorin, Russ. J. Phys. Chem. 62, 883 (1988).
[15]L. A. Kaledin, E. J. Hill, and R. W. Field, in Proceedings

of the 46th International Symposium on Molecular Spec
troscopy, edited by N. K. Rao {The Ohio State University,
Columbus, 1991).

[16] I. S. Gotkis, J. Phys. Chem. 95, 6086 (1991).
[17]E. A. Shenyavskaya and L. V. Gurvich, J. Mol. Spectrosc.

81, 152 (1980).
[18]L. V. Gurvich, I. V. Veyts, and C. B. Alcock, Thermo

dynamic Properties of Indiuidual Substances (Hemisphere,
New York, 1989)~

[19]L. D. Landau and E. M. Lifshitz, Statistical Physics (Per-
gamon, Oxford, 1978).

[20] J. A. Kunc and W. H. Soon, Astrophys. J. 396, 364 (1992).
[21] G. Ecker and W. Kroll, Phys. Fluids 6, 62 (1963).
[22] J. A. Kunc, Phys. Rev. A 45, 7851 (1992).
[23] F. J. Rogers, Astrophys. J. 310, 723 (1986).
[24] G. B. Zimmerman and R. M. More, J. Quant. Spectrosc.

Radiat. Transfer 23, 517 {1980).
[25] W. Dappen, L. Anderson, and D. Mihalas, Astrophys. J.

319, 195 (1987).
[26] D. G. Hummer and D. Mihalas, Astrophys. J. 331, 794

(1988).
[27] L. Brewer, J. Opt. Soc. Am. 61, 1666 (1971).
[28] R. M. Clements and R. F. Barrow, J. Mol. Spectrosc. 107,

119 (1984).
[29] L. V. Gurvich, Yu. N. Dmitriev, L. A. Kaledin, A. I. Ko-

byliansky, A. N. Kulikov, and E. A. Shenyavskaya, Bull.
Acad. Sci. USSR (Phys. Ser.) 53, 75 (1989).

[30] D. J. Lumley and R. F. Barrow, J. Mol. Spectrosc. 69, 494
(1978)~

[31]L. A. Kaledin, C. Linton, T. E. Clark, and R. W. Field, J.
Mol. Spectrosc. 154, 417 (1992).


