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Critical points in layered systems
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Critical points that do not involve any symmetry change are shown to define a set of new universality

classes in layered systems. Extension of this problem to higher dimensions may be made in an infinite

number of ways which define continuously varying upper critical dimensions. This allows us to estimate
uncertainties on the critical-exponent values obtained in a first-order Wilson expansion. The corre-
sponding physical situations include the electric field induced chiral-smectic-C —chiral-smectic-C critical
point, the smectic- A —smectic- A critical point, but also the smectic-C —smecti"-I and smectic-
C —smectic-F critical points which have not been discovered experimentally yet. Recent experiments

provide encouraging support to the current analysis.

PACS number(s): 64.70.Md, 05.70.Jk, 64.60.Fr

I. INTRODUCTION

Phase transitions that do not involve symmetry change
are generally discontinuous. In a pressure-temperature
plane for a one-component system, they define a line of
first-order transitions, which may, however, terminate on
a point where all discontinuities vanish. This is the well-
known case of the liquid-vapor critical point [1]. The
phase-separation phenomenon in a binary mixture defines
a surface of a first-order transition in a chemical
potential's (of species one and two) temperature three-
dimensional space, which terminates on a line of conso-
lute points where again all discontinuities vanish [2].
Similar phenomena may occur in more complex systems
such as microemulsions [3] or nematic liquid-crystal mix-
tures [4]. In all these cases the behavior of the system is
governed by the Ising universality class in the vicinity of
the critical point [5], although corrections to scaling may
be system dependent and nontrivial.

The situation is di6'erent in systems for which the
long-wavelength properties are described by a displace-
ment variable. For instance, in gels, the existence of a
connected network suppresses the concentration Auctua-
tions characteristic of a consolute point and forces a
mean-field behavior [6,7].

Similar phenomena occur in crystalline ferroelectrics
[8,9]; layered systems (i.e., smectic liquid crystals) are
more original and define new universality classes. This
has been recognized already in the case of the Sm-
A —Sm-A (Sm-A denotes smectic-A phase) critical point
[10], and is generalized in this article. The originality re-
sults from the existence of qualitatively different spacial
directions as discussed in the following. Although our
calculations apply for the Sm-A —Sm-3 critical point in
the absence of any symmetry breaking field or in the pres-
ence of a transverse magnetic (electric) field for negative
magnetic (dielectric) anisotropy, we focus our attention
mainly on the Sm-C* —Sm-C* critical point to be de-
scribed below for which experimentation should be easier
[11].

It is worth stressing that the Sm-2 —Sm-3 critical
point can correspond to either an ordinary consolute
point in a one-dimensional (1D) ordered matrix [12] or
the termination of a layer thickness discontinuity line re-
sulting from incommensurability [13] (the only difference
bearing on the critical domain). As already stressed, con-
solute points in isotropic liquids belong to the same
universality class as the liquid-vapor critical point (i.e.,
Ising). One could thus, at first sight, expect the Sm-
3 —Sm-2 critical point to belong also to this class. The
coupling between layer spacing and concentration Auc-
tuations in fact generates interactions which have no
counterparts in either the liquid-vapor or the ordinary
consolute point cases. Superfluids, which can also be de-
scribed by a phase variable [14], do not exhibit the same
type of coupling because of both time reversal and spatial
symmetry. As a result, consolute points in superAuids
should simply belong to the compressible Ising universal-
ity class. Another point worth stressing concerns the
Sm-C —Sm-I (Sm-C —Sm-F) transition: Sm-C are stacks
of Quid layers in which molecules are cooperatively tilted
with respect to the stacking direction. Sm-I (Sm-F) obey
the same definition, but difFer from Sm-C by the existence
of a hexatic bond order. This bond order, however, does
not change the point group symmetry, and as a result
there can be either a first-order transition or no transition
at all between phases recognized as Sm-C and Sm-I (Sm-
I) [15—17]. The existence of Sm-C —Sm-I first-order tran-
sitions for some systems, together with the absence of any
transition for others, implies the existence of an isolated
critical point in a suitable phase diagram. This point
should belong to the same universality class as that of a
consolute point in a Sm-C matrix. We show in Appendix
A that it is in fact identical to that defined by the Sm-
2 —Sm-2 universality class, and hence relevant to the
current analysis.

When Sm-C are made of chiral molecules (labeled Sm-
C* ), they become ferroelectric, the macroscopic average
polarization being both perpendicular to the stacking and
the tilt directions [18,19]. The chirality is also responsi-
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ble for a helical precession of the polarization direction,
which a modest externally applied electric field can
unwind. In all that follows, fields higher than the
unwinding threshold will be present so that we will not
have to worry about this precession. This would not be
the case for a Sm-C' consolute point.

Sm-C differ from Sm-A through the existence of the
tilt which can grow continuously from zero: as a result
the Sm-C —Sm-A transition is in general second order
[20]. Of couse, this does not preclude the existence of
first-order transitions as found in materials with a strong
polarization [21]. When an electric field is applied paral-
lel to the layers in the Sm-A phase (made of chiral mole-
cules), both polarization and tilt are induced via the elec-
troclinic effect [22], and there is no longer any syinmetry
difference between this phase and the low-temperature
Sm-C*. The situation is then comparable to that existing
in piezoelectric materials, in an (E, T) plane one expects a
first-order line terminating on a Sm-C* —Sm-C critical
point. A Landau expansion in terms of the spontaneous
polarization and the external field only, accounts qualita-
tively satisfactorily for the experimentally observed be-
havior [23]. In view of our general understanding of
phase transitions, it is important to find the universality
class this point belongs to: we show that it is in fact orig-
inal.

If B is the layer compression elastic modulus, 5e and
5', are the critical part of the electric permittivity and
the specific heat, respectively, and y is the tilt suscepti-
bility, we expect

8 '~5e~5C~ ~ys=t rf(5ht

where t and 6h are scaling fields linearly related to
( T —Tc) and (E Ec—). The exponents y and b, (which
have their standard meaning [24]) are calculated to first
order in a two-dimensional e expansion to be defined in
Secs. III and IV. Although our values of y and 6 are
clearly poorly defined, their ratio y/6, which should be
directly accessible to experiment in a straightforward ap-
proach of the critical point, is expected to be comprised
between 0.375 and 0.395 for Sm-C* —Sm-C* (between
0.31 and 0.34 for Sm-A —Sm-A). 5e and ys have already
been measured, and there are indications that close to the
critical point y is smaller than 1, as suggested by our
first-order expansion [25]. 5', should be measured with
the techniques developed for thin oriented samples [26].
Light scattering in the planar geometry [27] should be
ideal for studying the vanishing of B, but also the diver-
gence of the curvature elastic moduli. We expect the
scattering to be controlled by the ratio

k~ Tq,I (q) cc
4 4, 2 2 2 2 2 2+By qy ++xx qx ++yy qy ++zz qz ++zx qz qx ++zy qz qy ++xy q

with

B,=t~f(5ht ), 8 =const, (3a)

'f, (5ht ~),
z

K
~ t 'f (5ht ~),

(3b)

(3c)

P/g, '= ~t 'f (5ht v),
x

(3d)

with g„g, and g„ the correlation lengths in the z, y, and
x directions, respectively, and v„v, and v the corre-
sponding exponent, different from each other to first or-
der in the expansion scheme.

In a single experiment one could, in principle, be able
to measure y, 6, v„v, and v by monitoring T and E
and varying wave vectors. Measurements of the tilt an-
gle, the layer spacing, and the polarization should pro-
vide essentially P/b, in the vicinity of the critical point,
with the proviso that (as in the earlier work on the Sm-
A —Sm-A critical point) we have not calculated explicitly
the equation of state and the shape of the coexistence
curve. We expect the law of rectilinear diameters not to
hold, but diameters should rather follow a law 5h ~t
The only critical exponent that is not easily accessible to

static experiments is the specific-heat exponent a at con-
stant layer spacing: ultrasound attenuation should, how-
ever, have access to it.

The study of the x-ray line shape may be less instruc-
tive: because of the existence of the 8 term in (2), Sm-
C, in the presence of the external electric field, should
exhibit true long-range order, and thus show Bragg
peaks. At the critical point, in the Gaussian approxima-
tion, one should recover a Caille type of singularity [28],
governed by B rather than B,. However, since the g ex-
ponents are positive, this result certainly does not survive
when the Gaussian approximation is lifted, and Bragg
peaks should survive even at the critical point. Eventual-
ly the scaling laws (3) are expected to hold irrespective of
the expansion scheme.

In the second section we recall briefly the mean-field
analysis of the Sm-C —Sm-C* critical point, in terms of
polarization, discuss the importance of other coupled
variables such as tilt and layer spacing and eventually dis-
cuss the relevance of the choice of the layer displacement
variable as order parameter. This shows the similarity of
this problem with the Sm-A —Sm-A critical point in the
presence of a (strong) transverse electric- (magnetic-) field
[and negative dielectric (magnetic) anisotropy]. The simi-
larities and differences with crystalline ferroelectrics are
also discussed [8,9].

In Sec. III we define an anisotropic extension scheme
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to higher dimensions which allows us to include the zero
field Sm- A —Sm- A problem in our considerations (and
hence Sm-C —Sm-I and Sm-C —Sm-F critical point), and
vary continuously the upper critical dimension.

Section IV is devoted to the derivation of the
renormalization-group recursion relations and the search
for fixed points, whereas eigenvalues and critical ex-
ponents are calculated in Sec. V.

In Sec. VI we discuss the meaning of our results and
recall the strongest predictions provided by our analysis.

II. MEAN-FIELD ANALYSIS
AND VARIABLES CHOICE

Let us start with a simple Landau expansion in terms
of the total polarization P of the Sm-C* phase:

f2.F —F(P=0)= Jd x g, p
" PE+ —,

'—(VP)
2 (2n)!

In this expression both the macroscopic electric fields E
and P are taken in the y direction as defined in Fig. l, and
suitable rescaling is assumed to impose the value of —,

' for
the gradient term coefficient in all directions. In Eq. (4)
all other variables characteristic of the system are con-
sidered as relaxed to their equilibrium value for the given
P, but the layers are kept Aat. The coupling constants
f2„are functions of temperature and pressure. In the fol-
lowing, without loss of generality, we keep the tempera-
ture dependence only. We further consider the case when

f4 (0 and f2 changes sign at a temperature To, which
ensures that the transition to a ferroelectric state is first
order for E =0. As E is increased, the discontinuity in P
decreases and eventually vanishes at a critical point
(T„E,) (Fig. 2). Right at this point, the lowest term of
the free-energy expansion as a function of p =P —P, is
quartic:

FIG. 2. Schematic phase diagram in a polarization-
temperature plane, including an isolated Sm-C* —Sm-C* criti-
cal point {11).Solid lines correspond to P (T) curves at constant
external field. Dashed lines show the first-order discontinuities.
The dash-dotted curve indicates the "coexistence domain. " For
E (E„P( T) curves are discontinuous, for E ~ E, they are con-
tinuous.

2n —1

fc y p fcI (2 l)~ 2n c
n=1

OO n 2
fc—g P fc —()

, (2n —2)!

p2n 3

(2n —3 )!

E 4&6 ( f~)'"—
5 (f )3/2

3/2
6 4

where f2„=f2„(T, ). With the usual assumption
f2=a(T —To), f2„constant, and keeping terms up to
sixth order only one finds

F F(P„E,)=f d—x g, p "+—,'(Vp)
4 n!

The compatibility with Eq. (4) defines three relations for
the three parameters P„E„and T, :

FIG. 1. Schematic representation of the axis conventions
used throughout the paper: z is the layers normal, x the tilt
direction, y the average polarization and external electric-field
direction.

3fo I
c To+

2 f a

Within this kind of description, the problem is identical
to that of standard ferroelectrics or the liquid-vapor case.
The diff'erences comes from the couplings with other de-
grees of freedom: the tilt angle 0 and the layer thickness
a.

Although 0 is essential in the existence of the Sm-
A *—Sm-C* transition (P is, in fact, a secondary order
parameter for this transition), it is not essential for deter-
mining the universality class that the Sm-C* —Sm-C*
critical point belongs to. This is so because the free-
energy functional has the same formal expansion whether
it is expressed in terms of P or 0. For instance, the free
energy used in Eq. (I) of Ref. [29] can be cast in the form
of Eq. (4) with either 0 or P as the variable provided a
first minimization is performed on P or 0, respectively.

The coupling to the layer thickness a is more subtle: in
a strict mean-field analysis one can write (with obvious
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notations)

B,
F, = dx CPV u+ Vu

+ (Vyu) +K(h, u)
2

(9)

V, u= a —a, +0
a,

a —a,

in which C expresses the coupling between P and the lay-
er thickness, B, is the compressional elastic modulus at
constant polarization, B expresses the energy cost of tilt-
ing the layers away from the y direction (B =P,E, ), and
K is the standard smectic curvature modulus. Minimiz-
ing Eq. (9) with respect to u yields a redefinition of fz,
which reads, in q space,

(P P—, ) ~ (8—9, ) ~ (a —a, ),
and the expansion around the critical point can be per-
formed in any of these variables. However, if one wants
to keep track of the gradient terms and rotational invari-
ance, the situation is different. Qne should realize that
the fluctuating variable is the layer displacement rather
than the layer thickness. As a consequence, nonanalytic
terms are generated both in the harmonic and anharmon-
ic parts of the free-energy expansion if one chooses p as
the variable. For instance, at the harmonic level, the
coupling of p to the smectic elastic degrees of freedom
reads

2 2c q,e

B,q, +B q +K, q

fz is both nonanalytic and highly anisotropic.
Furthermore, symmetry allows (and rotational invari-

ance requires) the existence of coupling terms of the type

F,'=w f d x p(V', u)

which after minimization with respect to u yields nonana-
lytic terms such as

F"=f3f d x p(V', 'V' p)

F" is globally cubic in p, but qualitatively different from
the term described by f3. In particular it is not possible
to cancel simultaneously f3 and f3, which drives this
problem away from the analogy with the liquid-vapor
case. In view of the awkwardness of expressions (10) and
(12), we choose to describe the Sm-C* —Sm-C* critical
point in terms of the displacement variable u. The gen-
eral form of the free energy can be obtained from symme-
try considerations: (i) Because of translational invari-
ance, only gradients of u can enter the expansion. (ii) The
twofold symmetry along the y axis imposes the expression
to be invariant in the simultaneous sign change of z, x,
and y. (iii) Rotational invariance in the (z, x) plane im-
poses the combination [ V, u + —,

' [(V„u ) + ( V, u ) ] ]
=E(u) to enter the free energy as a unique variable,
which yields Ward identities similar to that relevant to
the Sm-2 —Sm-A problem (10). One thus obtains the free
energy

H, (u)= f d x. h V', u + —,'[B,(V, u) +B~(V~u) +B„(V' u) ]

+i[K (V u) +K (V u) +K (V u) +K (V u) +Ky (V u) +K (Vy u) ]

W2 W2 V) V2 V2+, (V, u) + V, u (V'„u) + V, u (V~u) +, (V, u) +, (V, u) + (V~u)

I

+ (V, u)(V' u) + (V, u)(V u) + V",z(V u)(V u) +
4 ' 4

where the ellipsis represents higher-order terms, with the
relations required by rotational invariance in the xz
plane:

B~ Bz=A + W2& V2=3W2& V]2= W& 2W2

(13)

In Hi(u), 0 and P are assumed to have reached their lo-
cal equilibrium in the presence of the layer distortion.
Furthermore, Hi(u) is the part of the free energy which
arises from short-range interactions; one should add to it
the long-range part which comes from Coulomb interac-
tions:

H~= fd x f d x'[V P(x)V P(x')]/~x —x'~), (14)

which can be rewritten

H, =K fd'x fd'x'[[(V, V, u(x')V,,V,, u(x)]1~x—x'~] .

(15)

If we take as the reference thickness a„ the critical point
is defined by h'=B,'= 8'& =0, in a mean-field descrip-
tion. [Note that relation (13) implies B;= Wz = Vz= V;z =0.] Indeed, from relations (8,10) we know that if
we ignore the tilt and curvature fluctuations of the layers,
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expression (12) must reduce to expression (5) at the criti-
cal point (with the replacement of p by V, u). This im-
plies that the smectic compressional elastic constant must
vanish at the critical point. Formally the problem is
identical to that of a Sm-A —Sm-A critical point in a sys-
tem with a negative magnetic (or dielectric) anisotropy
and submitted to a magnetic (or ac electric) field in the y
direction, if one neglects H2. Since we will show (at least
to first order in the expansion scheme defined in the fol-
lowing) that H2 is irrelevant in the renormalization-
group sense, we expect that these two problems belong to
the same universality class. Their key characteristic is a
propagator G(q) involving different types of elasticities in
different directions G '(q) =(B,q, +B q +K„q

ing no 8 q„along the line of maximum susceptibility,
and with B„'=0,B'%0, and the existence of at least two
qualitatively different cubic terms.

There is also some resemblance with isolated critical
points in the (T,E) plane of crystalline ferroelectrics like
KH2PO4 (KDP) (9) and more generally with structural
phase transitions (8). However, whereas the coupling to
strain generally decreases the upper critical dimension in
crystalline systems, it does not decrease in layered ones if
there is at least one soft direction (i.e., x, in which only
curvature plays a role). Note that when there is no soft
direction in smectic liquid crystals (e.g. , Sm-A —Sm-A
critical point with positive diamagnetic anisotropy in
presence of a magnetic field along the symmetry axis) the
upper critical dimension is also reduced below 3 [30]. We
will show, in Sec. III, that the problem at hand is non-
trivial and can be extended to higher dimensions in an
infinite number of ways.

III. EXTENSION TO HIGHER DIMENSIONS
AND UPPER CRITICAL DIMENSIONS

in which /3=1, H(u)=H, (u)+H2(u), and h (x) is the
field conjugate to u. The free energy is then

F(h) = —lnZ(h),

and the ( u ) thermodynamic potential

I ((u ) ) =F(h)+ f h (u )ddx,

from which one can extract vertex functions

(19)

&"((u (x, ) ) (u (x„)) ) =
8 u(x, ) . 8 u(x„))

h=V k (21)

with k,%0, k =k =0 and

I((u))=F(k, )+k (Vu)

with the corresponding vertex functions:

(22)

(n) 1

VaM, . aM,
1 n

(23)

where M,. = ( 8;u (x, ) ) with, for vanishing wave vectors,
1

1 (q)=g f ~
'q;q. +O(q ),

l "'(q), q2, —q) —q2)= g f,k'q;, q, , ( qk 'qk
—
) .

l, j,k

(24)

Since H depends on gradients of u only, only those fields
h which do not involve a net force or torque over the sys-
tem volume can lead to thermodynamic equilibrium.
One is thus led to the choice

G '(q)=B,q, +B~q~+. . . (16)

where the ellipsis represents fourth-order terms.
Before proceeding further we need some basic

definitions; they follow the spirit of Ref. [10]. The main
Auctuating variable, as we have defined the problem, is
the layer displacement u. The partition function reads

Z(h)= fD(u)exp H(u)+ f d x h(x)—u(x), (17)

In conventional critical points, all directions are
equivalent, and extending the problem to a higher dimen-
sion is straightforward. In this problem, there is some
flexibility since one can a priori add either x-, y-, or z-like
dimensions, which all are qualitatively distinct. We
choose to add x-like and y-like dimensions keeping the
number of z-like directions unity: this means that we
stick to layered systems. Generalizing the problem fur-
ther would raise both technical and physical questions
not related to this work. In the following d "x stands for
dz d""y d "x and d"q for dq, d" q d" q, d =1+d +d .
The distinction between the x and y directions is again
clear on the expression of the propagator along the max-
imum susceptibility line:

fc—fc —fc —0

which implies, via the Ward identities,

f.'.=f:..=0 .

(26)

(27)

These vertex functions can be calculated in perturbation

The following identity, similar to the one holding in the
Sm-A —Sm- A case (for position independent M„and M, )

holds [34]:

M„f,"'=(M, +1)f„'".

Equation (25) allows us to generate a set of Ward identi-
ties linking the f ' ' by successive derivations with respect
to M and M, . For instance, a proper choice
of the coordinate axis ensures M =0 and shows that
the following lowest-order vertices are nonzero:
f,', ', f~~ ', f„'„',f,'„',f,'„„',f,'~~'. By construction the equilib-
rium state is given by f,"'=0, f,', ' describes the layer
compression modulus and must vanish at the critical
point just as the susceptibility usually diverges.

Whenever analytic expansions in terms of M, have a
meaning, the critical point is defined by
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expansion. To one loop order

1 ((u ) ) =H((u ) )+—,'tr[lnK(1, 2)] (28)
K(1,2)= aII

au (x, )au (xz)
(29)

with that is in q space

and

K(q)= [B + W, M +( V, /2)M +( V,2/2)M +( V', ~/2)My]q

+ [B„+W2M, +( V2/2)M +( V)2/2)M, +( V)'2/2)My ]q

+[B + W2M, +(V2/2)M +(V', 2/2)M, +( V",2/2)M ]qua+2(WqM„+ V)qM M, )q„q,

+2(W2M + V', 2M, M„)q q, +K„q, +K„,q +K ~q~+K, q, q +K, q q, +K,„q,q„

I (M) = hM, + (B,/2)M, + (B /2)M„+ (B /2 )M + ( W, /3! )M, + ( W' /2)M, M + ( W' /2)M, M

+( V, /4!)M, +( V~/4!)M„+( V2/4!)M +( V,~/4)M, M, +( V', ~/4)M, M +( V",2/4)M M

+ —,
' trlnK(M, q)

(30)

(31)

from which we extract by suitable differentiation.

f,(M=O)=h+-,' f (aK/aM, )/K(M=O),
q

f„(M=0)=B,+-,' f [(a'K/aM, ')/K(M=o) —(M /aM, )'/K'(M =o)],
f„,(M=O)= W, + —,

' f [(a'K/aM, )/K(M=O) —3(aK/aM, )(a K/aM, )/K (M =0)+2(aK/aM, )'/K (M =0)],(32)
q

f (M=O)=B + —,
' f [(a K/aM )/K(M=O) —(aK/aM ) /K (M=0)],

q

f„„(M=O)=W + —,
' f [ (a K/aM, aM, )/K(M=O) —(aK/aM, )(a K/aM )/K (M =0)

dq

—2(aK/aM. )(a'K/aM„aM, )/K'(M =o)+2(aK/aM. )'(aK/aM, )/K'(M =o)] .

Note that in order to be consistent with rotational
symmetry one has to keep terms like (15W,
+10V, )(a, u) /5!, (3W, + V, )(a, ) (a„u) /12, and

(a, u) /4 in H for the calculation of f„, and f, „. In
principle one should also keep nonlinear contributions
coming from the covariant expression of the K& curva-
ture terms. However, it is sufhcient to consider isotropic
second-order moduli in the (x,z) plane to assess the
upper critical dimension (i.e., K„„=K =K„,/2).
Indeed, in this case, the Hamiltonian clearly exhibits the
required symmetry and the Wards identities are automat-
ically satisfied. The critical point is then defined by the
conditions (26), which provide three equations for h„
B

&
and 8'&, in terms of the other coupling constants.

They also determine a„T„daEn, (or a„T„and P, in
the Sm-A —Sm-A critical point) as a function of the bare
material parameters. They key remark is that, whereas
8"=0 is a solution in the liquid-vapor case, it is not
here. Indeed, relations (26) reads

8' —8'&, q, + 8'2, q + 8'2, q~,

~1cqz + ~12cqx + ~12cqy

V, =(15Wi, + love, )q, +(3Wi, + Vi, )q„,
K, =K, (M=O) .

The main difference between relations (33) and the equa-
tion valid for the liquid-vapor case is the term
—fd q V, /K„which is required by rotational invariance
here (and determined by the third- and fourth-order cou-
pling constants W& and V& ), but can be canceled by a
simple variable change in the liquid-vapor case. As a re-
sult 8 s are not all zero.

The upper critical dimension may now be calculated by
testing the convergence of the high-temperature pertur-
bation expansions. Let us, for instance, express the
effective compressional elastic modulus B,=f„(M=0):

B,=f„(M=0)—j",', (M=O)
O=h, + —,

' f d q W, /K, ,

O=B„——,
' f d"q W, /K, + —,

' f d q V, /K, ,

0= W„+—,
' f d q W', /K,

, f d "q —W,V, /K,'+-,' f d'q V, /K, ,
with

(33a)

(33b)

(33c)

8'
+,' f d'q

8' + —,'fd"q V,
C

T

=B, B„+,'fd qW—,—
K,
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8,
B~ 1+ 8(d +dy —6)/2I (2

8(d+dy —4)/2I(1)+. . .
2

(36)

in which 8' and V are linear combinations of the W&

and V„respectively, and

I(n) ~ fdxx 1

(I+ICx )"
1

2)n —dy/2

in which K =B,qz+Byqy+~&q& is taken along the iso-
chore and E, =K(8, =0), W = W, . Integrating first over
the y direction one can show

A —Sm-A case this is probably the signature of a non-
mean-field coexistence curve. Only for d+d ) 8 is the
correction linear in 8, [i.e., I(3) diverges like
8, ' + '/ ' and the mean-field is recovered]. Note
also that the singularities of the higher vertex functions,
pointed out in Ref. [10], also exist in this case as long as
d„)0, with critical dimensions d +d =2n —1, where n

is the index of the vertex function.

IV. RECURSION RELATIONS AND FIXED POINTS

With proper rescaling of the coordinate units and of u,
and keeping only those terms of H which are relevant in
the vicinity of the upper critical dimension, we start with
the following Hamiltonian:

For d +d )6, I(2) diverges like 8, ' +" '/; this
divergence is canceled by the B,' +" ' factor, and Eq.
(36) provides a finite correction proportional to W, to the
compressional elastic modulus. For 4&d+d (6, I(2)
converges and the 8' correction diverges like
8,' y ' as 8,—+0 (note that the correction propor-
tional to Vis finite).

The borderline d, +dy, =1+d«+2dy, =6 defines the
upper critical dimensions. Since d and d may be arbi-
trarily chosen, one obtains a continuum of upper critical
dimensions (Fig. 3) (note that the upper critical dimen-
sion of the fourth-order coupling constant is given by
1+d, +2d, =4).

The pathologies of the higher vertex functions pointed
out for the Sm-2 —Sm-A case (10) hold more generally as
long as there is a nonvanishing x-like direction. In par-
ticular one can expand the third-order vertex function as

f =W —W +—'WB' + ' I(3)+ ' (38)

As expected for dimensions smaller than the upper criti-
cal one, the correction diverges as B,~0. For
8 ) d +d )6, I(3) converges so that the correction to f„,
converges, but in a nonanalytic way: like in the Sm-

4c&

C+

d x
1 B 5

FIG. 3. Line of upper critical dimensions: Above this line
problems are mean field, below they are critical. From any
point P on this line, one can define an expansion in terms of

&y:dye dy A corresponds to the Sm-
A —Sm-A and Sm-C —Sm-I (Sm-C —Sm-F) critical points. B cor-
responds to the Sm-C*-Sm-C* and the Sm-A —Sm-A in trans-
verse magnetic-field (plus negative magnetic anisotropy) critical
points. C, which corresponds to a Sm-A —Sm-A critical point
in a longitudinal magnetic field (plus positive magnetic anisotro-
py), cannot be obtained within this expansion scheme as ex-
plained in Ref. [30].

+—,'((l u) + ) (1—C)((),u)

82+ a, u(a, u)2
2

(39)

H(u) differs from the Hamiltonian used in (10), in the
presence of the —,'(8 u) term, and in the irrelevance of
higher derivative or higher power, involving the y coordi-
nate. The monumentum shell recursion relation may be
developed using an anisotropic rescaling:

q„' =bq, q'=b +"yq, q,'=b' ~'q, ,

u (b ' "'q„b "yq, b 'q„)=$2u (q),
g2 bd+pz+dy(py+1)+dz)zx —(2+py)(2 —qy)

(40)

+ ( W, /2)IO2, +( W2/2)Io2, , (41)

This choice allows us to maintain B =E „=K,=1
(with obvious notations) during the renormalization pro-
cedure, and guarantees proper scaling of the uu correla-
tion function at the critical point. Keeping B = 1

expresses the finite value P,E, of the modulus opposing
tilt in the y direction at the critical point. The other
choices K„„=X„,=1 are somewhat more arbitrary (one
could have chosen, for instance, E,=IC„=1 as well),
but allow for a close comparison of the recursion rela-
tions with that of (10).

Each rescaling is followed by a partial momentum in-
tegration as usual; the integration volume may be either
delimited by a unit hypersphere and a hyperellipsoid
defined by b q„+b "yq +b "'q, =1 with
b =e ' or by a cylindrical volume (involving full integra-
tion in the y direction) of a cross section comprised be-
tween a unit "hypercircle" and a hyperellipsoid defined
by b q„+b + "'q, =1. We checked on particular exam-
ples that the two procedures yield the same results, but
preferred the second one since it is computationally much
less time consuming. We get

dh [d+2+dy(p +1) q p /2]h
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dB, = (2 —2P, —21„+4@,—21„P„)B,
which allows us to reduce (41) to the following restricted
set of equations:

—( W) /2)~402 —( W2 /2)I042 Wl W2I222

dB„ 2 2

dl
" = [2—&„(1+&.)+2~„]B„— W'2r222,

dB = [ —2P —21„(1+P,„)+4@„]B»,

dl
"" = —21„(l+P,)K, —R (l)W2,

dK,
dl
"' =[—21„(1+@ )—2P, +2@„]E„

R(2) 2 R(3) 2 R(4)
W W

2 ' 2 2
dK„ =[—21„(1+@„)—4P, +4P ]K„

—R (5) W, —R (6)W2 —R (7)W, W2,

(42)

(43)

(44)

(45)

(46)

(47)

dB Wi W2=2Bz I4O2 IO42 W] W2I~222 2

dB„
2 222

dC = W [R (5)—R (2)(1—C)]

+ W2[R (6)—(1—C)(R (3)—R (1))]
+ W, W2[R (7)—R (4)(1—C)],

dl

+ W, W2[R (9)+—', R (4)]

dWi
,'eW, —+W, [R (8)+—', R (2)]+W2R (11)

(52)

(53)

(54)

dW,
—,'e —321„(1+@„)——,'P,

T

d—(d, ——", )p„+ —3 p» W,

+ Wi W2 R (10)+—', R (3)+R (1)
d 7

4

(55)

+R (8)W, +R (11)W2+R (9)W, W2

+R (10)W2Wi, (48)

dW2
3

d 3
,'EW2—+W2 R (13)+—,'R (3)+ R (1)

+ W2W, [R (12)+—', R (4)]+—', R (2)W2 W, . (56)
dW2

—,'e —
—,'21„(1+@„)——,'P,

—(d, ——", ))u, + —3 p» W2

+R (13)W2+R (12)W2W, , (49)

in which (in a first-order expansion scheme in

e~ =d, —d and e =d„,—d„)
I (p —dy/z)II
4~d» "r(p)

gg I sing xc

(1—c cos 8)
(50)

1 R (2) 2p, —p =—— W)— R (3)
2 2

—R'4'
W W1 2 (51)

W2
p»+2@ =R (1)

2

and the R (i), given in Appendix B, are linear combina-
tions of the II 's and as such, a function of C, d„, and
dy.

The constraints on B, E„„, and K„, [i e. , Eqs.
(44) —(46) set to zero] yield

21„=—R (1)W2,

Equations (52)—(56) have the same general structure as
those written for the Sm-2 —Sm-A case. They can thus
be discussed in a similar framework. As expected, the
Gaussian fixed point (B,=B = W, = W2 =0, C undeter-
mined) is unstable for dimensions below the critical one.
The expansion parameter is e=e +2@: although one
can vary d, and bring the point P in the (d„d ) plane
from ~here the expansion is performed to an apparently
optimum location (i.e., minimizing the distance between
that point and the physical one; see Fig. 3), the expansion
parameter is independent of this choice. Indeed, a given
physical problem defines d and d„uniquely
(d = l, d =1 in the Sm-C* —Sm-C" case; d =2,d =0 in
the Sm-A —Sm-A one) hence e=d, +2d, —d —2d
=5—d —2d, independent of the choice of P. What is
then the virtue of changing the P location? In fact, vary-
ing the upper critical dimension changes the I& s and
amounts to probing higher corrections in e and e» (al-
though in a somewhat uncontrolled fashion).

Aside from this remark, clearly B, and B on the one
hand, W& and Wz on the other, are, respectively, of the
order e and e' at the fixed point, if it exists. Further-
more, the combination W2 ( d W, /dl ) —W, ( d W2 /dl ) and
dC/dl are homogeneous functions of the 8"s. Hence, at
the fixed point they involve only the ratio ( W& /W2) and
C. The compatibility for these two equations provides
the solution C*, ( Wi /W2 ) from which all other quanti-
ties may be extracted. The solution can be obtained nu-
merically; for a given d„one indeed finds a fixed point
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show in Appendix D that X2 is not an exponent linked to
an external field but rather corresponds to the arbitrari-
ness in the choice of M, . More precisely, we show that
M, is the eigendirection corresponding to Xz. Power
counting requiring that M, (l) renormalizes as I M, (0)
with

(t, g, h, M„O)
BF

aM,
(
—(d+dy(1+@, )+~)l „, X(l X3(=O=h+e f,', e 't, e 'g, e M„O

(70)

co=[d —2+dy(1+@ )+3(M, +g„]/2 (64)
with

consistency of the renormalization-group scheme implies

(65)

We show that this identity is formally satisfied by our re-
cursion relations in Appendix D and checked directly its
numerical relevance with a 10 accuracy. The remain-
ing three eigenvalues are first order in e, among which
one is positive k3 and the other two are negative.

Up to now we have not considered the recursion rela-
tion (42) concerning the field h. Its structure implies the
existence of a sixth eigenvalue

Ah
= [d + 2+ dy (1+p ) —g, —p, ]/2,

(71)

A)1 A. l
Xf,' '(e 't, e 'g, e 'M„O) (72)

BF,(p, q, z, x)
f,', (p, q, z, x) =

az
p~q

which can be rewritten

ital, A)l A lO=e "h+f,', (e ' t, e 'g, e 'M„O) .

Fulfillment of Ward identities then requires

d F (
—(d+dy(1+@ )+2'')I

tgr t zt

the eigendirection of which corresponds essentially to h.
We call t and g the eigendirections corresponding to the
positive eigenvalues A,

&
and A, 3.

Note eventually that the renormalization of the cou-
pling constant affecting the q, q, u (q)u (

—q) term defines
a redundant operator for M„, with

BF,
f,„(p,q, z, x)= (p, q, z, x)

p, q, z

which in turn imposes
A, l A)l

e 'g=y(e 't, e M, ) . (73)

and

M, (l) =e 'M, (0) (67) For instance, if we approach the critical point on the crit-
ical isochore M, =0, Eq. (73) implies

co'= —,'[(d —2+dy(1+p )+p, +g ] . (68)

A.3/A, 1

g =t ' '(p(1, 0) . (74)

Details are again given in Appendix D.
With relations (67), (68), (66), (64), (63), and (59), all

physically important critical exponents can be calculated
to first order in e.

VI. DISCUSSION

The very existence of the above-discussed fixed point
implies the following structure of the free energy in the
critical domain:

F(t,g, h, M„M„)
—[d+dy(1+p )+p, ]l=F„+hM, + e

kl I A, 31XF,(e 't, e 'g, e"'M„e 'M„),

in which F„ is the regular part of the free energy and F,
the singular part. 3 priori h and t are linear combinations
of (T —T, ) and (E E, ) [or (P P, ) a—nd (p p—, ) de-—
pending on the problem]. The g dependence on external
fields is more subtle. The equation of state is obtained
from Eq. (69) by differentiation with respect to M, and
setting M„=O:

g does not obey the usual analyticity assumption on
external fields. Indeed, the renormalization-group
scheme used in this approach does not a priori satisfy ro-
tational invariance, and only the restricted path obeying
Eq. (73) does. As a result, the vanishing of g is deter-
mined by the vanishing of t and M, .

Combining Eqs. (73) and (71) yields a more convention-
al equation of state:

A~ l A )1
M, =e 'G(e "h, e ' t) . (75)

On the one-phase side of the phase diagram 6 is
univalued, whereas on the two-phase side two functions
6+ and 6 can be defined. It is important to under-
stand that, because of the intrinsic asymmetry of the
Hamiltonian (i.e., V, u positive or negative correspond to
fundamentally dift'erent situations even asymptotically at
the critical point), coexistence is obtained for nonzero
values of h.

This has two important consequences. (i) The law of
rectilinear diameters is not obeyed; in the (h, t) plane the
coexistence line follows the scaling from

(76)

with 6 =A,h /A, (ii) The order parameter measured along
the coexistence curve obeys (since A, z ))A, ( to first order
in e)
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(M,+ —M, )~h "G(l,const),

or in terms of externally controlled parameters

(77)

(78)

a =
j 2 —[d +dy ( 1+(uy ) +((tz ]/A, ,],

C ((T„=O)~ ~h y (or t y if h =0)j2

BT

C (M, =O)~ ~tBF
M =0

(79)

with

with 5=4/P =A, h /co. This result markedly contrasts
with usual critical points, which are asymptotically
symmetrical and for which M,+ —M, ~ ( T T, —)P.

Clearly, the specific heat at zero stress (i.e., o„=O) is
quite difTerent from that taken at zero strain (i.e., M, =0):

[the condition (r„=O is equivalent to Eq. (70)] with

)z = ( 2 —q, —
2)M, ) /A, (81)

This difference is similar to the one between specific heat
at constant volume and constant pressure for the liquid-
vapor critical point. The existence of the fixed point also
implies for the q-dependent nth-order vertex function
along z

f(n) (t g M q q q )
—b[ —[d+dy(1 +p y) +)zz)+neo)if(n) (

( t (g ecoM e q e y
q e q )

A, 1 A, l (2+JM )l (1+p )l
(82)

Note that the divergence of the perturbation theory for dimensions higher than d, suggests that f,„may not exist for
n 3. The two-point correlation function, which defines the experimental compressional elastic modulus 8, obeys

(2) I t (~y y 1 z~ ~ (2) 1 z col I ) ( +&zf„(t,g, M„q, qy, q, )=e ' y ' f„(e ' t, e 'g, e M„e q„,e y q, e *
q, ),

or with the use of Eqs. (73) and (75)

z(2) h
[
—[d+()z +1)d +)z ]+2ro) I A), I A(l ) (2+)z )I ((+)z )(f„h, t, q„qy, q, =e ' ' ' e "h, e 't, eq„e ' q, e '

q, ).

(83)

(84)

Identifying f,', '(h, t, q=0) with the elastic modulus B
yields

B =h)' f (l, th ', q=O) . (85)

In a noncontrolled approach of the critical point, both h

and t are linear functions of ( T —T, ) and (E E, ), and-
the measured critical exponent will be y/A. Only that
path for which h =0 leads to the exponent y. Contrary
to the case of asymptotically symmetrical critical points,
the h =0 line needs not be the isochore, but does corre-
spond to the smallest B value line (largest susceptibility).

Expression (84) further implies the fully anisotropic
correlation length

~h " (t " if h =0),v =I/X,

h y (t y if h 0) vy=(2+)M )/1

g o-h ' (t ' if h =0), v, =(1+(M )/1, ,

and divergences of the second-order elastic moduli, as an-
nounced in the Introduction.

We give in Tables I and II the expressions of the essen-
tial exponents to first order in e, together with the
coe%cient of the first-order correction as a function of
a=6 —2d. Clearly, the resulting spread is too large for y
and )33 to allow for reliable predictions, except perhaps
that y is consistently smaller than 1. The corrections to
the exponents divided by 6 are much smaller and lead to
predictions which can be compared to experiment. For
instance, we expect [34]

0.5 —0.06e & y/tI), & 0.5+0.053e,

0.5 —0.039e&P/6 &0.5 —0.06e,

2 —0.0394@& 6 & 2+0.0624m,

0.5 —0.248 859 le & v &0.5 —0. 187 239 39m,

1 Oe 594 2 19 126' & vy & 1 Oo 038 358 496'

0.5 —0.22670874'& v &0.5 —0.05228691@ .

Comparison with experiment can be done for the Sm-
1—Sm-3 and the Sm-C* —Sm-C critical points. In the
first case, values of y/6 are obtained via compressional
elastic modulus [31] and specific-heat measurements
[32,33]. The latest values seem to converge towards
(0.4+0.08), which clearly excludes mean-field and Ising
behavior, but is compatible with our estimate. In the
second case y, 5, and the order parameter exponent have
been estimated [25]. Close to the critical point a regime
with y & 1, 5 =2 emerges which is quite compatible with
our estimates, and excludes both mean-field and Ising be-
havior again. According to our remark that the coex-
istence is obtained for h %0, the order parameter ex-
ponent is 13/b, rather than P, and the experimental value
(although undistinguishable from mean field) is again
compatible with our predictions.

Thus we believe that we have identified and character-
ized original universality classes which are relevant to
layered systems. They are fundamentally anisotropic in
that the exponents of the correlation lengths are different



47 CRITICAL POINTS IN LAYERED SYSTEMS 1195

TABLE I. Expressions of the essential exponents.

General expression First-order expression

vy

vz

y
3 k1

3 k2

yk12
P/b,
y/6
A

1/A, i

(2+py) /A, ]
(1+pz) /k,
co/A, i

A, P /A, l

(2—gx —2pz) /A, i

vx Yfx

vx (qx +4pz)
vx (qx +2pz)
co/A, h

(2—gx —2pz) /A. h

2 —[d +dy(p~+1)+ pz]/Ah

0.5 —a + /4e
1+(p'y/e —a + )/2e
0.5+(2pz/E' a + )/4e
1 —(1++a —)/2e
2+(ah —2a + )/2e
1 —

( gx /6+ pz /E+ a + ) /2E
gx /2
(gx /2+ 2px)
(gx /2+ pz)
0.5 —(a —+ah /2)/4e
0.6—(2pz/e+ qx /e+ a + ) /4e
0.5 —(1+3ah /2 —pz/e

—dy p'y /e)4e

to first order in e in three directions of space (only two in
Sm- A —Sm-A case). Another important characteristic in-
dependent of the expansion scheme is that, at these
points, the specific heat diverges like the susceptibility
and that the field exponent 6 is simply the inverse of the
order parameter exponent (which is not P). The first set
of experiments available is compatible with our calcula-
tions, which should be valid for at least four different
physical situations: the Sm-A —Sm-A critical point, the
Sm-C —Sm-I (Sm-C —Sm-F) critical point, the Sm-
A —Sm-A critical point in a transverse field, and Sm-
C*—Sm-C* critical point.
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APPENDIX A: ISOLATED CRITICAL POINT
TERMINATING A Sm-C —Sm-I FIRST-ORDER LINK

We show in Figs. 5(a) —5(c) a few topologically possible
phase diagrams involving Sm-C, Sm-I, Sm-A, and Sm-
Bh„phases. Although two of them only involve an iso-

lated critical point, we believe that in practice such criti-
cal points should occur fairly often in binary phase dia-
grams and that they control the physics of the "ghost
transition" very often observed between the Sm-C and
Sm-I phases. In particular the exponents related to the
symmetry-breaking fields should certainly correspond to
this fixed point (17). Since there is no symmetry change
between Sm-C and Sm-I phases, they can only differ
quantitatively: a natural choice for the description of the
transition is obviously the intensity I6 of the sixfold
modulation of the x-ray scattering pattern in a A, scan
(35). However, just as with the Sm-C* —Sm-C* transi-
tion, the choice of the layer displacement is better suited
to take account of rotational symmetry. Indeed if u is
defined with respect to the critical layer thickness at
point c of Fig. 5(a), one can write I6 I6, ~ V', u (whe—re
I6, is the sixfold modulation at c). In fact, since the sys-
tem always exhibits a twofold modulation as well close to
the critical point, one could write also I2 I2, ~(V, u).—
Thus the similarity with the Sm- A —Sm- A or Sm-
C*—Sm-C* critical points is fairly transparent. The only
question comes from the coupling with the director field,
which can be ignored altogether in the Sm-C* —Sm-C*
case since it has a mass term, but needs to be considered
more carefully here.

If we choose the average c director to point in the x
direction, the nonlinear couplings with the displacement
field can be written

TABLE II. First-order correction coefficients (to be multiplied by e).

6
5.7
5.4
5.1

4.8
4.5
3.64
3.28
2.92
2.56
2.2

—0.412 900
—0.424 459
—0.436 831
—0.450 234 73
—0.464 822 8
—0.480 809 6
—0.537 356 43
—0.567 905 2
—0.604 81940
—0.650 770 37
—0.709 667 67

—0.662 596
—0.666 246 78
—0.670 037 36
—0.673 961 49
—0.678 017 36
—0.682 210 68
—0.695 286 01
—0.701 580 25
—0.709 063 70
—0.719028 92
—0.735 020 75

+0.062 413

+0.057 437 81

+0.047 108 24
+0.031 245 14

+0.008 007 17
—0.010 879 2
—0.039 499 61

—0.062 39

—0.059 165 39

—0.053 592 31
—0.047 719 65

—0.044 11498
0.045 00
0.052 176 15
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5I',„= d x 8',IV„u V „uV u C + W, 2V', u V C

+ W, 2V, u(V, Cy) + W,4V, u (V, Cy)

u(b 'k„b 'ki)=g u(k)
d +4+p —q

7

(A2)

+u, 3(V, u) (V C~) + ],
where the ellipsis represents similar fourth-order terms.
With the rescaling of the Sm-3 —Sm-2 problem

with

Cy(b 'k„b 'k3 ) =g, Cy(k),
d +2+)M —'g

s,
it is straightforward to show that any generalization of
5F,„ to higher dimension is irrelevant near d, . This is
sufficient to ascertain that the Sm-C —Sm-I, Sm-C —Sm-F
critical points should belong to the Sm-3 —Sm-3 univer-
sality class (note that even in our more general scaling
used throughout this paper, 5I' can be shown to be ir-

du+p.
relevant, with the choice g, =b ' ' ' ').

and ensuring the C director fluctuations to be marginal APPENDIX O' R i s COEFFICIENTS APPEARING
IN EQS. (42) —(50)

Sm-I

Sm-C

I

I

P1

I

I

I

(

I

Sm-Bh „

Sm-A

8 24
(I423+I243)

d d I243d d„+2
96+

d d
(I644+2I464+I2s4 ),

d d„+2

(2)= —I„„—I6o
2

8+ (Is24+ 2I644+ I464 ),

Sm-X Sm-Bhex

7R (3)= Io222
14 + 1 I063

52 + 1 I243
X

32 32 2(1 c)I~~3+ (1——c) Is24

(1—c) 168—64C I644 d 464
X X

80 8+
d I284+ d 10104 ~

(c) 36 24
R (4) = —2I4$3 2I243 I423 I/43

Sm-Bhex 144—64C 96 16+ I644+ d I464+
d I284

Sm-C
Sm-A

64(1 —C)
824 ~

FIG. 5. Examples of phase diagrams compatible with ther-
modynamics, and involving Sm-C, Sm-I (or Sm-F), Sm-Bh, „,and
Sm-A phases in a (p, , T) plane. Solid lines represent first-order
and dotted lines second-order transitions. Note that the Sm-
C —Sm-I transition should always be first order. Ghost Sm-
C—Sm-I transitions often quoted to replace a regular Sm-
C—Sm-I one, should correspond to supercritical Auctuations in
the vicinity of the isolated critical point C. (a) Case involving
one isolated critical point C, called Sm-C —Sm-I critical point in
the text, one critical end point E, and two tricritical points P, P .
(b) Case involving one isolated critical point C, one ordinary tri-
ple point T, and three tricritical points P, P', P". (c) Alternative
topologies involving one critical end point E, one triple point T,
and one tricritical point P.

R (5)= zI3o2
—7(1 —C)I6p3 —5Ig33

+ 8( 1 C) I)pp4 + 16( 1 C)Is24 + 8I64~

R (6)= 3( 1 C)I343 Ip63 + 8( 1 C) I644

+ 16( 1 —C)I464+ 8I2s4,

(7)= lo( 1 C)I423 6I243 + 16( 1 C) I824

+32(1 —C)I64~+ 16I46~,

R (8)=I6p3, R (9)=3I~~3, R ( 10)=3I3~3

R (11)=Ip63, R (12)= I423, R (13)= I343 .
4 4
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APPENDIX C: MATRIX ELEMENTS A;1 IN EQ. (60)

A ii = X R (2)/2+ Y R (3)/2+X Y R (4)/2
—X' S21, (11)—Y' Sii, (12)—X'Y*S~,(13),

A33 =0.5+3X' S(1)+2X*Y*S(2)+Y* S(3),
A 34

=X* S (2)+2X~ Y*S(3)+3 Y* S(4),

A43 =2X*Y*S(5)+Y'* S(6),
A44=0. 5+X* S(5)+2X'Y*S(6)+3Y' S(7),
A 56

=X* S,'(8)+X*Y*S,'(9)+ Y' S,'(10),

A3q =X* S,'(1)+X Y*S,'(2)

+X*Y* S,'(3)+ Y* S,'(4),

A4~ =X* Y*S,'(5)+X*Y* S,'(6)+ Y'* S,'(7),
A ~3 =2X*S (8)+ Y*S (9),
A ~4

=X*S(9)+2 Y"S(10),
A ]2

—X* I423+2X*Y*I243+Y* Ip63

A2, =4/(a —1)Y* I423

A 22
= [R ( 1 ) +4/(a 1 )I243 ]Y*

APPENDIX D: REDUNDANT OPERATORS

In our derivation of recursion relations (42)—(50) no ex-
plicit reference to the actual state with respect to which
the layer displacement u is defined has been made. This
implies that if the recursion relations are valid for an ex-
pansion centered on the critical point, they should be val-
id as well for an expansion from a point slightly off.
However, it is easy to express the elastic moduli B and
B, defined from one of these states, in terms of the other
(at the lowest relevant order):

B,=B,—8')M, ,

B„=B 8 2M

V, u = —M, +V, u, ,

V u = —M„+V„u, ,

(D 1)

(D2)

Since one expects the scaling law M, (l)=e"M, (0) to be
valid, the consistence of (D3) with the renormalization-
group scheme requires co to be identical to one of the ei-
genvalues A.

&
or A, 2, and the vector V~ of components

( W„W2 ) in the (5B„,5B, ) plane to be parallel to the cor-

in which u, is defined with respect to the critical state
and u with respect to a state of averaged compression M,
and tilt M„(themselves defined with respect to the criti-
cal state). B„and B, are the effective coupling constants
in the u representation and B„and B, in the u, one.
Close enough to criticality (Dl) implies the validity of

6B,=5B,—8'i M, ,
(D3)

8'*
1

EA 12

gJ Q
2

2+ E'A 11 ~2
(D4)

or, using the expression (63) of A, 2,

A 11 A 22 + [( A 11 A 22 + A 12 A 21 ] g
A 12

1

(D5)

As in (10) we can show

22+E A 11 ~— ~ A12
1

8'*
1

2+eA22 —co= —e A2»
2

(D6)

from which (D5) is obvious (note that W2/Wi &0).
Hence M, is an eigendirection of the renormalization-
group equations, with eigenvalue co, hence its use in the
scaling relation (69).

Similarly a nonzero M generates a term
—8'2M V„u V, u in the Hamiltonian, which implies the
more general existence of a B„, coupling constant the re-
normalization of which reads

(D7)

with 8'= 8 icos O+ W2sin O, 8"=28'2cosOsinO/d„'
and K =B,cos O+B sin O+B,sinOcosO+1 —Ccos O.

The integration bears as before on the O variable. Again
consistency requires M„ to be the eigendirection and co'

the eigenvalue. Linearizing (D7) in the vicinity of the
fixed point shows that this equation is decoupled from the
others by symmetry, which implies that M is indeed the
eigendirection. The corresponding eigenvalue reads

A,„,=2—g, —p, +2d,'~ f WW'sin& cosO/K . (D8)

Hence

A,„,—co'= [e—3g„—3p„+(d,—6)p ]/2

+ f WW'sin8cos8/K A, , —co'

dl

2 8"8' .+ ] /2 3
sinO cosO

The vanishing of (D9) at the fixed point shows that
indeed the eigenvalue is identical to co'.

responding eigenvector. In the following, we show co = f2
and VM ~~ V2 (eigenvector of A, 2). The proof of the equality
co=A, 2 follows that given in [10], and details are given in
[34].

The V2 direction can easily be extracted from Eq. (61):

V2 ~( e A12, 2+eA1, —A2) ~ (2+eA22 —
A2, —A2, )

Thus V2~~ V~ requires the equality



1198 A. D. DEFONTAINES AND J. PROST 47

[1]J. Hubbard and P. Schofield, Phys. Lett. A 40, 245 (1972).
[2] B.Widom, Science (N.Y.) 157, 375 (1965).
[3] D. Roux, A. M. Bellocq, and P. Honorat, J. Phys. (Paris)

46, 743 (1985).
[4] C. Casagrande, M. Veyssie, and H. Finkelman, J. Phys.

(Paris) Lett. 43, L671 (1982); C. Casagrande, M. Veyssie,
and C. Knobber, Phys. Rev. Lett. 58, 2079 (1987).

[S] K. Wilson and J. Kogut, Phys. Rev. 12, 77 (1947).
[6] L. Golubovic and T. C. Lubensky, Phys. Rev. Lett. 63,

1082 (1989).
[7] Onuki, Phys. Rev. B 39, 12 308 (1989).
[8] R. A. Lovvley, Phys. Rev. B 13, 4877 (1976).
[9] E. Courtens, R. Gammon, and S. Alexander, Phys. Rev.

Lett. 43, 1028 (1979).
[10]Y. Park, T. C. Lubensky, P. Barois, and J. Prost, Phys.

Rev. A 37, 2197 (1988).
[11]Ch. Bahr and G. Heppke, Mol. Cryst. Liq. Cryst. B 150,

313 (1987).
[12] G. Sigaud, F. Hardouin, M. F. Achard, and H.

Gasparoux, J. Phys. (Paris) Colloq. 40, C3-356 (1979); G.
Sigaud, H. T. Hguyen, M. F. Achard, and R. J. Twieg,
Phys. Rev. Lett. 65, 2796 (1990).

[13]P. Barois, J. Prost, and T. C. Lubensky, J. Phys. 46, 391
(1985)~

[14] P. G. de Gennes, Solid State Commun. 10, 753 (1972).
[15]D. R. Nelson and B. I. Halperin, Phys. Rev. B 21, S312

(1980);R. Bruinsma and D. R. Nelson, ibid. 23, 402 (1981);
J. Prost, in Symmetries and Broken Symmetries, edited by
N. Boccara (IDSET, Paris, 1981),p. 159.

[16]C. W. Garland, J. D. Lister, and K. J. Stine, Mol. Cryst.
Liq. Cryst. 170 {1989).

[17]J. D. Brok, A. Z. Aharony, R. J. Birgeneau, K. W. Evans-
Lutter, J. D. Lister, P. M. Horn, G. B. Stephenson, and A.
R. Tajbakhsk, Phys. Rev. Lett. 57, 98 (1986).

[18] P. G. de CJennes and P. Pincus, Solid State Commun. 7,
339 (1969).

[19]R. B. Meyer, L. Liebert, L. Strzelecki, and P. Keller, J.
Phys. (Paris) 36, 69 (1975).

[20] P. G. de Gennes, C. R. Hebd. Seanc. Acad. Sci. Paris, Ser.
B 174, 758 (1972); Mol. Cryst. Liq. Cryst. 21, 45 (1973).

[21] B. R. Ratna, R. Shashidar, Geetha G. Nair, S. Krishna
Prasad, Ch. Bahr, and G. Heppke, Phys. Rev. A 37, 1824
(1988).

[22] S. Garoif and R. B. Meyer, Phys. Rev. Lett. 38, 848 (1977).
[23] Ch. Bahr and G. Heppke, Phys. Rev. A 39, 5459 (1989).
[24] H. E. Stanley, Introduction to Phase Transitions and Criti

cal Phenomena (Oxford University Press, New York,
1971).

[25] Ch. Bahr and G. Heppke, Phys. Rev. A 44, 3669 (1992).
[26] C. C. Huang, G. Noumesis, and D. Guillon, Phys. Rev. A

33, 2602 (1986). T. Pitchford, C. C. Huang, J. D. Budai, S.
C. Duvey, R. Pindak, and J. W. Goodby, Phys. Rev. A 34,
1422 {1986).

[27] A. Als-Nielsen, R. J. Birgenau, M. Kaplan, J. D. Lister,
and C. R. Safinya, ibid. 39, 1668 (1977).

[28] A. Caille, C. R. Acad. Sci. Paris B 274, 881 (1972).
[29] Ch. Bahr and G. Heppke, Phys. Rev. A 45, 4335 (1990).
[30] Y. Park, T. C. Lubensky, and J. Prost, Liq. Cryst. 4, 435

(1989).
[31]J. Prost, J. Pommier, J. C. Rouillonn, J. P. Marcerou, P.

Barois, M. Benzeki, A. Babeau, and H. T. Nguyen, Phys.
Rev. 8 42, 2521 (1990).

[32] Y. H. Jeong, G. Nounesis, L. W. Garland, and R. Shashi-
dar, Phys. Rev. A 40, 4022 (1989).

[33] X. Wen, C. W. Garland, R. Shashidhar, and P. Barois (un-
published).

[34] A. D. Defontaines, These de 1'Universite de Paris VI,
1992.


