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A model to describe fractal growth is introduced that includes effects due to long-range cou-
pling between displacements u. The model is based on the biharmonic equation V' u = 0 in two-
dimensional isotropic defect-free media as follows from the Kuramoto-Sivashinsky equation for pat-
tern formation —or, alternatively, from the theory of elasticity. As a difl'erence with Laplacian and
Poisson growth models, in this model the Laplacian of u is neither zero nor proportional to u. Its
discretization allows one to reproduce a transition from dense to multibranched growth at a point
in which the growth velocity exhibits a minimum similarly to what occurs within Poisson growth in
planar geometry. Furthermore, in circular geometry the transition point is estimated for the simplest
case from the relation rs L/e such that the trajectories become stable at the growing surfaces
in a continuous limit. Hence, within the biharmonic growth model, this transition depends only on
the system size L and occurs approximately at a distance 60%%uo far from a central seed particle. The
influence of biharmonic patterns on the growth probability for each lattice site is also analyzed.

PACS number(s): 68.70.+w, 61.50.Cj, 05.40.+j, 03.40.Dz

I. INTRODUCTION

The study of pattern formation in physically important
fields by using simple lattice models under certain bound-
ary conditions is of great interest because the fields de-
scribe many phenomena that occur in nature. At present,
numerical simulation studies include, e.g. , the dielec-
tric breakdown model (DBM), i.e., solving the Laplacian
equation in the medium surrounding the growing aggre-
gates [1—3], and the Poisson growth model of the pattern
formation in screened electrostatic fields [4]. Besides, the
diffusion-limited aggregation (DLA) model also plays a
crucial role in illustrating fractal growth [5—7]. So far,
much efFort has been invested in such stochastic mod-
els that share the common feature of being essentially
second-order differential equations. In these models iter-
ative procedures are carried out around four mesh points
of a lattice to then phenomenologically relate the global
inHuence of a growing pattern to the growth probability
for each lattice site under different power-law forms (see,

[8]).
Nevertheless, there is also another important class of

physical problems leading to partial differential equations
that can also be linear in the order parameter but, as a
peculiarity, they are of higher order and directly concern
the issue of pattern formation. An example of this is the
(time-averaged) Kuramoto-Sivashinsky equation [9, 10]:

OL
= v't7 u+ AV' 7' u+ p, (Vu)

which models pattern formation in different physical con-
texts, such as chemical reaction-difFusion systems [ll, 12]
and a cellular gas fiame in the presence of external stabi-
lizing factors [13]. In the above v, A, and p, are normalized
coefficients and u a displacement at time t.

If we consider the simplest case, i.e. , assume static so-
lutions and keep linear terms only (i.e. , p,

—= 0), then
Eq. (1) reduces to the sum of two important terms: the
Laplacian equation plus the biharmonic equation

7' u = V (V u) = 0 (2)

Since the former term (i.e. , A = 0), when discretized, is
known to display fractal structures on a squared lattice
[1,2], then the latter term [i.e., Eq. (2)] might also in fact
select a new class of fractal patterns.

In addition to the above physical relevance, the bihar-
monic part of Eq. (1) can describe the deflection of a thin
plate subjected to uniform loading over its surface with
fixed edges [3, 14], the steady slow two-dimensional (2D)
motion of a viscous fiuid [15], or the vibration modes in
the acoustics of drums [16]. Besides this a higher-order
differential equation containing the biharmonic term also
appears in the study of kinetic growth with surface re-
laxation (see, e.g. , [17—20]).

As an important difference with respect to second or-
der, solving numerically higher-order difFerential equa-
tions, such as the one at hand, requires values for the
order parameters at either their first or second normal
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derivatives at each boundary point and beyond [21, 22].
Hence, an analysis of effects due to long-range (many-
body) coupling of lattice sites, including those mesh
points at the lattice boundaries, on the formation of con-
nected patterns, is by no means trivial and as such it is
a completely open problem. This is the subject of this
paper.

In the following we shall discuss an attempt to include
higher nearest-neighbor (displaeements) shells in numer-
ical simulations of fractal growth in isotropic defect-free
media of arbitrary elastic constants. We achieve this by
(analytically and numerically) studying Eq. (2) under the
condition that the Laplacian of u is not constant (i.e. ,
Laplace's case) or proportional to u (i.e. , Poisson's case)
along a growing surface. Since this biharmonic opera-
tor ean also be generated in the theory of elasticity [14,
23, 24], then u—:r —r' may become the displacement
vector and the deformation of a body may be caused by
an appLied force which appears in the solution of Eq. (2)
through some boundary conditions [Eq. (4) below].

II. NUMERICAL SIMULATION

In this work, the numerical simulation of Eq. (2) is
carried out on a lattice with either planar (i.e. , growth
in a channel) or circular (i.e. , radial growth) geometries.
Within the planar geometry we use a 100 x 200 lattice,
having periodic boundary conditions along the x direc-
tion, and set the values u' = 1 and u' = 0 for the upper y
boundary and the surface aggregate (y = E), respectively.
Initially, seed particles are placed on a line at displace-
ment u(i, 1). For circular geometry, we use lattice sites
enclosed within a circunferenee of radius r = 100 and lo-

cate only one seed at the center such that u' and u' are
also unity and zero at the outer (circular) boundary and
at the inner (growing) aggregate, respectively.

The inclusion of (second and higher) nearest-neighbor
bond shells in our numerical simulations follows the dis-
crete form of Eq. (2) on the (i, j) lattice site, which yields
an expression involving values of u at 13 mesh points
written as [21]

u, q~+2u, q~ q
—8u, q~+2u, q~+q

+ui, q —2 — ui, j—r + u', q
— ur, q+r + u', q+2 + 2u'+r, q —r —8ui+r, j + 2ui+r, q+r + u'+2, q

= 0 (3)

u
u~ r,+r = ui L, r + 2h

By
(4)

Here h (= h~ = h„) is the mesh size which we set equal
to unity for simplicity. For planar geometry, we evaluate
Eq. (4) approximating

It is important to mention that numerical simulations
using this equation are somehow more involved than
for Laplace [1] or Poisson [4] growth because of long-
range coupling. However, the accuracy of the solution for
Eq. (3) can similarly be improved by looking at the con-
vergence of the iterative solution using the Gauss-Seidel
method [21].

Equation (2) requires modificiation when applied at
mesh points that are adjacent to a boundary, since one
(at the edge) or two (near the corners) of the values
needed are at sites outside the lattice. This modifica-
tion is made by introducing a fictitious mesh point at
(i, L) outside the planar lattice in the y direction, where
the value of u is given there by the derivative boundary
condition along one edge boundary:

approximate for the sake of simplicity Bu/By ~„L,= 0 in
the absence of applied Geld.

The procedure for growing our biharmonic aggregates
follows standard techniques [1]. First, Eq. (2) is solved it-
eratively until the solutions converge to a given accuracy
(of the order 3 x 10 s or smaller). Second, after adopt-
ing a growth probability law, the aggregates stochasti-
cally grow at one (or more) perimeter(s) under a given
relation between u and growth probability P.

In order to have biharmonic pattern selection we shall
assume that P at the grid site (i, j) depends on two dif-
ferent phenomenological (normalized) forms, namely

P,, =&
(model I)

(model II)

where the sum runs over all of the nearest-neighbor sites
to an aggregate. Model I implies that P,~ is proportional
to the local potential, similarly to DBM [1,4, 8], whereas
in model II, P,~ is proportional to displacements around
the (i, j) site.

Bu

Bg

3(u' —u') III. RESULTS AND DISCUSSIQN

for all i columns. This expression is obtained after taking
the limit E/L (( 1 in the solution of a one-dimensional
biharmonic equation. Also for simplicity, the values of
u(i, 0) for the points below the seed will be set to zero.
For circular geometry we treat the boundary conditions
similarly to Laplacian growth [1], i.e. , all the lattice sites
outside a circle of radius r are set equal to u', hence, we

As already mentioned we attempt to study the effect
of long-range coupling of displacements in simulations
of fractal growth. To achieve this, we start analyzing
the numerical solutions of Eq. (2) in planar geometry.
In Figs. 1(a), 1(b), and 1(c) we show three character-
istic stages of growing for a biharmonic pattern by at-
taching one particle at each step and assuming model I
for the probability P,z. Figure 1(a) includes 2100 parti-
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cles, l(b) 4164 particles, and 1(c) 4355 particles added
to the biharmonic cluster. In these numerical simula-
tions we estimate the derivative boundary condition [cf.,

Eq. (4)] from the analytical solution given by Eq. (5) and
fix u' = 0 and (rescaled) P = 7' u ~„L,= 6u'/I2 such
that u = 1. Clearly, at a distance separation of about

160, Fig. 1(c) displays features of a transition from
dense to multibranched growth similarly to what occurs
within Poisson growth in planar geometry [4]. This struc-

ture demonstrates that long-range coupling of displace-
ments drives such phenomena.

Surprisingly, such a transition also appears when we
consider model II for P,~ as can be seen in Fig. 2 for a bi-
harmonic cluster containing 3428 particles. This means
that the in8uence of ramified biharmonic patterns on the
growth probability for each lattice site is on the type
of the (far from equilibrium) pattern obtained and not
on locating the transition. We add that several branches
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FIG. 1. Three characteristic stages of growing for a biharmonic pattern by attaching one particle at each step and assuming
model I for the probability P,~' (a) 2100, (b) 4164, and (c) 4355 added particles to display the transition from dense to
multibranched growth.
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FIG. 2. Final biharmonic pattern above the transition
when considering model Il for P,~ and 3428 particles.

may also develop within our biharmonic growth model by
attaching, simultaneously and stochastically, more than
one particle at each time step similarly to the work of
Louis et aL [4]. We believe that for Poisson growth this
transition is the result of including many-body contribu-
tions via screening in a sort of mean-field approach. In
our biharmonic model, long-range coupling appears nat-
urally as a consequence of dealing with Eq. (2). As we
shall show next for the case of planar growth, the tran-
sition point within both Poisson and biharmonic models
appears when the growth velocities exhibit a minimum.

In Fig. 3 we plot results for the growth velocity v
along the y direction for biharmonic growth under model
I (curve A), i.e. , proportional to the averaged value of P
equal to 7' u to consider explicitly nearest-neighbor sites,
and under model II (curve B), where it has been set pro-
portional to the local displacement u. For comparison,
we also include in this figure results for Poisson growth,
i.e. , T P = pP [4], such that v is set proportional to the
field

~ P, ,z
—P'

~

following Ref. [4]. The Poisson growth
model incorporates screening (curve C), i.e. , p, = Az, and
antiscreening (curve D), i.e. , p, = —A2.

In this plot it can be seen that the transition from
dense to multibranched growth coincides with the fact
that v on the growing surface presents a minimum. This
was pointed out by Louis et aL [4] for the case of screen-
ing (curve C) (which also applies for antiscreening as
seen in curve D). However, from the present findings,
we can argue that this is also true for biharmonic growth
(curves A and B) independently of how we have related
the probability P~ to u(i, j). For Laplacian growth this
phenomenon does not apper since the trend is to generate
a single tip at faster velocity than in the cases of Pois-
son or biharmonic growth. It is worthwhile to point out

yogin(V)

FIG. 3. Growth velocity v along the y direction propor-
tional to [ V u ] (curve A) and displacement

~

u
~

(curve B).
Curves C and D are for Poisson growth including screening
and antiscreening, respectively.

that biharmonic patterns below the transition point, i.e. ,
within the dense region (see Figs. 1 and 2), become not
as dense as for screening [4], but are rather denser than
for antiscreening (not shown). Indeed, this can easily be
understood from Fig. 3 since for Poisson growth (screen-
ing), such that p ) 0, the transition occurs at smaller
velocities than for biharmonic growth. Henceforth, an
Eden-like pattern ean be generated due to screening [4].
Above the transition multibranched fractals appear in ail
models considered, but within our biharmonic model the
transition point depends on the system size only (as it
will become clear below). We remark that both Poisson
and biharmonic models lead to obtaining growth veloci-
ties along the y direction with parallel slopes above and
below their respective transition points. We feel this to
be a particular feature of fractal growth due to long-range
coupling of displacements.

Let us focus next on effects due to long-range coupling
on the fractal growth in circular geometry. This will al-
low us to make calculations of the fractal dimension for
the biharmonic patterns by the standard box counting
method [3]. To generate and select biharmonic fractal
structures we set, for simplicity, the derivative boundary
condition required along the r direction equal to zero.
Figures 4(a) and 4(b) show the results for circular bi-
harmonic growth using again models I (where P is set
proportional to V'2u, which corresponds to the potential
in [4]) and II, respectively. Figure 4(a) includes 2326
particles whereas Fig. 4(b) has 2172 particles. It can im-
mediately be seen that above a certain transition point,
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say rI, these plots give another demonstration that long-
range coupling is the most relevant aspect for the transi-
tion indepedently of the geometry adopted or of the given
relation between P,~ and u(i,j)

The transition point rg can, to a good approximation,
be estimated from the continuous limit of Eq. (2) in cylin-
drical coordinates, such that z = 0 for all polar angles 8,
namely,

I (B l I|'B' & (B ) (BI+&' i+r =0r2 r r r2 p3 p4

whose solution (far from the origin) is

u = A+ Br + C lnr + Dr lnr

Clearly, two of the four coefficients A, B, C and D may

100 I I I
I

I I I I
I

I I I I
I

I I I I

50—

-50

be determined by the boundary conditions of the prob-
lem, i.e., by assuming that at r = rg, u(rg) = u' —= 0,
whereas at r = L, u(L) = u~ = 1. However, as discussed
above, in addition to this we also have the condition
required by simulations [cf., Eq. (4)]: Bu/Br I„—I,= 0,
which leads to the following relation between B, C, and
Do

B C/D
D 2L2

—(lnL+ -')
2 (8)

This, in conjuction with one possible condition of stabil-
ity for the trajectories at the growing surfaces, which is
obtained from Bu/Br I„«0, i.e. , B/D = —(inrun+ I)
and C = 0, gives

L
re — ~,2

——0.607L.
~1g 2 (9)

Hence, we have that the transition point only depends on
the system size L and occurs approximately at a distance
(in lattice units) about 60% far from the seed particle
as indicat;ed by arrows in Figs. 4(a) and 4(b). Nicely,
our simplest prediction is in accord with the numerical
simulations. But if the derivative boundary condition
Bu/Br I„L, is a constant different from zero, then Eq. (8)
changes by a factor which, together with the above sta-
bility conditions, implies a shift of the transition length
and a more complicated relation between rg and L.

To end this section, we examine the fractal proper-
ties of the simulated biharmonic patterns displayed in
Figs. 4(a) and 4(b), by simply counting the number of
particles N(r) inside a circle of increasing radius r (in
lattice units) around a seed particle at the origin until
we reach a distance rq at which the transition appears
[cf., Eq. (9)]. We then plot it as a function of r in a log-
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FIG. 4. Results for circular biharmonic growth using (a)
model I with 2326 particles and (b) model II with 2172 parti-
cles. Arrows indicate predicted transition points from Eq. (9).

FIG. 5. Fractal nature of the simulated biharmonic pat-
terns that are displayed in Figs. 4(a) and 4(b). Triangles are
obtained using model I and squares using model II. Circles
are for Laplacian growth giving a fractal dimension of 1.7.
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log plot, as depicted in Fig. 5, for models I (triangles) and
II (squares) which we compare to Laplacian growth (cir-
cles). Over a decade, we obtain lines with slopes larger
than unity and smaller than the space dimension. Thus,
to a first approximation, the fractal dimension of our bi-
harmonic patterns in the denser region approaches the
value due to DBM (and DLA) within error bars [1]. This
illustrates the fractal nature of the biharmonic patterns.
Above rt, there is a change of slope due to the transi-
tion from dense to multibranched growth contrary to the
curve from the Laplacian model (circles) which continues
to be linear, indicating thus that the cluster grows dense.

In this work, we have shown that the discretization of
the biharmonic Eq. (2) allows us to reproduce a transi-
tion from dense to multibranched growth at a point in
which the growth velocity v along the y direction ex-
hibits a minimum similarly to what occurs within Pois-
son growth in planar geometry. The physical basis for
v, as plotted in Fig. 3, follows similarly to the dielec-
tric breakdown model (model I: curve A), namely, as-
suming v to be proportional to the averaged value of P
equal to the potential V2u, to thus consider explicitly
nearest-neighbor sites; model II, curve B, where v has
been set proportional to the local displacement u, is sim-
ply a mathematical model. On the other hand, we also
discussed that in circular geometry the transition point
can be estimated from the relation rt —I /eius such that
the trajectories become stable at the growing surfaces
in a continuous limit. This is in reasonable agreement
with present numerical simulations. Hence, we conclude
that the transition from dense to multibranched growth

within a biharmonic approach depends on the system size
I only.

The transition obtained from numerically solving the
biharmonic equation might not be necessarily similar
to the intriguing Hecker transition (see, e.g. , [25, 26]).
But, to this end, we notice that when assuming in the
Kuramoto-Sivashinsky relation (1) v ( 0 and A ) 0,
then we obtain (see also [9])

V = —7' v+9 V' v+2v 7'v (10)
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in which v = 7'u and curl v = 0. This looks somewhat
like the Navier-Stokes equation (for a potential How with
negative viscosity) which may be somehow related to the
recent analysis in Ref. [26] of electrochemical deposition.

Finally, it is important to emphasize again that, as a
crucial difference to those models satisfying second-order
difFerential equations, to select fractal structures via the
biharmonic part of Eq. (1) requires values for the or-
der parameters (at either their first or second normal
derivatives at each boundary point) and the (second and
higher) nearest-neighbor bond shells on the (i, j) lattice
site which yields an expression involving values of u at
13 mesh points. Thus, the formation of connected pat-
terns within the biharmonic equation is not trivial at all.
Because of this, our numerical simulations are more in-
volved than for Laplace (or Poisson) fractal growth due
to the long range co-upling between diplacements.
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