
PHYSICAL REVIEW E VOLUME 47, NUMBER 2 FEBRUARY 1993

Growth of a single drop formed by diffusion and adsorption of monomers
on a two-dimensional substrate
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We study a single, motionless three-dimensional (3D) drop growing by adsorption of diffusing mono-
mers on a 2D substrate. A simple treatment based on a quasistatic approximation predicts that the ra-
dius of the drop increases as [t/ln(t)]'~' in the long-time limit. By applying the method of matched
asymptotic expansions we then con6rm that the quasistatic approximation provides a dominant asymp-
totic behavior. We also show that the typical distance from the surface of the growing drop to the
nearest surviving monomer scales as [ln(t)]'~ and discuss the distribution function for that minimum
distance.

PACS number(s): 64.70.Fx, 64.60.Qb, 68.45.Da

I. INTRODUCTION

When a vapor condenses onto a nonwetting substrate,
the droplet pattern that emerges after the heterogeneous
nucleation process evolves via several mechanisms, in-
cluding the growth and the diffusion of individual drop-
lets and the coalescence of contacting droplets. This and
similar processes in which the coalescence of liquid drop-
lets plays an important role are common in many areas of
science and technology [1,2]. The kinetics of patterns
formed by growing and coalescing droplets is an area of
active recent research, both experimentally and theoreti-
cally [3—11]. To understand the kinetics of these process-
es several simplified models have been developed.

Gne such model [6,11] consists of a single, motionless
three-dimensional (3D) drop formed by diffusion and ad-
sorption of noncoalescing monomers on a 2D substrate.
This model was introduced for a regime in which mono-
disperse diffusing droplets are widely spaced from one
another and only the coalescence with large immobile
growing trap is important. By using a static approxima-
tion for solving the diffusion equation, an approximate
description of the long-time behavior has been reported
recently by Steyer, Guenoun, Beysens, and Knobler [11].
The purpose of this paper is to present a more accurate
description based on a quasistatic approximation and to
show that this approximation provides a dominant
asymptotic behavior.

While the spatial density of monomers surrounding a
trap of fixed radius can be easily found by solving the
diffusion equation subject to appropriate boundary condi-
tions, the present problem involving a moving boundary
requires a more complicated analysis. Moving boundary
problems in the context of the diffusion equation or heat
equation are often referred to as Stefan problems
[12—14]. The only exact solutions for these problems
have been found by exploiting the existence of a similari-
ty variable like rt '~; see, e.g., [12—14] and references
therein, and a recent study [15,16]. In the present prob-
lem one can find an exact scaling solution only when the
dimensionality d of droplets is the same as the dimen-

II. GROWTH EQUATIONS

Consider an immobile growing drop, which will also be
called a trap, to distinguish it from other droplets. As-
sume that the trap is located at the origin. The physical
processes occurring during the coalescence event are very
complicated. The resulting position of the trap after such
an event is somewhere between its position before the
coalescence and the position of the center of mass of the
system of coalescing trap and droplet [5], but we will ig-
nore these random, and small for large trap, factors. We
assume that the trap is initially surrounded by the homo-
geneous density C of monodisperse droplets, monomers
having the volume V and diffusing with the diffusion con-
stant D. Then the density C(r, t) of droplets at point r
and at time t is described by the diffusion equation

C(r, t)=D rC(r, t—) at r ~R,a & a a
dt r Br Br

subject to the initial and boundary conditions

C=C =const and R =a at t=0, (2)

sionality of a substrate. Such a solution in one dimension
has been derived by Harris [15]. It may be readily gen-
eralized to an arbitrary dimension d. However, the
present problem of a 3D drop growing on a 2D substrate,
as most Stefan problems, may be treated only by approxi-
mate or numerical methods.

In Sec. II we define the model and write governing
equations. In Sec. III we apply a quasistatic approxima-
tion for finding the spatial density of monomers sur-
rounding the drop and calculating the radius of drop. In
Sec. IV we derive a more subtle feature of the distribution
of monomers —the nearest-neighbor distance from the
drop. Then in Sec. V, by employing the method of
matched asymptotic expansions, we give a more complete
treatment of the problem and confirm that the quasistatic
approximation indeed provides the dominant contribu-
tion to the long-time behavior.
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C=0 and V 2m.ra BC
Br

=A,R at r =R, (3)
2dR

dt

p —1 ln(Dt /R )

R 2

where R (t) is the radius of immobile growing trap, a is
the initial radius, and k is the nondimensional factor re-
lated to the contact angle. Note that the former condi-
tion in Eq. (3) is the appropriate adsorption boundary
condition on the surface of the perfect trap while the
latter condition in (3) is obtained from the mass conserva-
tion.

III. QUASISTATIC APPROXIMATION

We now employ the quasistatic approximation [17,18]
for solving the Stefan problem (1)—(3) with the moving
boundary at r =R (t). In this approximation one ignores
the explicit time derivative in Eq. (1), and the time depen-
dence in this equation is accounted for by a moving exter-
nal boundary at r =(Dt)'~, in addition to the internal
boundary at r =R (t). Thus we must solve the Laplace
equation in the active region R (t) ~ r ~ (Dt)'~ and then
match this solution with the boundary values C=0 at
r =R (t) and C =C„at r =(Dt)'~ . By a direct compu-
tation, we find

L;„=[ln(Dtla )lvrC )'~ [In[in(Dt/a2)]J

at large times [18], i.e., apart from a numerical factor, it
differs from our result (9) only by the extremely slowly
varying double logarithmic factor.

Consider now p (L, t), the probability density function
for distance L;„. Applying the Hertz formula [21] in
two dimensions, one has

p(L, t)=2m(R +L)C(R +L, t)
R+L

Xexp — 2m.rC r, t dr
R

Substituting the quasistatic result (4) into (10) yields

(10)

It can be seen that (p —1) tends to zero as t tends to
infinity. Therefore, expanding the left-hand side of Eq.
(8) and using (6), one can find the characteristic minimum
distance at large times,

L;„=[ln(r)/6~C ]'

For an ideal trap of Jinxed radius a, the characteristic
minimum distance behaves as

C(, )=2C„
ln(Dt /R )

Substituting this into the growing rule (3) yields

(4)
p(L, t)=477C R

ln( )

ln(Dt/R )

4irDVC„[ln(Dt/R )] '=kR 2dR X exp p lnp-
ln(Dt/R )

Solving (5) in the long-time limit gives
1/3

R(t)= A
ln(r )

where A =( 63m. V/A, )'~ and r=C Dt is the dimension-
less time.

IV. NEAREST-NEIGHBOR DISTANCES
OF MONOMKRS FROM THE TRAP

It is also possible to describe more subtle details of the
growth process; e.g. , the distance to the nearest surviving
monomer from the trap. For an ideal spherical trap of
axed radius a, the density distribution function of that
minimum distance has been discussed in a number of re-
cent studies [18—20]. Following the lines of [18],we pro-
vide now a long-time asymptotic analysis of the density
distribution function of the minimum distance of
diffusing monomers from the growing trap. First, we
compute I. ;„, a characteristic minimum distance from
the surviving monomer which is closest to the growing
trap. We will use the criterion

R+LI 27rrC(r, t)dr =1 . (7)
R

By inserting the expression (4) into this criterion we ob-
tain that in the long-time asymptotic limit the dimension-
less characteristic minimum distance p;„=1+L;„/R
from the center of growing trap satisfies the transcenden-
tal equation

where p= 1+L/R and R is given by Eq. (6). This is the
probability density function at large times.

Compute now the average distance of the nearest sur-
viving particle from the surface of the trap,

(,L) =I Lp(L, t)dL .
0

(12)

By inserting (11) into (12) we obtain the long-time asymp-
totic limit,

(,L ) = [in(~)/24C„]'~ (13)

We see that L;„given by (9) is not equal to the average
distance (L ) given by (13), though asymptotically these
quantities scale in the same manner.

V. ASYMPTOTIC SOLUTION
OF GROWTH EQUATIONS

Return now to the original problem of solving Eqs.
(1)—(3) and discuss the validity of the quasistatic approxi-
mation. First, we compare our approach with another
one that has been developed by Steyer et al. [11]. They
used the stationary solution

rC(r, t)= ln2' R
(14)

which obeys the absorbing boundary condition,
C(R, t) =0, and the boundary condition of constant Aux,
[2m.rD(BC/Br)]~ =4. Combining (3) and (14) one can
find the following long-time behavior R (t)= At', with
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2 =(3@V/A, )'~ . Thus the asymptotic growth law pre-
dicted by the static approach differs from the quasistatic
answer by a slowly varying logarithmic factor. Further-
more, one can observe a more serious deficiency of the
static approach, namely, the appearance of an unknown
constant @ in Eq. (14) and in the expression for R (t). In
short, the inaccuracy of the static expression (14) for the
density at all r ~ R (t) leads to the inaccuracy of R (t).

Observe now that the quasistatic expression (4) for the
density also becomes inaccurate, but only at large dis-
tances from the trap. In fact, the quasistatic approxima-
tion (4) provides an accurate description at
R (t) &r «(Dt)' . The essential point is that for the
determination of the radius of the trap we require the
density distribution only near r =R ( t); see Eq. (3).
Therefore the asymptotic growth law (6) is correct.

We confirm that the quasistatic approximation really
provides the dominant contribution to the long-time
asymptotic behavior at R (t) & r «(Dt)'~ . We will do
this by using the method of matched asymptotic expan-
sions [22]. Applying this method one should divide the
whole region r ~R (r) into the inner region,
R (t) & r «(Dt)', and the outer region, r ))R (t). Then
we will employ the inner variable g= r /R (t) in the form-
er region and the outer variable g=r(Dt) '~ in the latter
region, expand the solution in the inner and outer re-
gions, and finally match these expansions in the overlap
region R (t) «r «(Dt)'~ .

Introducing the inner variables (ri, t) instead of (r, t) we
rewrite the governing equation (1) as

R BC —RdR BC=D ~ ~C t 1 (15)

Because Eq. (15) does not contain any small parameter in
an explicit form, we will seek its solution as a forma1
series:

C(q, r) =C,(ri, r)+C, (ri, r)+ (16)

with Ci(g, t) « Co(Yi, t). This is the inner expansion
mentioned above. Previous results (4) and (6) suggest
that in the long-time limit terms on the right-hand side of
Eq. (15) dominate compared to similar terms on the left-
hand side. Assuming that this is valid in all approxima-
tions we find

aa a
Co(g, t) =0,

7fan an
(17a)

in the zeroth and first approximations. Solving (17) we
obtain

C,(q, r) =8 (r)ln(g), (18a)

1a a, , a dR a
C, (ri, r) =D R —R ri C, (q, r)

lian an at dt an

(17b)

C (g, t) =C,(g, r)+ C, (g, r)+ (20)

inserting (20) into (19), and solving resulting equations
with the boundary condition C (g = ~, t) =C, yields

Co(g, t)=C (21a)

C, (g, t) = 8, (t—)f g 'exp( —g /4)dg . (21b)

We determine now 8(t) and 8 (it) by matching inner
and outer solutions (18) and (21). To this end we will use
the Van Dyke matching principle [22]. We rewrite (18a)
in terms of the outer variable g, expand it in the long-
time limit, and match with (21a). Thence we find 8 (t):

C, (ri, r) =8 In[/(Dr)'"/R ]

=8 In[(Dt)' /R]+ =C
1.e.,

8 (r) =C„I in[(Dr)'~'/R (r) ]] (22)

Similarly, we rewrite the inner solution Co(ri, t)+ Ci(q, t)
in terms of the outer variable and the outer solution
Co(g, t)+Ci(g, t) in terms of the inner variable, expand
these solutions, match them, and finally derive
8, (t) =8(t).

Thus, in the zeroth approximation given by Eqs. (18a)
and (22), we have reproduced the previous quasistatic re-
sult (4). In particular, the radius of the trap in the zeroth
approximation satisfies (5) and, consequently, R (t) in-
creases as [t /In(t)]' and 8 (t) decreases as [In(t)] ' at
t)&1. Having established these asymptotics one sees
that

C, (ri, r)/C, (q, t)=r '"[In(r)] '~'«I,
C, (g, t)/C, (g, r) = [In(r)] ' «1,

thus confirming that the necessary conditions for apply-
ing the formal series (16) and (20) are satisfied. In the
first approximation the radius of the trap may be found
from the equation

2~DV B—R dB
4Ddt

1 dR
2D dt

=AR, (23)
dt

with 8(t) given by (22). A tedious analysis then shows
that the radius behaves as R(t)=RO(t)
—2m VC [A, ln(~)] ' at t ))1, where Ro(t) is the zeroth
approximation, i.e., a solution of Eq. (5).

serve that Ci (ri, t) is defined up to a solution to the homo-
geneous part of Eq. (17b), i.e., up to a term like F(t)ln(g),
but one can involve such a term to the zeroth approxima-
tion.

We turn now to the outer region. In the variables
g= r (Dt) '~ and r, the diffusion equation (1) becomes

, ac Ia ac 1 ac
'ar gag ay+2

Expanding the solution as above,

R dB
C, (ri, t)= [ii In(q)+ I —g ]+ BR (1 q), —

4Ddt 4D dt
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