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Planar density-functional approach to the solid-fluid interface of simple iiguids
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A planar formulation of the weighted-density approximation is applied to the solid-Quid interface of
simple liquids. Computational requirements are reduced from the previous theory through definition
of a one-dimensional weighted density that recognizes the planar symmetry of the interface. After
finding good agreement with hard-sphere Monte Carlo results, the approach is extended to attractive
systems, in particular, the Lennard-Jones Quid. This system provides a stringent test of the model
due to its long-range interactions; it is a well-studied example of systems whose density difference
varies with temperature. Interfacial tensions are determined for both the solid-liquid and solid-
vapor regions of the phase diagram, and reasonable agreement is found with molecular-dynamics
simulations at the triple point.

PACS number(s): 68.45.Ws, 82.65.Dp

I. INTRODUCTION

Since the first simulations of the hard-sphere, fluid-
solid transition in 1968 [1, 2], there has been tremen-
dous interest in entropically driven freezing processes.
Despite this activity, successful analytic descriptions of
hard-sphere crystallization have remained elusive. Re-
cently, density-functional theory has provided a means to
describe the structure, energetics, and phase coexistence
of the hard-sphere solid. In addition to its facility with
the hard-sphere fluid-solid transition, density-functional
theory has allowed description of interfaces and other in-
homogeneous systems through the principles of liquid-
state theory. In this paper we present a tractable ap-
proach to the hard-sphere Huid-solid interface and apply
this approach to a model system of Lennard-Jones par-
ticles.

While there are a number of implementations of
density-functional theory for studying phase transitions,
all of them seek to describe the structure and properties
of the solid phase by using information known about the
Huid. Several excellent reviews of the difFerent density-
functional approaches have recently appeared [3—8]. In
one such approach, Curtin and Ashcroft [9] define a
weighting function which links the solid and liquid states.
This approach, known as the weighted-density approxi-
mation (WDA), involves the determination of a spatially
variant weighted density where fluid properties approxi-
mate those of the solid. This method has been effective
in predicting solid properties and phase coexistence, but
its application to more complex problems has been hin-
dered by the computational requirements in the determi-
nation of weighted densities. To overcome these difBcul-
ties, Denton and AshcroR have developed the modified
weighted-density approximation (MWDA) [10]. In con-
trast to the WDA, this approach requires only calculation
of a spatially invariant weighted density and significantly
lowers computation time. Hard-sphere Huid-solid results
for the WDA and MAZDA agree quite well with Monte
Carlo calculations [2].

II. DENSITY-FUNCTIONAL THEORY'

VA begin by separating the total Helmholtz free energy
of the solid phase into three components

I" [p) = F~[p]+F. [p]+F. t[p] (1)
representing the ideal, excess, and external field contri-
butions to the total free energy. Henceforth, we set the
e~ternal field contribution to zero. The ideal term can be
calculated for any given density distribution p(r) from

+~[p] =P ' dr p(r) (In [p(r) As] —1j, (2)

In order to study the structural details and energetics
of the solid-liquid interface, one must determine the ap-
propriate weighted density to model each density through
the interface. This can be done with the WDA [11,12];
however, the calculation requires tremendous computa-
tional effort making it impractical for complex situations.
We are interested in systems including finite interparticle
interactions where the densities of coexisting phases will
depend on temperature. In this situation, the interfa-
cial structure and energy must be determined for a vari-
ety of temperatures, significantly increasing the required
amount of computation and motivating us to develop a
tractable approach to describe the interface. Encouraged
by the success of the MWDA in decreasing the computa-
tional requirements of the WDA, we introduce a planar
weighted-density approximation (PWDA) to describe the
interface. Recognizing that the average density is invari
ant along the plane of the interface, we reduce compu-
tational requirements by averaging within the plane in
the same manner as the MWDA. Before introducing this
approach we first review the WDA and MWDA. We then
apply the PWDA first to the bulk Huid-solid transition
and then to the hard-sphere interface. Finally, we apply
the PWDA to a model system whose coexisting densities
vary with temperature in a description of the Huid-solid
interface for I ennard- Jones molecules.
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where P = I/kT and A is the deBroglie wavelength, and
the total excess free energy can be expressed as the sum
of local contributions

+-[p] = drp(r)@(r [p])

ducing in the k = 0 case to

—P 'co(k = 0; po) = 2@o+popo'.

B. Modified weighted-density approximation

(9)

where @ is the local excess free energy per particle.

A. Weighted-density approximation

Following Curtin and Ashcroft [9], we then approxi-
mate the local excess solid free energy per particle with
the excess free energy per particle of a homogeneous fiuid
evaluated at some effective liquid density p,

y MWDA[p] ~@ ( ) (10)

where N is the number of particles and with the weighted
density determined from

The MWDA [10] differs from this approach in that the
excess Helmholtz free energy is calculated from a spa-
tially invariant weighted density

~WDA
[ ] dr p(r) @o(p(r) )

1
p N drp(r) dr'p(r')tu(r —r', p).

where the effective liquid density is a weighted average of
the local solid densities in the vicinity of r. In the WDA,
the spatially variant effective liquid density is defined by

Using the normalization condition on ur [Eq. (6)] and
imposing the exact fluid free energy in the homogeneous
limit [Eq. (7)] we obtain for ur

dr'p(r') to (r —r'; p(r) ), co(»' Po) = 20oto(k; po) + 4,oporto (12)

where the weighting function tu has been introduced with
the normalization requirement

drto(r —r'; p) = 1 (6)

and is determined by requiring the exact two-particle di-
rect correlation function to be recovered in the homoge-
neous limit indicated by a subscript 0,

This equation satis6es the compressibility equation, re-

Solving for to is most readily done in Fourier space, lead-
ing to the following differential equation where deriva-
tives are taken with respect to density and the free ener-
gies are evaluated at po

—P 'co(k; po) = 2@ttU(k; po) + po goto'(k; po) .
0po

This equation for to(k, p) is easier to solve than the WDA,
being proportional to the direct correlation function (for
nonzero k) and not involving the solution of a nonhnear
differential equation. Both the WDA and the MWDA
compare favorably with Monte Carlo results for hard
spheres (see Table I), but the MWDA requires a great
deal less computation and is therefore the preferred ap-
proach for the study of the transition from liquid to solid
[3, 7, 8, 13—17].

C. Planar weighted-density approximation

In systems such as the solid-fluid interface where the
bulk density varies with position, one cannot apply the
MWDA because of the need for a spatially varying
weighted density. Curtin [12] has applied the WDA to
the interfacial problem with good results but with signif-
icant computational effort. %'e have attempted to lower
these requirements while still retaining the physical ap-
proach to the problem by incorporating the MWDA into
the interface. This is done by realizing that the bulk den-
sity parallel to a planar interface remains constant. In

TABLE I. Comparison of various theories for hard-sphere phase coexistence [I is the Lindemann
parameter, (3jo.a ) ~ ], including molecular dynamics (MD), Monte Carlo calculations (MC), the
effective liquid approximation (ELA), the self-consistent ELA (SCELA), and the generalized ELA
(GELA).

MD [1]
MC [2]

GELA [29]
SCELA [29]

ELA [30]
WDA [9, 12)

MWDA [10,31]
PWDA (this work)

Fluid
density

Pfo
0.949
0.943
0.945
0.970
0.993
0.881
0.912
0.882

Solid
density

p, o

1.048
1.041
1.041
1.070
1.083
1.02
1.044
1.026

Density
difference

Dpa.

0.098
0.097
0.095
0.099
0.090
0.139
0.132
0.144

Pressure
PPo
12.1
11.7
11.9
13.3
16.1
9.5

10.1
9.5

0.126
0.100
0.084
0.074
0.101
0.097
0.100
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the spirit of Denton and Ashcroft's approach to lowering
the computational requirements for WDA models of bulk
systems, we will approach the interface with a planar-
averaged spatially variant weighted density that will sig-
nificantly decrease calculation costs. Other authors have
succeeded in modeling systems such as a hard-sphere
fluid next to a hard wall [18—20] with a one-dimensional
weighted density; however, efforts to describe the freez-
ing transition with such a weighted density have not, to
date, led to a stable solid. We begin by expressing the
excess free energy in terms of the planar-averaged density
p(z) and a planar-averaged free energy

F-[pl = dry(z)@(z)

1
p(z) = — dz dy p(r).

We now approximate this "local" free energy with that
of a homogeneous fluid evaluated at the planar weighted
density p(z)

F,„[p]= drp(z)$0(p(z)),

determined self-consistently from

Idx dy p(r) J' dr'p(r') m(r —r', p(z))jdx dy p(r)
where once again the weighting function is determined
from the normalization condition [Eq. (6)] and the re-
quirement on the limiting behavior [Eq. (7)]. In Fourier
space we obtain

—P 'co(k) po) = 2$0u)(k) po)

+ bk„,opo @0m (k; PO), (17)
cjpa

an expression obeying the compressibility equation [Eq.
(9)] and reducing in the k~~ = 0 case to the WDA weight-
ing function. When k~~ is nonzero we obtain the MWDA
weighting function.

to the homogeneous fluid. We calculate both @p(p) and
co(k; p) with the Percus-Yevick approximation [10] allow-
ing determination of the solid excess free energy for a
given n and bulk solid density p, . The procedure we
follow is to minimize the total free energy for a given
solid density with respect to a. A global minimum oc-
curring at a nonzero a indicates a stable solid phase. We
therefore determine both the stable n and excess free en-
ergy corresponding to a given solid density. The total
free energy is found by adding the ideal and excess con-
tributions. Phase coexistence occurs when the chemical
potential p and pressure P of the solid and fluid phases
are identical:

g(p &l~j
)p=

crp
(»)

g( &fuj
)P = p(p —F[p]/N) = p (20)

The results of these calculations for the WDA, the
MWDA, and the PWDA are shown in Table I along
with results from simulation and several other versions
of density-functional theory.

IV. THE INTERFACE

A. Interfacial tension

»lp(r)] = F[P(r)] —P drP(r) + P&

In order to determine interfacial properties we first cal-
culate bulk properties including the pressure, chemical
potential, solid localization parameter, and the densities
of the coexisting bulk phases following Sec. III. While p
and P remain constant throughout the interface, the co-
existing densities define the boundary conditions on the
interfacial profile. We then determine both interfacial
structure (width) and interfacial energy (surface tension)
by minimizing the excess grand potential »

III. THE BULK FLUID-SOLID TRANSITION

In order to solve these equations for the solid free en-
ergy we must first model the solid structure. As originally
proposed by Tarazona [21], we assume that the solid is
an fcc lattice with a density distribution represented as
the sum of normalized Gaussians

Applying Eqs. (1) and (2) and the PWDA we obtain

»[p( )] = F.'. '"[p( )] + P&

+ drp(r) [P (ln [p(r) A ]
—13 —p]. (22)

Finally, after applying Eq. (15) and making the following
definitions

() =(™)) (18a)

A ]
f;d (z) = — dx dy p(r) ln p(r), (23)

where R are the Bravais lattice vectors for an fcc lattice,
or in Fourier space as

p = Py, —(lnA —1)

we obtain
p(r)=p +) p«

GQO

(18b) p»
dz(P(z) [P&o(p(z)) —u] + f d (z) + PI'3.

where G are the reciprocal lattice vectors for an fcc lat-
Q2 4tice and pG.

—= p, e + ~ . The parameter a. describes the
structure of the solid; the higher the value of n, the more
localized the structure and a value of zero corresponds

(25)

We now minimize LA with respect to the interfacial
width subject to the limiting conditions on the bulk den-



PLANAR DENSITY-FUNCTIONAL APPROACH TO THE SOLID-. . . 1215

sities at either side of the interface. This provides the
interfacial tension as

min

B. Density parametrization

To model the interface we follow Curtin [ll, 12] in his
application of the WDA to the hard-sphere interface. We
represent the solid as the sum of Fourier components as
before, but now allow these components to decay as we
make the transition from solid to liquid along the z di-
rection across the interface:

flUld

solid

P(r) = p&+(P Pi)fp(z)+) P~fG(z)e' '
where

'1, iz] ( zp

fG(z) = & z[l+cos(n'&,")], zp ( hz) ( zG.

0, za([z/
and zp is the position of the solid-fluid interface bound-
ary, Az the interface width, fp(z) = fG, (z), and AzG =
(Gi/G) b,z = z& —zp. While Eq. (28) actually cor-
responds to a slab geometry, zp is large enough to ac-
curately represent bulk solid properties within the slab.
The decay rate of the higher-order Fourier components
is described by v and will be set equal to 0.25, the value
shown to provide the minimum free energy for the hard-
sphere interface [12]. Figure 1 shows an example of this

]

FIG. 1. Interfacial profile for Dz/6 = 3, p, cr = 1.0
3= 2— ) 8 ~

p~cr = 0.9, no. = 20. A low value of a was chosen to better
illustrate the transition &om liquid to solid.

interfacial profile parametrization. We can now express
the weighted density in the WDA in terms of the recip-
rocal lattice vectors and the Fourier transforms tp(k; p)
and fG. (k):

1
p(r) = pi+(p. —Pi)

27r
dke '"'tv(k„p(r)) f (—k) + ' ) e('(G-*+G»-G'~' )

27r
C,

dke '"'iran((G + G„+k ) ~;p(r)) f~(k+ G, ).

A similar expression has been developed for the PWDA
in terms of this density parametrization and is presented
in Appendix A along with some calculational details.

C. Hard-sphere results

We choose to study the interface along the densest face
(111)of the close-packed fcc array, and define the z direc-
tion J to it. We normalize z with the distance between
planes, 6 = a/~3, a being the fcc lattice constant equal
to (4/p, )i~s. We see excellent agreement between the
PWDA and both the WDA and the MWDA in a cal-
culation of the hard-sphere order-disorder transition (see
Table I). All three of the theories agree reasonably well
with Monte Carlo simulations, justifying their use in de-
scribing the hard-sphere system.

There exist few studies of the hard-sphere inter-
face; however, we compare results from the planar-
averaged approach to those obtained using the fully

l

three-dimensional WDA in Fig. 2. We find that the
two theories agree extremely well with p cr /kT =
0 63 y 0 02 /zwD+/$ —3 4 and ppw g z/kT
0.60 + 0.02, Az D /b = 3 —4. The interfacial tension
and thicknesses determined from the PWDA are equiva-
lent to those from the WDA within computational error
described in detail in Appendix B.

D. The Lennard-Jones fluid

We wish to extend the treatment of the interface to
include solidification in systems having attractive inter-
actions such as those modeled with the Lennard-Jones
potential:

(30)

where T" = kT/e, s is the attractive 'well depth, and a'

the distance r where the potential equals zero.
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5.5—

5.0—

4 5—

3.5—

2.5—

T* = 0.36

T' = 0.40

T* = 0.44

weighted densities and their associated free energies. We
then calculate f, tt(z) and f;d(z) for this interfacial pro-
file and determine the interfacial tension using Eq. (37).
By minimizing with respect to the interfacial width we
determine simultaneously the equilibrium structure and
tension of the interface. It must be noted that in the case
of very low Huid densities, the value of the Fourier decay
parameter v must be set equal to zero to avoid negative
local interfacial densities. We show results of these cal-
culations in Fig. 4 and summarize the interfacial tensions
in Table II.

2.0—
V. DISCUSSION

T* = 1.15

2
7&I T* —0 44
kT

0.9—

0.8—

Dz/P

[e
—a(z —1} —b{a—ii]

T~r (38)

where a = 14.735, b = 2.6793, Z = 2.0199, and x = r/o.
In addition, we approximate the solid hard-sphere radial
distribution function with that for a liquid at an equiva-
lent bulk density, which allows for a smooth transition in
our treatment of the attractive contribution as we move
across the phase boundary in interfacial systems. Us-
ing this approach we have computed the phase diagram
shown in Fig. 3.

Having determined bulk properties p, P, and the solid
localization parameter n, we assume an interfacial width
and appeal to the PWDA to determine the interfacial

FIG. 4. Calculated interfacial tensions vs interfacial width
for both the solid-liquid and solid-vapor interface (note the
change in scale).

The ability of this rather simple approach to describe
the bulk properties of the Lennard- Jones (LJ) Huid is
demonstrated in Fig. 3 when the phase diagram is com-
pared with Monte Carlo simulation and the higher-order
perturbation theory approach of Curtin and Ashcroft
[25]. We use Barker-Henderson first-order perturbation
theory [Eq. (31)] to accurately predict Huid properties
as shown by the excellent agreement of the vapor-liquid
transition at low T*. The solid-liquid phase boundary,
however, is shifted to somewhat higher densities due to
the simplifying assumptions in the solid radial distribu-
tion function determining the attractive perturbation to
the solid free energy, an approximation best applied to
short-range potentials. Despite this shift in the phase di-
agram, the fractional density change upon freezing com-
pares well to simulation as T' is lowered and the triple
point approached. As we discuss below, the interfacial
tension appears to reQect the interfacial structure and
thus depends on the densities of the two phases. There-
fore we believe that this density difference will be the
dominant influence on p and the shift in the absolute po-
sition of the phase boundary will have a secondary effect
on the results.

It is worthwhile to point out another possible approach
to the determination of the Lennard-Jones free energies.
de Kuijper et aL [13]have used the MWDA to determine
bulk properties of LJ Huids via the direct determination
of the direct correlation function. Using the HMSA [26],
a combination of the hypernetted chain and mean spher-
ical approximation closures, they solved the Ornstein-
Zernike equation at a particular T', determined c(r), and
then incorporated it into the MWDA to determine the
excess free energy. Unfortunately, they could not find

TABLE II. Calculated interfacial tensions for the Lennard-Jones solid-liquid (SL) and solid-vapor (SV) systems compared to the triple-point
molecular-dynamics results of Broughton and Qiimer [27l.

1.15
0.617
0.44
0.44
0.40
0.36

0.617 MD
0.666 Curtin [12]

Transition

SL
SL
SL
sv
SV
SV
SL
SL

Interface
width
Dz/6
3—4
3—4
3—4

2
2
2

~ 5—6
3-4

Fluid
density

py 0'3

0.992
0.962
0.950

1.7 x 10-5
3.6 x 10
5.1 x 10

0.834
0.882

Solid
density
ps~

1.104
1.063
1.046
1.046
1.060
1.073
0.947
1.015

Density
difference

A po.

0.112
0.101
0.096
1.046
1.060
1.073
0.113
0.].33

Inter facial
tension
p~ /1T
0.87 + 0.02
0.82 + 0.02
0.83 + 0.02
2.38 + 0.01
2.72 2 0.01
3.15 + 0.01

0.57
0.65

po /e
1.00 + 0.02
0.51 + 0.01
0.37 + 0.01
1.05 + 0,01
1.09 + 0.01
1.13 k 0.01

0.35
0.43
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solutions to the MWDA at temperatures T* & 5.0. To
overcome these difficulties, they used perturbation the-
ory and dealt with the attractions in a mean-field fashion.
This approach provided good agreement with simulation.
This study demonstrates the utility of perturbation the-
ory in describing low-temperature Lennard-Jones solids
and the limitations of the MWDA in describing long-
ranged interaction potentials such as the Lennard-Jones.
These limitations will naturally apply to the PWDA and
its ability to describe the interfacial phenomena of simple
fluids.

Looking initially at the solid-liquid boundary of the
phase diagram we see little variation in the magnitude
of the interfacial tension per /kT as we vary the strength
of the interaction s (see Table II). The variation we do
see corresponds to the small stuctural changes induced
by the decreasing density difFerence between coexisting
phases as we lower temperature. This indicates a small
direct influence of attractions on the interfacial tension
but a large indirect influence in those regions of the phase
boundary where small variations in interaction energy
lead to very large structural changes. For this reason
it is sensible to compare interfacial tensions normalized
on the temperature kT rather than the strength of the
attraction z.

The influence of structure on the interfacial tension
is dramatically shown as we lower the temperature be-
low the triple point where the coexisting density difFer-
ence grows tremendously, reflecting the transition from
solid-liquid to solid-vapor coexistence. This transition
is accompanied by a threefold increase in the calculated
surface tension. In addition to the increase in the mag-
nitude of the surface tension, solid-vapor systems show
different dependence on the interaction parameter. In
the solid-liquid systems, we see little change in the in-
terfacial properties with the strength of the interaction.
Below the triple point, however, small changes in e cause
significant increases in the interfacial tension as shown
by the leap from paz/kT = 2.38 6 0.01 at T* = 0.44 to
po/kT = 3.15 +. 0.01 at T' = 0.36. This decrease in
the temperature and corresponding large increase in sur-
face tension is accompanied by a relatively small increase
in the coexisiting density difFerence from 1.046 to 1.073.
This arises from the high energetic cost of adding mass
to the solid-vapor interface resulting in a narrowing of
the interface. We find a width of 2 lattice planes for the
solid-vapor interface and 3-4 lattice planes for the solid-
fluid interface, reflecting the weak dependence of p on Lz
in the solid-fluid case. This compares well to Curtin [12]
who found that the LJ interfacial width is little changed
from the hard-sphere interface value of 3-4 lattice planes.

We now compare our calculated values of the surface
tension to the molecular dynamics result of Broughton
and Gilmer [27]. They performed simulations of Lennard-
Jones systems at their triple-point conditions (T*
0.617), determining a solid-fluid interfacial tension of
per~/s = 0.35 +0.02. Using our method under our triple-
point conditions (T* = 0.44) we calculate a value of
0,37+0.01. This agreement, however, is somewhat fortu-
itous. Comparing the interfaces at T* = 0.617 shows that

our ppw++o2/kT = 0.82 + 0.02 exceeds the molecular-
dynamics (MD) result pM+cr2/kT = 0.57 6 0.03, while
Curtin estimates a value of p cr2/kT = 0.65 at T* =
0.666. Though we overestimate the molecular-dynamics
results, agreement is quite good considering the difficulty
in determining such interfacial properties.

The Lennard-Jones system provides a rigorous test of
this model because of its long range. One reason for the
discrepancy in our results for the Lennard-Jones system
is the fact that the long tail in the potential extends
beyond neighboring layers in ordered regions. We there-
fore expect higher precision and better results in systems
with shorter-ranged interactions. We are currently ap-
plying density-functional theory and the PWDA to the
study of phase transitions induced by the addition of non-
adsorbing polymer in colloidal systems. The interaction
potential in these systems is of finite range and has been
previously studied using perturbation theory [28] making
it an ideal experimental system for study using our ap-
proach. We are confident that we are now able to study
the interfacial properties of any system whose interaction
potential is well characterized and amenable to study via
perturbation theory.

V'I. SUMMARY'

We have introduced a formulation of the weighted-
density approximation ideal for the study of the planar
interface. This model lowers computational requirements
over the original WDA giving nearly equivalent results
for both hard-sphere bulk and interfacial properties. We
then extend the model to simple fluids whose interac-
tions can be described by the Lennard-Jones potential
and treated via perturbation theory. We probe the in-
fluenc of interaction strength on the properties of both
solid-liquid and solid-vapor interfaces through the inter-
facial width and tension. Interaction strength has little
influence on interfacial properties until the temperature
is reduced beneath the triple point where we see both
a narrowing of the interface and a large growth in the
magnitude of p.
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APPENDIX A: THE WEIGHTED DENSITY

The planar weighted-density requires a self-consistent
solution of the following:
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dkm(k; p(z))e'"') 6~~, ,opG fG. (k+ G, )
G

p(z) = pt + (p, —pi) dke'"'u(k; p(z)) f ( k—)
27r

pi+ (p. —pi)fo(z)
2m p(z)

1+
2vrp(z)

dk) p~, fG. , (z.)e' ' ")') 6G,„G,~, p~,. va((G, II+ k )';p(z)) fG, (k+. G,,)

dk ) ) tU((G, II
+ k ) ~;p(z))

&'[[ I&') [)

where CII = (G, G„). Though this equation appears quite complex, the 6 functions in the second and third terms
evaluate to zero for most of the reciprocal lattice vectors used in the summation. In addition, we take advantage of
lattice symmetry by recognizing that for each (0 II, G, ) there is a (—C II,

—G, ) and each magnitude GII has a particular
set of (G,) associated with it. We may now reexpress the last term as

1

27rp(z)

x & ) fG, (z)pG., (1+6(Q ~~) Q) cos(G,,z) cos(kz) ) pG~[fG, (k+ G~, ) + f&, (k —G~, )j

(1 6{@~

t ~ 3 0) sin(G;, z) sin(kz) ) p~, [f~~ (k + G~, ) —fG, (k —G~, )] (A2)

where G&
——G2II + G, . The summations over G, are

over those magnitudes associated with a particular mag-
nitude of GII Th sum ove (GII) is over all magmtudes

GII and the sum over GII is over the degeneracies of these
magnitudes. Though this equation remains complex, we
must remember that the weighted density must only be
evaluated as one translates along in z and is not a func-
tion of x and y. Notice also that the summations over

G~, are z independent and need not be recalculated as
one moves through the interface.

The planar-averaged crystal (see Fig. 5), like the regu-
lar three-dimensional crystal, is characterized by regions
of very high and very low "local" densities. Those posi-
tions where the density approaches zero cause difficulty

in the determination of the weighted density due to its
normalization by p(z); however p(z) remains finite. The
contribution to the total excess free energy p(z)@e(p(z))
is also small allowing one to neglect, in practice, calcu-
lation of p(z) for small values of p(z) [taken to be p, (z)
= 0.01]. Figure 6 shows p(z)@e(p(z)), p(z), and p(z)
through one lattice plane.

—1.0

—0.8

p(z)

soli p(z)go —0.6

glllII

k I

14.6
I

3 4.8
I

15.0

z/6
15.2 1 5.4

—0.5

FIG. 5. Planar averaged interfacial profile for the same
parameters as in Fig. l.

FIG. 6. The weighted density p(z), the planar-averaged
density p(z), and the local contribution to the excess free
energy p(z)@0(p(z)) for hard spheres with p, a = 1.026,
p~o = 0.882, and oo = 120.0 (zo/6 = 15.5).
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APPENDIX 8: ERROR ANALYSIS

We are interested in estimating the error in our com-
putations of the interfacial tension,

min

«(p(z) [p@o(p(z)) + f:."(z) t ]—

Ap= 4p +0 't

p p +fatt

+AP
P~ft~fax

~ „ci'7
p ~P p j& fatt

stt+ fex gf tttt
CX p, P„P

As an example we show how the error in the weighted
density propagates:

8 f 8
dzp(z)4o(p(z))

P p+f tt aP

= @o(p,) dz p(z) (in the worst case)

= Wo(p. )Lp.
where K is the interfacial width and p the average of
the two asymptotic densities. Similarly,

BP
p

Bf
&V p, P,f.« ~fex

Bp= Pa,V
fatt

leading to

p&~ = L (p. [Wo(p.)&p+ &6+ &f:."]+p&P'I.

(B4)

+fd(z)+ pp).
Neglecting any numerical error involved in the minimiza-
tion of the interfacial energy, we express Ap in terms of
the individual errors

TABLE III. Calculated pressures at T' = 1.15 compared
to the molecular-dynamics results of Hansen and Verlet [32].

0.65
0.75
0.85
0.92
1.00
1.05

PPf /P

0.306
1.165
2.860
4.723

ppMD/p ppPWDA/ ppPWDA/

0.357
1.269
2.933
4.778

4.07
6.05

3.81
4.88

For hard spheres p, = 1.026 and pl = 0.882; therefore,
p „=0.954, P@e(1.026) —15. The accuracy in our
numerical calculations are Alt = 0.001, PAP = 0.001,
Ep = 0.0002, and for hard spheres 4fett = 0. Therefore

PAp L(0.954[15.0(0.0002) + 0.001] + 0.0 + 0.001)
= L(0.005)

A typical interfacial width is 4, leading to an estimated
average error of PAPev 0.02.

To estimate the error for the Lennard-Jones interfa-
cial tension we must concern ourselves not only with the
computational error associated with the integration in
fe„" (which is quite small), but also with error in our ap-
proximation for the solid structure and the truncation in
the free-energy expansion. We can compare calculated
results for the pressure with those determined by the
molecular-dynamics simulations of Lennard-Jones fluids
by Hansen and Verlet [32] (see Table III).

As expected, we see good agreement with the calcu-
lated fluid pressures, even at high densities. Solid pres-
sures, however, are underpredicted leading to the shift
in coexistence in the phase diagram. Unfortunately, we
cannot predict how these errors in the pressure will be
reflected in the interfacial tension; however, it would ap-
pear from our calculations that p is not directly depen-
dent on the pressure but rather on the difference between
the predicted coexisting densities.
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