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Stopping power of extended cluster and ion charge distributions
in an arbitrarily degenerate electron fluid
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The stopping power of an extended charge distribution at any velocity by a free-electron gas is calcu-
lated in the random-phase approximation at any degeneracy. Asymptotic expressions are given in the
low- and high-velocity range for any charge distribution with spherical symmetry. We pay attention to
the determination of the critical distances of pointlike behavior for an extended charge and uncorrelated
behavior for two separated charges. The particular cases of randomly orientated dicluster and atomic
ion with extended charges distribution are given particular attention.

PACS number(s): 52.25.Tx, 34.50.8w, 36.40.+d

I. INTRODUCTION

In close connection with beam-target interaction prob-
lems encountered in inertial confinement fusion (ICF)
[1,2], it is useful to evaluate the stopping power of projec-
tile ions in a homogeneous and dense electron Quid at any
temperature. Considering some pointlike ions, Maynard
and Deutsch [3] already completed this task. Recently,
clusters of heavy ion beams have been proposed [4] in-
stead of atomic ions. It then appears that correlations
within ions in cluster produce a non-negligible influence
upon their stopping power. In the degenerate case, a di-
mensionless quantity quantifying coupling is

1/2
1 0!r~

(1)
Vo 1 IaIVI; m k~TF7TQFa p

with a~, V~, and TI; denoting Fermi wave number, veloc-
ity, and temperature, respectively. ao, Vo, and I~ refer
to the Bohr radius, velocity, and energy.
r, =(—3m%, )

' ao ' in terms of the free-electron density
N„while a = (9m /4) ' . At high temperature
(T))Tz) the random-phase approximation (RPA) is val-
id when the kinetic energy of the gas is much larger than
its potential energy, thus we have ( T, = T/TF )

3K «1,
2T, k~ TR„

(2)

in terms of R„=(43rrX, )
'~ an—d of the classical plasma

parameter I, . At any degeneracy, RPA is valid when [2]
2

1,1+T.

So that the potential energy of the gas remains much
smaller than its kinetic energy. We recall in Fig. 1 the
validity domain of the temperature-dependent RPA.

We now have to mention some additional inherent lim-
itations to this work. They are related to the interaction
between cluster and plasma.

First, we will neglect Barkas e8'ect. It has been shown
[5] that this effect appears when the projectile is too

charged so that its field cannot be treated as a weak per-
turbation in plasma. The charge must remain lower than
the number of electrons contained in a sphere with radius
plasma screening length.

Second, we shall neglect the recoil energy [6,7] of the
cluster in order to assume a straight-line trajectory. So
its kinetic energy must remain greater than the average
kinetic energy of the electrons in plasma. Assuming a
cluster with velocity V and mass M, this reads as

So, the velocity V must fulfill V ))+I, /M V,h. Since
the considered cluster will at least contain one proton,
the ratio Qm, /M should remain smaller than —,', . We
are then allowed to investigate some low-velocity e6'ects
(V(( V,h) as long as V fulfills the above condition. In
the case of a degenerate plasma, the same analysis still
holds by considering the Fermi velocity instead of V,„.

The present paper is structured as follows.
(1) We first evaluate the stopping power by the uni-
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FIG. 1. Domain of validity for the temperature-dependent
RPA corresponds to regions 1, 2, 3, and 4. The long-dashed line
pertains to T = TF while the short-dashed line to I,= 1.
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form free-electron gas of an extended charge within the
dielectric formalism.

(2) We then briefly review the RPA dielectric formal-
ism and make use of analytical properties for the dielec-
tric function to exhibit at any temperature key quantities
such as the critical distance of pointlike behavior for an
extended charge or the critical distance of separated be-
havior for two charges. Asymptotic analytic expressions
are worked out in the low- and high-velocity range at any
temperature for an extended charge with spherical sym-
metry.

(3) Stopping calculations are detailed in Sec. III for a
dicluster randomly oriented and in Sec. IV for an ion
with an extended charge distribution.

II. STOPPING POWER OF AN EXTENDED
CHARGE DISTRIBUTION

One recovers the stopping power of a pointlike charge
by setting p(r) =Ze5(r).

In the particular case where p(r) is spherically sym-
metric, we can integrate (6) over the azimuthal angle, so
we get

dE 1=0J u du J z dz Im ~p(2q~z)~
dX 0 0 e(z, u)

with

e X,
0,=

4~@0m, V

where the usual dimensionless variables z =k/2qz and
u =co/kVF have been introduced. %'e use the dielectric
function e(k, co) evaluated in the RPA at any degeneracy
[9,10].

A. General formalism

For a pointlike charge Z at velocity V entering an elec-
tron gas, the energy loss by unit path length is given in
the dielectric formalism by [8]

—1

e(k, k V)
(4)

Then the induced field E(r, t) is

In order to study extensively the eA'ects of the correla-
tions upon the stopping power, we consider an extended
charge p(r) instead of a pointlike charge Ze5(r).

Let p(r, t) be a charge distribution moving at velocity
V in the electron gas; we can write p(r, t) as
p(r, t)= f d u p(u)5(r —u Vt), p(u) bein—g the distribu-
tion at rest.

The Fourier transform p(k, co) is given by

p(k, co)= Jd u p(u)e'"'"5(co —kV) .

Assuming p(r, t) is a small perturbation for the medi-
um, the Fourier transform of the induced field in the
medium is

E(k, co) = 47ri-. k p(k, co)

B. e(k, co) behavior

with V(k)=e /(eok ), Fourier transform of the
Coulomb potential, and y (k, co) linear response of a
free-electron gas,

d q n (q+k) n(q)—
[2']3 (fico+i') (e +„—e —

)

where g is a small positive quantity, e~ =R q /2m„and
n (q) is the Fermi-Dirac distribution. Using dimension-
less variables z, u previously introduced, we write

2

y (k, co) = — G (z, u),

G(z, u) =f, (z, u)+if 2(z, u),
T, 1+ exp. [(y'—p )/T, ]

ln
Sz 1+ exp[(y' —p+ )/T, ]

fz(z, u)=

with the additional dimensionless parameters

T, = T/TF, y'=p/c ~=a'T„p+=u+z,

The dielectric function is introduced within the frame-
work of linear-response theory as

e(k, co)=1—V(k)g (k, co)

where u is the chemical potential, c F the Fermi energy,
and a' the degree of degeneracy. f, (z, u ) is computed
through the Kramers-Kronig relation

E( )
—1 d3 ( )

d3k2ik exp[ik (r —u Vt)]-
kz e(k k.V)

The force dF acting on the charge p(x)d x located at
x+Vt is

fz(z, t)
f, (z, u)= —P J dt .

t —u

dE
dx

k.V
(2m)' k'

where p(k) is the Fourier transform of p(r) and co =k V.

dF=p(x)E(x+Vt, t)d x,
and the energy loss of the total distribution is obtained by
summing the quantities d F.V. Taking into account
properties of the dielectric function we get ( T ) [ e+ ( e2+ 2T2)1/2]1/21

0 e e (12)

Gouedard [10] showed that at any temperature,
/Io(T, ) VF represents the average electron velocity; when
T, =0, Ao( T, ) = 1 and when T, ))1, A 0( T, ) VF = Vth,

f, and fz are essentially significant on a range in u (or z)
measuredby Ao(T, ) with
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f, (z, u) &0 for u ) A o(T, ),
f2(z, u)=0 as soon as lz —ul) A o(T, ) .

The equation e(z„,u„)=0 can be solved. One thus gets
for the real part of z„and u„at resonance

T F3/2(~') T FS/2. (~')z„1+
3u, u„Fi/z(a ) " +t/2(

(13)

u„) A o(T, ),
where

F„(x)=f [t"/(1+e' ')]dt
0

V/VF

U A0

is the Fermi function of nth order.
At first order, z„=y /3u, corresponds to ~=co . We

study first the behavior of 1m[1/e(z, u)] in the z-u plane.
Figure 2 displays the two domains where this function
takes values in the integration range of Eq. (7).

Region (a) where lz —ul & Ao(T, ), which pertains to
binary collisions. The corresponding energy exchange is
Ace=Pi q /2m, .

Region (b) corresponds to the resonance with
z « A o( T, ) and u ) A o( T, ) where the projectile charge
yields its energy to the collective mode with resonance at
z =z„and energy exchange close to Aco=kmz. At T =0,
the resonance curve becomes a 5 function while
A (oT, )= l. One then recovers the behavior of Im(1/e)
as evaluated by Lindhard [8] at T =0.

We see from Fig. 2 that the main contribution to (7)
arises from values of z & Z = V/ VF + A o( T, ) because
Im[1/e'(z, u)] is negligible for larger z. Therefore we can
say that Im[1/e(k, co) ] does not take significant values for
k & k =2qF Z . In the same way, we see that if
V/VF ))Ao(T, ), the main contribution to the z integral
in (7) arises from z larger than z„(V/VF ).

C. Stoyying power

i.e.,
1 =R0,

2qF [V/VF+ Ao(T, )]
(14)

which can be rewritten as

R0=
2[ V/Ao(T, ) VF+ 1]

If we define K, the de Broglie wavelength by

m, VF Ao(T, )

At any velocity and temperature, R0 defines a critical
distance of pointlike behavior.

Obviously two charges separated by a long distance
will not be affected by the stopping correlations. Let p(r)
be written as p(r) =p, (r)+pi(r —R), the superposition of
two distributions separated by R. We have
p(k)=p, (k)+pz(k)exp[ik R] and

Ip(k) I'=p(k)p(k)* =
I pi(k) I'+ Ip, (k) I'

+ [p, (k)p~(k)* exp[ ik—R]

+p, (k)'p2(k) exp[ik R]] .

Inserting this expression in Eq. (1), we obtain a sum of
three terms, the stopping powers of p, and p2 and a corre-
lation term. Suppose that p goes faster than VF Ao(T, ),
we see that the main contribution to the integral arises
from the k domain with k )2qFz„( V/VF ).

If R ))1/2qFz„( V/VF) then the correlation quadra-
ture almost vanishes and the stopping is the stopping
power sum p&+p2', the two charges act as if they were
separated. The dynamical critical distance thus exhibit-
ed,

We now investigate some consequences of the analytic
structure of the dielectric function upon the stopping
power.

We first look for the condition to be fulfilled by a
charge to act in a pointlike fashion. Suppose we have a
distribution p(r) which is enclosed in a sphere of radius
R, then in the Fourier transform p(k)= f d r p(r)e'"',
we write k r & kr (kR. If k R «1 we can set e'"'-1
without changing result (6). Therefore we get
p(k) = f d r p(r) equal to the total charge so that the ex-
tended charge may be taken to be pointlike. The cri-
terion appears to be

R &(1/k ~R (&1/2qFZ

R)= 1

2qFz„( V/VF )
(16)

Zf (V/VF) Zf (Ao) Zm

Flax. 2. Domain of importance of Im[1/e(z, u)] in the z-u
plane. Region (a) is hatched while region (b) is around the reso-
nance curve.

yields V/co if we restrict to lowest order in Eq. (13).
At high velocity, the screening distance of the plasma

plays a particular role; it can be seen from Fig. 2 that if
2qFz„(AO)R «1 we can take the charges as coagulated
as far as the plasmons excitation are concerned in view of
exp[+ik R]=1 all along the resonance curve. The dis-
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tance Rz=l/[2qFz„(Ao)] coincides with the static
Thomas-Fermi length or the Debye length whether the
plasma is degenerate or not. The screening distance of
the plasma then corresponds to charges coagulation with
respect to plasmon excitation.

For the low-velocities case we consider pointlike
charges to investigate how varying separating distance
a6'ects stopping power. When two ions enter the target
plasma they induce a field E;„d in it which stops them.
The field acting upon an ion is the superposition of the
field Eo it creates in the plasma and the field E, created
by the other ion. When the interion distance increases,
the correlation part of the stopping power vanishes be-
cause E, gets screened by the plasma. Since in the 1ow-

velocity case we expect the perturbation created by the
cluster to be static, the distance of separation is the
screening distance of the plasma. The behavior of this
quantity has been studied in the RPA at any degeneracy
[9,10]. The screening distance relies on the plasma pa-
rameters as follows:

(i) Classical plasma, T & TF where the screening dis-
tance is Debye.

(ii) Weakly degenerate plasma, TF & T & 0. 106r„
where the screening distance is A,T„.

(iii) Strongly degenerate plasma acting like a Fermi
liquid with Friedel screening cos(2q~r)/(2qzr) .

We show in Fig. 3 the shape of those three domains in
the N-T plane and sum up the previous results in Table I.

Expression (6) shows that the stopping power depends
on the shape of the distribution through the square
modulus of its Fourier transform. Then all the charges
having a Fourier transform with the same modulus will
be stopped a same amount in a given target. Let p be a
test charge; in Fourier space a charge equivalent to p can
be written as p(k) = ip (k)i e'~'"'. Because p(r) must be a
real function, P(k) is an odd function of k. Then in the

TABLE I. Critical distances of pointlike and separate behav-
ior in terms of the velocity. R0, R

&
given by Eqs. (15) and (16).

High velocity, V) VF Ao
Low velocity, V ( VF Ao

Pointlike

Ro
Ro

Separate

Ri
~screen

The study of Im(1/e) showed that in the high-velocity
range this function does not take significant values for
k &k;„=2q~z„(V/VF). If AR &&1/k;„=R& then the
charge will appear quasitransparent for the plasma, in-
teracting only with a few long-range binary collisions
without losing energy through plasmon excitation.

D. Asymptotic stopping power

We now investigate some asymptotic expressions of
(dE/dx)/0 [where dE/dx is given by Eq. (7)] in the
high- and low-velocity range, respectively.

In the high-velocity range, i.e., velocity larger than the
average electron velocity in gas, we use a method pro-
posed by Lindhard for a pointlike ion. Instead of in-
tegrating z from zero to infinity and u from zero to
V/VF, Lindhard proposed to integrate z from z„(V/V~)
to V/V~ and u from zero to infinity. We show schemati-
cally in Fig. 4 the resulting discrepancy. Maynard and

VNF

real space the shape of p(r) must be

q(r) =po(r)a V-'Ie ~'"'I,

P(k) odd,

where I3 denotes a convolution product and 7 ' the in-
verse Fourier transform.

We finally consider an extended charge with spatial ex-
tension AR. It is well known that in Fourier space, the
"size" of the distribution will be approximately Ak linked
to hR by the relation

ARbk=1 so that 6k=DR

Fermi Liquid

I

14 16
I I

18 20 22
I I I

24 28 30 32

ipglO Ne(cm )

FIG. 3. Regions of different kind of screening. The long-
dashed line indicates the T= TF limit while the short-dashed
line shows the frontier T, =0.106r, . The screening is Debye in

the classical area, Thomas-Fermi in the weakly degenerate
domain, and Friedel in the Fermi liquid. Domains 1, 2, and 3

correspond to strongly coupled plasmas.

Zr(VNF) v/vF

FIG. 4. Switching the integration domain of Eq. (7) accord-
ing to Lindhard method, we drop the quadrature on regions 2
and 3 while we add the one on 1. The corresponding unaccuracy
decreases as 1/V .
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Deutsch [3] proved that for any temperature it decays as
1/V, thus the expansion obtained by integrating on the
modified domain is exact up to the third order in 1/V. In
fact, there is no third-order term in the case of a pointlike
ion, so this method provides the exact second-order term.
In this case, the u quadrature is evaluated by the sum rule

with

dE oo

=2Z, Z Qf udu I zdzIm
0 e z, u

Xsinc(2qFRz) .

I colm
0

1 dco-
e(q, co)

7TCOp
2

2

(21)

1 dE, ~'~F dz—z0 dx „~«~] z
(17)

It is easily shown that the same approximation still
holds for an extended charge. %'e thus get

1 dE "" ~p(2qFz)~'
dz0 dx z, [~/'~~] z

(18)

In the low-velocity range, following Maynard and
Deutsch [1],one can derive

dE
dx

e V

2~'e,'V,' ' ~,( T, ) VF

where

~Ho(T ) f ~ dzz3

[z'+X'f, (o,o) ]'

ip(2qFz) i

X
1+ exp[(z —y')/T, ]

It can be seen that the stopping power is still propor-
tional to the velocity according to friction.

Here, y f, (0,0) represents the static screening avoid-
ing the well-known logarithmic divergence of classical
theory, so that

[q +ATF], T, 0
4qF

z +y f, (0,0)= '

[q +AD ], T, ~co .
4qF

Finally, a good approximation for the stopping power
of a pointlike charge Z in the high-velocity range is given
by

A. High velocity

Using formula (18) we obtain in the high-velocity range

1 dF. t o sin(Rk) dk

=H (R /Ro) H(R —/R i ) =2Z, ZqL
""(V),

(22)

where H(x)=Ci(x) —sine(x) and Ci(x) is the cos in-
tegral.

Equation (22) is formally identical to its T =0 limit al-
ready obtained previously by Arista [3]. Temperature
and degeneracy dependence only appear in the lower
bound R i

It is instructive to notice the behavior of Eq. (22) for
large R values. For large x value, H(x)=cos(x)/x and
neglecting H ( R /R o ), we thus get

cos(R /R
&

)
1 2 (23)

(R /Ri )

displaying long-range oscillation of wavelength
2~R, =2~V/co connected to oscillations of the screened
electric field.

We plot in Figs. 5(a) and 5(b) the ratio L'"'(V)/L ( V)
for several degeneracies and a cluster velocity equal to
three times the average electron velocity in plasma. It
can thus be seen from these plots and also from the previ-
ous critical distances analysis that for high velocities the
correlation e8'ects are only weakly temperature depen-
dent. Equations (14) and (16) yield back the high-velocity
limit R0 =A/2m V and R

&
= V/co~ which are temperature

independent. In fact, the correlation term of the stopping
power behaves in these limits like the pointlike one.
L ( V) is given its high V approximation expression [1]

III. M-CLUSTER RANDOMLY ORIENTATED

Arista [15] considered at T =0 a distribution such as
p(r) =Z, e5(r)+Zze5(r —R), which amounts to

~p(k)~ =(Z, e) +(Z~e) +2e Z, Zz cos(k R) .

2 VL(V)= ln
ACORN

2
F3~~(a ) VF

T
Figz(a )

5iz(a') 1 F,i~(a')—T,'
F)qp(a') 2 F,q~(a')

VF

Performing an angular average upon R yields

~p(k)~ =(Z, e) +(Z~e) +2e Z, Z~sinc(kR), (20)
in terms of the Fermi function introduced below Eq. (13).

where sine(x ) = sin(x ) /x.
The stopping power of the dicluster can be written as B. Low velocity

dE dE ' dE
dx dx z dx z

dE
dx corr

The correlation part of the stopping power is given by
Eq. (19) with
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vrAo(T ) p z3dz

~ I"+x'f «,»)'
sine(2qF Rz)

X
[1 + exp( ~z

—y'~ /T, ) ]
(24)

At low temperature

It is easy to derive many asymptotic expressions out of
Eq. (24) for low and high temperature and also small and
large R. Some useful results are also obtained for large
R. At high temperature, we get

N""=m Ao(T, ) exp(a') +0 . (25)
1

(Ru )4

e-"=-—' " +0 'cos(2 R)

(2qFR) R
(26)

Equations (25) and (26) show, respectively, the connec-
tion between the correlation effect and the screened field
of a static point charge. At high temperature, correlation
becomes negligible for R greater than Debye length. At
low temperature, the Fermi-liquid behavior of electron
gas arises and produces spatial oscillations of wavelength
m /qF.

The ratio of low velocity and correlated stopping to
pointlike is shown on Figs. 5(c) and 5(d) at two densities
and different temperature and one can witness qualitative
and quantitative effects of the temperature in this case.
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FIGa 5. Plot of the ratio (of the correlation part of stopping power) to the pointlike part of the stopping power L' "(V)/L ( V). (a)

V=3Vh (or VF), N, =10 ' cm ', T, =0.1, 1,20. (b) V=3Vh, N, =10' cm, T, =10,100. (c) V=0. 1Vh (or VF), X, =10 ' cm
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cm, T, =10,100. The temperature T, =0. 1 has been removed from the plots (b), (d), and (f) because the corresponding plasma

would lie beyond the RPA domain.
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Qualitatively, the transition from Friedel-like screening
to Debye-like, while the temperature is increasing, damps
out the oscillations observed at T, = T/T+ =0.1. Quanti-

tatively, Eq. (14) yields the low-velocity regime Rp = K/2
[K being the de Broglie wavelength defined in Eq. (15)].
%'e then observe two effects when the temperature in-

creases; Ro decreases so the correlation effects at small

distances are damped out, but as the screening length in-

creases with temperature, the long-range effects get
in Hated.

The plots in Figs. 5(e) and 5(fl illustrate the situation
where the cluster velocity is equal to V,h (or VF in the de-
generated case).

IV. SINGLE ION %'ITH EXTENDED
CHARGE DISTRIBUTION

A. Ion domain of nonpunctuality

We have already seen that a charge distribution cannot
be considered as pointlike if its size is larger than Ro as
defined by Eq. (15). There are many cases where that dis-
tance is shorter than atomic unit. For example, at low
velocity and low temperature, Rp reduces to 1/qF while
the condition for validity of RPA [1,3] requires that at
low temperature ao ))1/qF where ao is the Bohr radius.
It means that in these conditions, even a single ion cannot
be considered as pointlike.

Let gao be the size of an ion; in the high-velocity
range, V)) Ap(T, ) VF, Rp reduces to VF/(2q~ V) and it
can be taken as pointlike if qao satisfies the inequality

p(r) =Ze6(r) n(r—)e, (30)

where fd r n (r)=N.
Z is the number of protons in the nucleus and X the

number of electrons. According to Eqs. (28)—(29) the nu-
cleus can be considered as pointlike in all RPA plasma
(setting g= 10, it appears that the plasma should be
taken relativistic). We assume that the electronic cloud is
not perturbed by the plasma, thus n (r) is spherically
symmetric and

p(k)=Ze —4me f dr n (r)r sine(kr) .

We recognize here the expression of the elastic form
factor already investigated [12] through the Green-
Sellin-Zachor model for n (r).

Setting F(k) =4m f dr n (r)r sine(kr), we have (atomic
units)

F(k) =Nri
k +g (1+a)

B. Stopping power of an ion with extended
charge distribution

We now consider the impact of an atom extended
charge distribution upon free-electron gas stopping
power. Such a survey has already been achieved by
Deutsch and Maynard [11] as far as bound electrons to
the target are concerned.

We thus have to consider a distribution such as

VFV«
2qy 7]a0

i.e., qV «0.5 a.u.
Nevertheless, this condition cannot be satisfied if

A p ( T ) VF is already larger than V~ /( 2qFi)ap ), which
yields

1 1DA=
H

B C
k +g (1+P) k +g

2H —1 —1 /H
(1+P)

(31)

Ap(T, )» 1

2qF'fjaO
(27)

1 1 2H —1 —1/H
(1+a)2

N, &)(2.8/g ) X 10 cm (29)

In the low-velocity range, Rp becomes 1/[2qF Ap(T, )]
and the condition gap &)R p still leads to Eq. (27). Final-
ly, whatever its velocity, an ion of size gao cannot be con-
sidered as pointlike when Eq. (27) is satisfied.

The study of the domain defined by (27) is difFerent
whether the plasma is degenerate or not. In a classical
plasma, writing Ap(T, ) VF = V,h, Eq. (27) becomes a con-
dition on temperature, i.e.,

k~T»(4X10 /g')K =(3.44/g') eV .

In a degenerate plasma, assuming A p( T, ) = 1 we thus
get a condition on density

C =1/H, D =1/(1+a) —1/(1+P), H =g/g .

The values of g, H, a, and P are given in Refs. [13,14].
Species considered here include Al +, Al +, Al"+, and
Cs+, with corresponding parameters given in Table II.

From F (0)=N, one gets F ( k) = (Z N)e-
+e [F(0)—F(k)]. The last term represents a correction
to the pointlike case. The square modulus of the distribu-
tion is then

TABLE II. Values of Z, N, H, g, a, and P for considered
species. From Refs. [6,7].

Cxenerally, g is a function of the charge and ionization
of an ion. Of course, an extensive study of this effect
should also take into account the ion ionization state.
For example, if the plasma is too hot the ion will turn
pointlike as it gets fully ionized.

Al'+
Al'+
Al" +

Cs+

13 10 1.211 28
13 5 1.19496
13 2 0.845 845
55 54 4.531 5

Species Z N H

3.146 5 2.450 4
4.970 2 2.354 55

16.920 6 1.629 026 4
1.154 7 9.302 1

1.00 9
1.008 8
1.018 4
1.721 85
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~p(k)~ =[(Z —N)e] +[e[N —F(k)]J TABLE III. Values of R as given by Eq. (34) for considered
species.

+2(Z N—)e [N —F (k) ] . (32)
Species Al + Al + A111+ Cs

The function F is decreasing, N F—(k) )0, and we will
obtain an enhanced stopping power. Deutsch and May-
nard already observed the same effect. It is worth notic-
ing that the model can account for the stopping power of
a neutral atom with N =Z.

The stopping power then appears as the sum of the
pointlike atomic one and a correction term. In the high-
velocity range, Eq. (18) yields

ko 1 —F (aok)=(Z N)'L—'( V)+N' f dk
Q dx k1 k

ko 1 —F (aok)
+2N(Z N) f— dk, (33)

1

where

F (k)=F(k)/N,

k, =1/R, ,

ko= 1/Ro, L (V)= f
We investigate qualitatively a few conspicuous effects.

As ko increases with velocity V, the correction should in-

crease too. When temperature increases, the correction
is decaying because k, also increases with temperature.

17.7 1.64 0.4 2921

If we keep T constant, an enhanced density shall reduce
T, thus producing an enlarged correction. We define

C N +2N(Z N) —I+2(v —1)
(Z N) L—(V) (Z N) — (v —1)

(34)

v=Z/N,

where C represents the correction term in Eq. (33).
We plot in Fig. 6 the numerical evaluation of R for

four ions: Al +, Al +, Al"+, and Cs+; the order of mag-
nitude of R (Table III) obtained by Eq. (34) agrees with
the calculation. In fact, Eq. (34) is an overestimate to the
exact value. According to Eq. (34), R &0.1 if v) 14 and
R ) 1 ifv&3.

In the low-velocity range, we make use of (19) to calcu-
late 4 under the form

14

12

10—
C:
o 8-

CL

Q) 6-
c:
O
CL

O

2-
(

0 I I I I I

I I I I I

22 23 24 25 26 27 28

log(p Ne (cm )

1.2

Q)

.~ 0.80
CL

0.6
c:
O
CL 0.4
O
Z'.

0.2

0 I I I I I I

22 23 24 25 26 27 28

logIp Ne (cm )

Q)

O
Q

Q)

C:

O

0.01

12

!
3 4

kT (eV}

I

5 6

0.25

C'o 0.15-
CL

0.10
CL

O
0.05-

&D

C:
O

cL 1000-
(0

O
CL

O
Z'.

I I I I I

I I ) I I

Cs+

O

0 C

I

22 22.5 23 23.5 24 24.5 25 25.5 26

I I I I

22 23 24 25 26 27 28

Iog)p N (cm )

I I I I I

22 23 24 25 26 27 28

IogIp Ne (cm )

FICx. 6. Ratio of the nonpointlike stopping power to the
pointlike part of the stopping power R [Eq. (34)] for the four
species considered with T = T~ at high velocity.

I09IpNe (cm )

FIG. 7. Ratio of the nonpointlike stopping power to the
pointlike part of the stopping power R' [Eq. (36)] for Al'+ at
low velocity in (a) classical plasma and (b) fully degenerate plas-

mas.
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e=(Z ~)'e'+X' f "g(z)[1 F—'(2q~a, z)]'dz+2X(Z —lV) f "g(z)[1—F'(2qFa, z)]dz
~A, (T, ) 0 0 (35)

with

z [1+exp[(z —y')/T, ]j
[ + f (00)]

z)=

R'
(Z —N) 4 (36)

where C' represents correction terms. We plot on Fig. 7
the behavior of R ' at high and low temperature for Al +.

V. CQNCLUSIDNS

4& = f Q(z)dz .
0

The considerations made previously for the ratio R still
stand for 8 ' with

electron fluid.
The target plasmon contribution has been carefully as-

sessed.
Dicluster stopping worked out in a randomly oriented

model extends to arbitrary target temperatures, an ap-
proach previously devoted to the fully degenerate case
[15—19]. In so doing, we have bridged a gap between
condensed-matter-like jellium to classical plasma encoun-
tered in many thermonuclear fusion devices. Critical dis-
tances of pointlike and separated behaviors embody the
temperature dependence of correlated charge stopping.
This formalism has then been straightforwardly adapted
to a spherically symmetric single-ion charge distribution
worked out in a Thomas-Fermi-like approach. This ex-
tends previous results [11] obtained for cold targets to
hot ones, where stopping is produced by bound electrons.

We made use of the Born random-phase approximation
[3] to investigate dicluster stopping of pointlike charges
(Sec. III) and also of spherical symmetric ion charge dis-
tribution (Sec. IV) in a partially degenerate and uniform
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