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Planar solidification from an undercooled melt: Asymptotic solutions
to a continuum model with interfacial kinetics
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Planar growth of a solid germ from an undercooled melt is considered within the continuum model,
accounting for kinetic effects at the interface. The paper extends previous studies of this problem by (i)
analyzing not only the moving fronts but also the temperature fields in each phase and (ii) accounting for
the temperature dependence of the latent heat. Explicit analytic solutions are developed both for short
and long times. It is shown that, in the case of critical undercooling (at the crossover from diffusion to
kinetics-dominated regimes), the nonuniformity of the solid temperature and the variation of the latent
heat with temperature significantly affect the long-time (t) behavior R =yt ' of the phase-change fronts
R. Emergence of this law is related to the entropy production at the interface. Peculiarities of the tem-
perature field, derived for the critical undercooling case, are clarified.

PACS number(s): 81.15.Lm, 61.50.Cj

I. INTRODUCTION

The unconstrained planar solidification of a pure sub-
stance from an undercooled melt is one of the key prob-
lems in crystal-growth theory. Dynamics of this process
depends on the initial undercooling, parametrized by the
Stefan number St=cL(T*—T, )/L*. Here T* and T,
denote the equilibrium and the initial temperatures, re-
spectively, L * is the latent heat at the temperature
T=T', and cL is the liquid specific heat, assumed to be
constant. The classical Stefan formulation of a d][ffusion-
controlled growth with sharp fronts x =R(t), held at
T, =T*, implies R(t) —t' for St&1 [1]. It is no longer
adequate for rapid solidification (St) 1), due to the depar-
ture from equilibrium at the interface. This difficulty is
resolved within the phase-field approach. It allows for a
finite thickness of the front by introducing an order-
parameter field that is coupled to the temperature. The
phase-field models [2—6] predict that for St & 1 the fronts
of long-time asymptotic states advance as t', as in the
Stefan solutions. At St=1 two scenarios are possible, de-
pending on the diffusion rates of the order parameter and
of the heat. One scenario yields a solution, the front of
which propagates with a constant velocity, defined by the
microscopic considerations. The second scenario yields
fronts advancing at long times as R -t . In the case
St ) 1 (hypercooling), this approach yields traveling-
wave-type solutions with a constant front velocity.

Recently, it has been pointed out [6] that the long-time
asymptotic states found in the phase-field models could
be derived using simpler continuum models with sharp
fronts by incorporating the effects of linear interfacial ki-
netics [7—16]. Such models are states as follows:

Ts, t =asTs... x &R(T)
(1)

TL, =a~T~ „, R(t)&x & ~,
TL I „=R

= Ts I.=z = T, = T*—aR '

(2)
pLR,'=ksT, kL TL, x =R(t) . —

Here the subscripts L and S refer to the liquid and to the
solid, respectively, k is the thermal conductivity,
pz =pL =p is the density, a =k /pc is the thermal
diffusivity, and a is the kinetic coefficient. For cL&cs, L
is a function of T„reAecting for the entropy production
at the interface. As long as aRt'/T* «1, the rate of en-

tropy production at the interface o. and the correspond-
ing value of L are given by [10—12]

o =apL*R, /T*, L=L*—a(cL —cs)R,' . (3)

Such models, indeed, were utilized in studies of planar
fronts. The exact traveling-wave-type solutions were
found for St) 1 [7,13,14]. The St= 1 case was first con-
sidered in [14], analyzing the growth of a semi-infinite
solid into a uniformly undercooled melt. It was found
that for long times R -t . In [15] the long-time asymp-
totics of the fronts was addressed within the one-phase
formulation (ks =0). Again, R —t was obtained for a
uniform initial undercooling with St=1. The physics of
the diffusion and the kinetics-dominated growth of a solid
germ from a supercooled melt has been recently clarified
by Oswald [16]. Using the overall heat balance and mak-
ing several ad hoc assumptions concerning the tempera-
ture field, he reached conclusions supporting the main re-
sults of the phase-field models for St & 1 and St) 1 and
yielding R -t for the critical case St=1 at the cross-
over from diffusion to kinetics-dominated growths.

The above models, concerned with the long-time be-
havior of the fronts, did not develop explicit analytic ex-
pressions for the temperature field and often ignored the
heat diffusion in the emerging solid. Derivation of such
expressions would provide a more detailed picture of the
process. It might also affect some quantitative results.
Most of the above works (with the notable exception of
[7]) disregarded the temperature dependence of the latent
heat. As shown in [7] for St) 1 the latter dependence,
indeed, affects advance of the fronts and therefore should
be incorporated in the analysis of the problem with an ar-
bitrary initial undercooling.
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The present paper addresses these issues for a planar
growth of a solid germ. This growth is treated essentially
as a two-phase problem, stated by Eqs. (1)—(3), account-
ing for the heat diffusion in each phase, and for unequal
thermal conductivities and specific heats of solid and
liquid. (The latter implies a temperature-dependent la-
tent heat. )

II. FORMULATION OF THE PROBLEM

=o= TL„ I
=o=0

R(0)=0 .

(4)

Our choice of the germ-growth problem, rather than that
for the growth of a semi-infinite solid [2—6, 14], is suggest-
ed by the previous works [5] and [16]. Yet the data (4)
diff'er from those of [5], where growth of a localized germ
was studied within phase-field models: In [5] the germ
had a finite initial width and its initial temperature was
well above that of the melt, whereas in Eq. (4) the initial
germ temperature is equal to T, and the width of the
germ at t =0 is negligibly small. The data (4) are of the
same nature as those of [9], stated for a slow (St & 1) radi-
al growth, accounting for interfacial kinetics and neglect-
ing the Gibbs-Thompson effect. We attempt to mimic
the latter problem within a planar setup for St & 1, and to
treat also the case St~ 1.

The key element of our analysis is the global enthalpy
balance. It is obtained by integrating Eqs. (1) with
respect to x and t and using Eqs. (2)—(4):

cs f (Ts — T)d +xc fL"(TL T„)dx
0 R

+cL(T*—T„)R=L*R .

The analysis is significantly simplified by introducing the
natural space-time scales to =as a /( T*—T„),
xo=(asto)', along with the dimensionless quantities:
O=(T—T*)/(T*—T„), a=a~/as, k =kL/ks,
c=cL /cz, x'=x/x0, ~=t/t0, r =R/x0, r'=dr/dT. If
is also convenient to reformulate the problem in terms of
variables g=x'/r and ~, in which the interface is at rest.
This yields

r'Os, .=Os, gg+Pr'Os, e 0&g&1

r OL, =aOL (r+ err'OL (, 0 & g & ~

Oslo=i =Oi lg= i
= —',

rr'(c/St)[1 —r'St(c —1)/c ] =Os &~&,
—kOL &~&

(6)

r(0) =0 . (10)

We assume that the solid germ of infinitesimal thick-
ness has nucleated at x =0 in a uniformly undercooled
melt with TL (O, x ) = T„. The initial temperature of the
germ, Ts(0, 0), is assumed to be equal to T„. Since the
growth is symmetric with respect to the x =0 plane, our
analysis is restricted to the semi-infinite strip occupied by
the solid [0&x &R(t)], and by the melt [R(t) &x &1].
It is assumed that the heat Aux vanishes at infinity. Thus
the initial-boundary data are stated as follows:

TL (O, x)=T, = Ts(0, 0)=TL(t, ~ )=T

In terms of the dimensionless variables the overall heat
balance reads

c f (Ot +1)dg+ f Osdg=c[(1/St) —1] . (11)
1 0

III. SHORT-TIME ASYMPTOTIC BEHAVIOR

OL(g, r) = —1+BE((g,r) . (13)

Such a profile of OL is compatible with a constant right-
hand side of Eq. (11), if F(g, r) is a function of a single
variable v=(g —1)(r/a)~. It follows from Eq. (7) that
p= —,', and F(v) is subjected to

2F, +vF F=O, —F~, o= I, Fi =0 . (14)

The latter problem admits an analytic solution [1]. It
yields

OL = —1+8v'n. r i erfc[(g —1)&r/a/2] . (15)

Let us consider now the sensible heat of the solid germ,
applying the heat balance integral method [17,18]. In-
tegrating Eq. (6) with respect to g and using the boundary
conditions (g) and (10) one obtains

r r f Osis + rr =Os g~ g
—i

Assuming a parabolic profile for Os, accounting for a
zero heat ffux at /=0, and for Os ~&, = —r', at the front,
and using Eq. (16), one obtains

Os(g, r) = A (r)(g —1) r', —
3'= —3r"/2 33 /r —3—r'/r .

(17)

For r(r) given by Eq. (12) with p= —,', A(r) is of the
order t, whereas the interface temperature
—r ' = —1+8~' . Thus at the onset of freezi'ng

0~ = —r and the heat diffusion in the solid is negligibly
small. Inserting this value of Os, and Eq. (15) for OL,
into Eq. (11) yields B =2/St'&~a, where
1/St'=[(1/c)+(1/St) —1]. This indicates that the
asymptotic solution for r(r) given above is just the first
term in expansion of r/r —1 in powers of v r/St', ade-
quate as long as ~ ((St' .

IV. LONG-TIME SOLUTIONS

%"e develop now the long-time asymptotic solutions.
The previous studies [6,7, 16] suggest that for long times
the decay length of OL (in terms of the variable g) is typi-
cally of the order n/rr'. This fact, along with the overall
heat balance, Eq. (11), indicates that OL is a function of r
and p, =(g—1)rr'/a. In terms of r and p, , Eq. (7) reads

We now analyze the initial asymptotic behavior of the
problem. The initial and boundary conditions imply that
at very short times

r(r)=r[1 Bv —/(P+1)+ . ],
where p and B are still undetermined constants. This
equation, along with Eqs. (8) and (10), suggests the fol-
lowing form of OL:
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OL, =(r' /a)[01 „„+(1+IUag)OL „],
0+p( ~, g= —r" /r' (18)

0=1&2ga . (19)

Such OL satisfies the boundary conditions (8) and (10). As
shown below for ~~ ~ it yields the similarity solutions
for St ( 1, the traveling waves advancing with a constant
speed for St & 1, and a rather peculiar form of OL in the
critical case St=1. The latter profile shares some features
of kinetics-dominated and diffusion-dominated solutions.
Inserting Eq. (19) into Eq. (11) and adopting the parabol-
ic profile (17) for Os yields

r' —2A /3—+c(1—r')[ W(A) —1]/grr'=c( —1+1/St) .

(20)

Here 8'(fl)=[&vrQexp(A )erfcQ] '. We now look for
solutions of Eq. (20) in the form r=yr with —,

' &P&1,
and A(t) defined by Eq. (17). For f3= —,', both r' and 3
are of the order t '~ . Thus in the leading order Eq. (20)
reduces to St = 1/ W( 0 ). It is identical to the equation
governing the similarity solution of the classical Stefan

For the exact traveling-wave solutions [7] (St) 1) OI de-
pends only on p. For all other scenarios r'(r) decreases
monotonically as ~~ ~. These facts suggest that OL

can be neglected in the leading order in Eq. (18) [19].
The resulting equation can be integrated explicitly [20]:

01 = —1+(1—r')erfc[Q(1+ gag ) ]/erfcO,

problem [1]. It has real roots only for St&1. Conse-
quently, in the long-time regime Os =0(r '~

) and

9I = —I+erfc(Qg)/erfcQ+0(t '~
) . (21)

For P= 1, 3 (t) is exponentially small as r~ ~, and Eqs.
(17), (22), and (23) yield for long times the traveling-
wave-type solution [7] with R (t)=c(St—1)(L*/ac )1t.

For the sake of convenience we return to the x', ~ frame
in which

OI = —1+(1—c+c/St)expI —[x' —r(r)]r'/a],
(24)

Os = r'= —c(—1 —1/St) .

For St = 1, Eqs. (17) and (23) yield in the leading
order r=yr, A =yr '~, y=(9ca/8)', R(t)
=(9aLcL */8acL )' t . (These results also follow from
the heat balance at the interface, Eq. (9), combined with
Eqs. (17) and (22).) Consequently, in the x', r frame

Thus for St (1 the similarity solution of the correspond-
ing Stefan problem is an asymptotic attractor of the solu-
tion to the continuum model, accounting for the interfa-
cial kinetics.

Let us consider now Eq. (19) for —,
' &P& l. Using the

asymptotic expansion of the error function for large argu-
ments [1],one obtains in the leading order

Oz = —1+(1—r')[exp( —p —p ga/2)]/( I+gag ) . (22)

Consequently, the heat balance (20) reduces to

r' —2A —/3+c(1 —r')a/rr'=c( —1+ 1/St) . (23)

Os—-—
( —', )yr ' [1+3[(x' )l(y r ) 1]/2], —

0~ =1+erfcI yr' &2/3a[1+(x' —yr ~ )]/(2yr )] /erfc(r'~"y&2/3a)

exp[ r'(x' ——yr ~ )/a] exp I
—[(x' —yw )/&6ar] ]

1+(x yr i )/2yr—

(2&)

(26)

OI (x', r) = —1+exp [
—(r'/a) [x' —r(r) ]], (26a)

which differs from that of (24) by the time-dependent ve-
locity and by a preexponential factor, which in the
present case is just equal to the Stefan number St=1.
This manifest the relaxation of the interfacial tempera-
ture to its equilibrium value, contrary to the traveling-

The liquid temperature profile describes a pulse, propaga-
ting with a time-dependent velocity r', and involves three
time-dependent scales, characterizing the decay of this
pulse along the x' axis. The largest one is that of the
denominator l&(r)=r(r)=yr . The next scale is the
diffusion scale lz(r) =&6ar, associated with the "ampli-
tude" exp[(x' —yH~ )/&6ar]. The shortest length scale
13(r)=3ar' /2r is that of the wave part
exp[ —(r'/a)(x' r)]. It is this scale th—at dominates the
spatial decay of the liquid temperature profile and hereby
enters the enthalpy balance (23). Thus, effectively, the
liquid temperature profile is dominated by the wave-type
behavior

wave-type solutions for St & 1. It is worthwhile mention-
ing that the solution (26) stands in agreement with the an-
satz suggested in [4] and [6] within the phase-field ap-
proach.

V. DISCUSSION

Let us compare the above results with those of [15] and
[16]. In terms of dimensionless variables the overall heat
balance, stated in [16], is identical to Eq. (23) with A =0,
c = 1, a = 1. It implies a uniform solid temperature
Os = r' and assumes —that the decay length of OL (in
terms of g) is 1/rr'. At short times the nonuniformity of
Oz in the solid is indeed negligibly small, but the decay
length of 01 is of the order 1/&rr' [see Eq. (1S)]. At long
times our results for c =&x=1 are identical to Oswald's
for St& 1. For St(1, the long-time solution developed
above tends to the similarity solution of the Stefan prob-
lem, corresponding to the parabolic law r =y~'
Oswald's solution also yields r =y ~', but with a
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different value of y. For St = 1 and 3 =0, c =a = 1, as-
sumed in [16], Eq. (23) yields r =(—,

')'~ r, whereas the
heat balance at the interface, Eq. (9), gives r =(—,

')'~ r ~ .
This inconsistency is due to the nonuniformity of t9&,

neglected in [16]. It does not occur in our analysis [see
the term —2A /3 in Eq. (23)].

The long-time asymptotic solutions for R(t) derived
above generalize those of [15], developed within the one-
phase model (k+=0), and ignoring the temperature
dependence of the latent heat. For a uniform initial un-
dercooling with St & 1, the value of R(r) found in [15] is
1/c times smaller than that obtained in the present paper.
For St= 1, our analysis yields R(t), which is greater than
that of [15]by a factor c '~ . For St ( 1 the long-time solu-
tion for R (r) found above is identical to that of [15].

The one-phase formulation (ks =0) implies that no
heat is supplied to the solid. For the classical Stefan
problem this means T& = T*, whereas for the model with
interfacial kinetics it yields

csp f (T*—Ts)dx =acsp f R, dt
0 0

=csT* S/L*, S(t)= f odt .

(27)

The left-hand side of this equation is the difference be-
tween the amount of heat needed to raise the temperature
of emerging solid to T*, and the actual solid heat con-
tent. The right-hand side of Eq. (27) involves the entropy
S(t) produced at the interface. From Eqs. (5) and (27)
follows the one-phase formulation of the liquid heat bal-
ance,

cip f (TL —T*)dx =cs T* S/L*+pRL*(1 —St) .
R(t)

(28)

Inserting Eq. (19) for TL into Eq. (28) yields asymptotic
solutions for R (t), which generalize those of [15] for arbi-
trary values of c. These solutions for R(t) obtained
within the one-phase formulation are identical to those
derived above using the two-phase model. This can be at-
tributed to a negligibly small heat Aux into solid at long
times. Indeed, BOL/c)('~&, is of the order rr', whereas
c)6)z/c)g

& i is of the order r' for St~ 1 and is exponen-

tially small for St) 1. Equation (27) is satisfied by Ts,
found in the two-phase formulation, when St ~ 1. There-
fore, for St = 1 the heat content of the melt is proportion-
al to the entropy produced at the interface and is equal to
the difference between the heat needed to raise the solid
temperature to T* and the actual heat content of the
solid. For St&1, the solid temperature obtained within
the two-phase formulation violates Eq. (27). Yet, when
t~ ~, the solid contributions in Eqs. (5) and (28) are
small compared with the remaining terms. In this regime
Eqs. (28) and (5) are identical in the leading order, so that
the resulting long-time solutions for R (t) also coincide.

To summarize: We derived the short-time and the
long-time asymptotic solutions for the temperature fields
and for advancing fronts. The short-time regime is deter-
mined by the effective Stefan number St', which accounts
for the temperature dependence of the latent heat. At
this stage, the heat diffusion in the solid is negligible. At
long times, the profiles of temperature for the diffusion-
dominated (St(1), the kinetics-dominated (St) 1), and
for the critical (St= 1) growths follow as particular limits
of the general expressions for the liquid and for the solid
temperatures. The heat Aux into solid diminishes in the
course of the process and the long-time asymptotic solu-
tions can be treated within the one-phase formulation.
For St&1 the present solution tends to the similarity
solution of the corresponding Stefan problem. For St=1
the solid temperature is not uniform. This nonuniformi-
ty, and the temperature dependence of the latent heat,
affect the interface propagation, which advances as
R (t)=[9al cL "/8a c]L' t . For St= 1 the liquid tem-
perature profile exhibits a wave-type behavior. This wave
decays in space on the shortest (kinetic) scale, whereas its
amplitude decays on the diffusional (long) scale. One of
the peculiarities of the case St = 1 is the proportionality of
the sensible heat content of the melt to the heat associat-
ed with the entropy production at the interface. For
St) 1 the long-time solution tends to the asymptotic at-
tractor of the traveling-wave type [7], propagating with a
constant velocity: R (t) =c(St—1)(L*/ac~ )r
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