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A systematic theory of the dynamics of phase separation of quenched binary systems into metastable
states is presented. Not only the kinetic equation for the single-droplet-size distribution function f (R, t)
but also the linear equation for the structure function S(k, t), which are valid over the entire time region
after the nucleation stage, are derived from a unified point of view. The functions f(R, t) and S(k, t) are
shown to satisfy the dynamical scaling relations f(R, t)=[n(t)/(R )(t)]F(R/(R ), t) and

S(k, t)=[kM(t)] [4(t)] 0'(k /k ut) with ku'(t) ~ (R )/@'~~, where n is the number density of the
minority phase, (R ) the average droplet radius, 4 the volume fraction of the minority phase, k~ the
peak position of S(k„t), and d =3 here. Three characteristic stages are then shown to exist after the nu-

cleation stage: the growth stage with 5=2, where the power laws are given by (R ) ~ t', n ~ t,
kM ~ t, and 0& ~ t'~', the intermediate stage with 5=1/d, where (R ) ~ t'~, n ~ t '~', kl ~ t '~', and
C&~ t'~'; and the coarsening stage with 5=1/d, where (R ) ~t'~', n ~ t ', kM ~t '~', and N~ t . Two
crossovers are then observed in the time exponents. The time evolution of the scaling functions F(p, t)
and 4'(x, t) are thus studied explicitly, including their asymptotic behavior and their dependence on N.

PACS number(s): 64.70.—p, 64.60.My, 64.60.gb

I. INTRODUCTION

Many experimental [1—7], numerical [8—10], and
theoretical [11—14] approaches have been applied to
study the dynamics of phase separation of the quenched
binary systems in the metastable state. When the system
is quenched into two phase regions near the coexistence
curve from the one-phase region, it undergoes phase sep-
aration by nucleation and growth of droplets of the
minority phase. The early stage of phase separation has
been studied in particular by Becker and Doring [15].
Their theory was then developed into the microscopic
cluster theory of nucleation by Binder and Stauff'er [16].
The late stage of phase separation was explored in the
monumental works by Lifshitz and Slyozov [17] and in-
dependently by Wagner [18] (LSW). Since the LSW
theory was only available in the limit of zero supersatura-
tion, several attempts [19—21] were recently made to ex-
tend it to the case of finite supersaturation. In contrast to
the study of the late stage of phase separation, however„
the dynamical aspects of the intermediate stage before
the 1ate stage are not yet well understood theoretically,
although this stage is important for real systems [1—7].

To obtain an understanding of the qualitative features
of the dynamical properties of the metastable state, two
kinds of experimental methods have been used in the
study of first-order phase transitions [22]. One is direct
microscope observations. The other is small-angle-
scattering measurements. In order to study the dynamics
of phase separation, therefore, there are two theoretical
aspects, corresponding to those experiments. The first is
to study the causal motion of droplet growth, which is
observable by an electron microscope [23]. This is de-

scribed by the single-droplet-size distribution function

f (R, t) with radius R. Hence the main aim here is to find
a kinetic equation for f (R, t) from first principles. The
second is to explore the Auctuations around the causal
motion. In most cases the fluctuations are small as com-
pared to the causal motion. However, they are still im-
portant since they are observable as the structure func-
tion S(k, t) by small-angle-scattering experiments [22].
The main theoretical interest here is to find an equation
of motion for S(k, t) from a new point of view. In order
to obtain such equations from a microscopic point of
view, the diffusive long-range interactions among drop-
lets must be studied consistently as a many-body prob-
lem. Thus the principal purpose of the present paper is
to develop a method of finding not only the kinetic equa-
tion for f (R, t) but also the linear equation for S(k, t),
which are valid over the entire time region after the nu-
cleation stage, from a unifying point of view, and thereby
to formulate a general scheme for understanding the dy-
namics of phase separation in quenched binary systems
from first principles.

We consider a three-dimensional system with volume
V, which consists of spherical droplets of the minority
phase and a supersaturated solution of the majority
phase. There are several mechanisms for growth of drop-
lets, such as an evaporation-condensation mechanism
[17] and elastic interactions [24]. In this paper we re-
strict our attention to the case where diffusion is the only
significant transport process and hence the driving force
for the coarsening is provided only by the interfacial sur-
face energy. We also restrict ourselves to the case of in-
stantaneous nucleation where all droplets are nucleated
only during the initial short time, that is, the nucleation
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l(r)=[4~n(r)(R )(r)] '~~, T(t)=312/D . (1.2)

Let N(t)=4vrn (t)(R )(t)/3 and b(t) denote the volume
fraction of droplets and the supersaturation at time t, re-
spectively, where the brackets denote the average over
the distribution f (R, t). Since the total mass of droplets
is conserved. , we then have

@(t)+b,(t) =Q, (1.3)

where Q represents the total supersaturation. In this pa-
per we discuss only the cases where Q is small but finite.
Hence we obtain

stage. We further assume that the droplets are nonover-
lapping and nontouching spheres and the distribution of
their positions is stationary.

The present system has three kinds of time-dependent
characteristic lengths and times. The first is an average
droplet radius (R )(t) and its related microscopic time
to(t) =3(R ) /D, where D is a diffusion coefficient. The
second is an interdroplet distance L (t) and its related
time TI(t),

L (r) = [4~n (r)/3] '~3, TI(r) =3L2/D,

where n (t) denotes the number of droplets per unit
volume. The third is a screening length 1 (t) over which
the diffusive interactions are screened out, and a screen-
ing time T(t),

the droplets separated by a distance of order l start to in-
teract through diffusion. Hence two kinds of growth
mechanisms compete with each other through the
diffusive long-range interaction. Thus, the growth is no
longer independent and is slowed down by such a long-
range interaction. On the time scale of order T„only the
coarsening mechanism dominates the system.

In Sec. III we derive the Fokker-Planck type kinetic
equation for the distribution function f (R, t) up to order

In Sec. IV we also derive the linear non-Markov
equation with the source term for the dynamical struc-
ture function S(k, t). Both equations are valid on the en-
tire time region after the nucleation stage. Since they do
not contain any adjustable parameters, the time evolution
of f (R, t) and S(k, t) are obtained by just solving them
under appropriate boundary and initial conditions. The
central results are as follows. The distribution function
f (R, t) is shown to satisfy scaling

S(k, t)=kM @ 'Il(kjkM, t), (1.8)

f(R, t)=[n(t)/(R )(t)]F(R/(R ), t),
with the coarsening rate

K ( t ) = lim F (p, t ) /p
p —+0

where F (p, t) denotes the relative-droplet-size distribu-
tion function. The dynamical structure function S(k, t) is
also shown to satisfy a new scaling form

(R )/L —@', L/1 —@' (R )/1 —@'

This leads to the inequalities

(1.4)
with the peak position of S (k, t) as a function of k,

kM'(t)=c2(R )/4'i =(c2 jp3 )L(t), (1.9)
(R) «L «I, to«TI «T .

Thus the volume fraction @ turns out to be a small pa-
rameter in the present system.

After the nucleation stage, there are two kinds of
growth mechansims which cause droplet growth. The
first is a direct growth mechanism where the droplets
grow directly from the supersaturated solution by
diffusion. This mechanism does not change the number
of droplets. The second is the Ostwald ripening (or coar-
sening) mechanism, where the larger droplets grow at the
expense of the smaller ones which disappear. This mech-
anism reduces the number of droplets in such a way that
the volume fraction does not change. These mechanisms
become important on different time scales. In order to
describe this, therefore, it is convenient to introduce the
following three time-independent macroscopic times.
The first is an initial time of growth, TO=RD/DQ, at
which the growth from the solution starts, where Ro is
the initial critical radius. The second is a screening time,
T, =3 j[4mn (0)RDD], over which the screening interac-
tion between droplets becomes important. The third is a
coarsening time T, over which the growth from the solu-
tion is over and the Ostwald ripening mechanism dom-
inates the system. Here to«To«T, «T, . On the
time scale of order To, the direct growth mechanism
dominates the system. Since the many-body effect is not
important, the rapid growth from the solution proceeds
independently. On the time scale of order T„however,

x for x«1
(1.10)x for x »1,

where x =k/kM. The x dependence of 4'(x) for small x
is caused by the nonthermal fluctuations generated by the
long-range interactions among droplets. This behavior
agrees with recent theories [25—28]. The x tail of %(x)
for large x, known as Porod's law, results from the fact
that the droplets are assumed to have a sharp interface
after the nucleation stage.

Three characteristic stages are shown to exist after the
nucleation stage. The first is a growth stage [6] where
To(t & T„and 5=2. The interactions among droplets
are not important, and the droplets, which have reached
an appreciable size, that is, the initial critical radius Ro,
grow directly and independently from the solution. The
distribution function F(p, t) is given by

%(x, t) —'

F (p, t ) = o(p 1) . —

Then, the temporal power laws are given by

(R )(r)-t'~', n (t)=n (0), 4(t)-t'~',
K (t)=0, kM(t) ' —t, SM(t) r- (1.12)

where c2 is a positive constant, p3(t) = (R ) l(R )l, and
d =3 here. The value of the exponent 5 depends on the
time region. The scaling function V(x, t) has the asymp-
totic form
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where S~=S(k~, t) denotes the peak height of S (k, t).
The number density n (t) remains constant and the
volume fraction d&(t) increases rapidly. The power-law
behavior is in good agreement with the recent experi-
ments of Cumming et al. [7]. After this stage,
two kinds of growth mechanisms compete with each
other through the diffusive long-range interactions.
This is an intermediate stage [I], where
T, ~ t ( T, = T, [n (0)/K ( oo )p3( oo )n ( T, )], and 5 = 1/d.
The distribution function F (p, t) can be obtained only nu-
merically here. The temporal power laws are then given
by

(R )(t)-t'", n(t) t-'", @(t)-t'"',
K(t)-t-'", kl(t)-'-t'", SM(t)-t""'. (1.13)

The growth is thus slowed down by the long-range in-
teractions.

The last is a coarsening stage [C] where T, ~ t, and
5=1/d. The growth is governed only by the Ostwald
ripening mechanism. This stage further consists of two
time regions. One is a transient stage with the time re-
gion T, ~t ((Tl, where the volume fraction N is in-
creasing slowly in time as

4 (t) =Q I 1 —[K( ~ )t/To] '/'j . (1.14)

(R )(t) t 1/3[1+ g t
—1/3]1/3

n (t) —t '[1—/I, t '/' j,
K(t)-K(~ )[1+A, t '/'],
k (t)-'- (R ) /e'", S (t) -k -'e'",

(1.15)

where A; are positive constants. The other is a late stage
with TL &t, where @=Q. The scaling functions F(p, t)
and %(x, t) become independent of time. The temporal
power laws are then given by

(,R )(t)-t'/3, n(t)-t ', C(t)=Q,
K(t)=K(~), kM(t) '-t'", S~(t) t. - (1.16)

The temporal power behavior of the late stage agrees
with those expected on the basis of the LSW theory,
while the quantitative behavior of F (p, t = oo ) and
%(x, t = oo) agrees with those obtained previously by
Tokuyama, Tawasaki, and Enomoto [19], referred to as
TKE.

The dynamical scalings, Eqs. (1.6) and (1.8), hold over
the entire time region after the nucleation stage. Thus, in
stage [I], the two lengths (R ) and L are relevant, while
only one length (R ) is relevant in stages [G] and [C].
The two crossovers are then observed in the time ex-
ponents of (R ) and n around T, and T, . These qualita-
tive changes are caused by the static long-range interac-
tion among droplets (screening interaction) of order N,

Here Tt =0.02 [To/K(oo)] represents the late stage
time over which the deviation of @ from Q becomes less
than 2%. Hence the scaling functions F(p, t) and p(x, t)
still depend on time through N(t) The tem. poral power
laws are then given by

which becomes important on the time scale of order T.
The first crossover is attributed to a transition from the
single-body type to the many-body type growth from the
solution, while the second one corresponds to a transition
from the many-body type growth to the coarsening pro-
cess. There is also a dynamic long-range interaction (spa-
tial correlation) of order 4', which becomes important
on the time scale of order T/@' . This alters only the
quantitative behavior of f (R, t) and S(k, t), leading to
their dependence on Q.

The outline of this paper is as follows. In Sec. II we
first derive the basic equations for the radius of each
droplet from the diffusion equation. In Sec. III we then
transform them into the hierarchy equations for the mul-
tibody distribution functions. By employing the sys-
tematic expansion method in powers of N', we truncate
them to obtain the kinetic equation for the single-
droplet-size distribution function f (R, t) and the linear
variance equation for the fluctuations, to order N'
This is all done by employing a similar formalism to that
previously introduced by one of the present authors
(M.T) [29] to study the kinetics of electrochemical nu-
cleation on a substrate. The time evolution off (R, t), its
scaling behavior, and its volume fraction dependence are
then discussed. In Sec. IV we further derive the non-
Markov linear equation with the source term for the
structure function S(k, t) from the variance equation.
The time evolution of S(k, t) is thus explicitly explored,
including its scaling behavior, and its volume fraction
dependence. Section V is devoted to conclusions.

II. BASIC EQUATIONS

Here we describe a derivation of a model equation to
study a diffusion-controlled growth of spherical droplets.

The molar concentration field of the supersaturated
solution is described by the diffusion equation

C(r, t)=DV C(r, t), (2.1)

with the full initial and boundary conditions

C(r, t =0)=C(~r~ = oo, t)=Cb,
C(r=x;, t)=C„+p a/R;,

(2.2)

(2.3)

where D is the diffusion coefficient of the solute, Cb the
bulk concentration field, C the equilibrium solubility of
a droplet of infinite radius, p the molar density of the
material composing the droplet, o. the capillary length,
and R; the radius of the droplet i Here x,. =X,.+R, (t)
denotes the position vector from the origin to a point on
the surface of the ith droplet, where X,. = (X;, Y;,Z; ) is
the position vector from the origin to the center of the ith
droplet, and R, (t) is the radius vector from the center of
the ith droplet to a point on its surface.

We now derive an equation of motion for the radius of
the ith droplet, R, (t). Since the conservation of mass
holds for each droplet, the time evolution of the mass of
the ith droplet is described by
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4nR; (t)
Pm dt 3

=DR, j dQ, (e, VC)~, (2.4)
of mass for the entire system,

4(t)+ b, (t) =@o+b,o= Q, (2.11)

where 0; denotes the orientation of the vector R;, e; the
unit normal vector to the interface of the ith droplet from
inside to outside, and S; the surface of the ith droplet
over which the integral is taken. By adding an appropri-
ate source term to Eq. (2.1), the boundary conditions (2.2)
and (2.3) can be eliminated from Eq. (2.1). As is shown in
Appendix A, by solving such a diffusion equation and in-
serting its formal solution into Eq. (2.4), we thus obtain,
on the length scale of order I,

R, (t)= M, (t),
R, (t)'

with the source-sink strength

R, (t)
M, (t)= —1

0

exp [ —~ X,J /4Ds ]
4vrDR, g— f ds.

3&&0 (4mDs)

(2.5)

XM (t —s), (2.6)

N
b,(t)= g A, (t),n(t)V,

(2.7)

where R o
=a/Q is the initial critical radius,

Q = ( Cb —C„)/p being the total supersaturation, and

X; =X;—XJ. Equation (2.5) is a new starting equation
to study the kinetics of phase separation over the entire
time region after the nucleation stage. It is a non-
Markov equation and is different from the Markov equa-
tion previously obtained by several authors [21,30—32] to
study the late stage of coarsening. If one makes a Mar-
kov approximation in Eq. (2.6), however, Eq. (2.5) exactly
reduces to the same Markov equation as that obtained
previously.

Equation (2.5) represents a mass conservation for each
droplet. Since the total mass is also conserved, it must be
supplemented by another conservation law. Hence let us
define a homogeneous supersaturation by

with the volume fraction of the droplets,

@(t)=—Jdr f dR f (R,r;t),1 4'
(2.12)

y(R „r„R2,r2; t) =5N(R „r„t)5N(R2,r2;t) . (2.13)

The spherically averaged structure function S(k, t) is
then simply related to the fluctuations Mr' through the
variance y by

S(k, t)=RO I dR, I dR2
4~Ri 4~R2

Xp(kR, )g(kR~)yk(R „R2;t),

where @0=4&(0)and bo=h(0).
The second term of Eq. (2.6) represents the many-body

effect due to the spatial long-range interactions among
droplets separated by a distance of order I and contains
the higher-order terms in N' . Because of such long-
range interactions, it is beyond our capacity to deal with
Eq. (2.5) analytically, although it is possible to solve it
numerically by computer simulations. Hence we must
further reduce it to obtain macroscopic equations, which
we can reasonably analyze. As discussed in Sec. I, there
are two theoretical aspects, depending on what processes
we are interested in. The first is to study the causal
motion of growth which is described by the single-
droplet-size distribution function f (R,r;t). The second
is to explore the fiuctuations 5N(R, r;t) around the
causal motion f (R, r; t), where 5N (R, r; t) =N (R,r; t)—f (R, r; t). In most cases, they are small as compared to
the causal motion. However, they are important since
they are experimentally observable through the structure
function S(k, t) by using small-angle scattering of neu-
trons, x rays, or light [21,32]. As is discussed in Sec. III,
it is also indispensable to explore the dynamics of the
Auctuations explicitly since the derivation and validity of
the kinetic equation for f(R, r;t) is closely related to
their asymptotic behavior. The Auctuations are cus-
tomarily described by the variance,

where the bar denotes the average over a suitable initial
statistical ensemble, and V the total volume of the sys-
tem. Here n(t) represents the number density of drop-
lets,

with a structure factor of a single droplet,

(2.14)

n(t)=V ' Jdr JdR f(R, r;t), (2.8)
P(x ) = 3(sinx —x cosx ) /x (2.15)

f (R, r;t)=N(R, r;t), (2.9)

where N(R, r;t) denotes the droplet number density
defined by

N(R, r;t)= g 5(R —R, (t))5(r —X,(0)) . (2.10)

Using Eqs. (2.5) and (2.7), we thus find the conservation

with the single-droplet distribution function with radius
R and at the position r,

where k = ~k~, and yk is defined by

gk(R] R2't)=Ro jdl]pexp[ l k'
&r]2g(1 2 't) . (2.16)

In order to study the dynamics of phase separation,
therefore, we need to discuss both the time evolution of
the single-droplet-size distribution function f and that of
the variance g. In the next sections we derive the kinetic
equations for them from Eq. (2.5) by employing a sys-
tematic expansion method in powers of N'
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III. KINETIC EQUATIONS

In the present section, we derive the kinetic equation
for the single-droplet-size distribution function for
f (R, r;t) from Eq. (2.5), up to order 4&' and discuss its
asymptotic behavior.

A. Hierarchy equations for distribution functions

Define the probability distribution function of I drop-
lets by

f (1, m;t)= Q (lr;, I R; —Ri)—
(I'&j)

XN(1;t) N(m;t), (3.1)

where i =(R;,r, ) represents the specific value of the ra-
dius and position of the ith droplet. Here the step func-
tion B(x) of Eq. (3.1), 6(x)= 1 for x )0 and B(x)=0 for
x ~ 0, comes from the fact that the droplets are supposed
to be nonoverlapping and nontouching. The average ra-
dius (R )(t) is now defined by

(R )(t)= fd(1)R,f, (1;t)jn(t)V, (3.2)

where d(i)=dR;dr;.
The droplet number density N (i; t) can be split up into

a deterministic part f, (i;t) and a fiuctuating part
5N(i; t),

+G3(1,2, 3), (3.4)

and so on, where f (i)=fi(i;t), and e; is the exchange
operator between i and j.

By taking the time derivative of Eq. (3.1) and then us-

ing Eq. (2.5), we thus obtain

a mf (1, . . . , m;t)=aD g e; 2
I (1, . . . , m),

with

(3.5)

XN(1) N(m)k(m;t), (3.6)

This decomposition is essential since the 4 dependence of
the fluctuations differs from that of the deterministic
part. In fact, we show below that the relative magnitude
of the fluctuations compared to the deterministic part is
of order +' ', where d =3 here. Hence it is con-
venient further to introduce the correlation functions
G (1, . . . , m;t) through the Ursell-Mayer procedure,

f2(1,2) =f (1)f(2)+G2(1,2),
f3(1,2, 3)=f (1)f(2)f (3) +(I+e~ 2+ei3)f (1)G2(2, 3)

N(i;t)=f, (i;t)+5N(i;t) . (3.3) where

R, t
k(t ;t)=1— 'I+4rrDRO f ds fd(j) g(~it

—s)6(~r& ~

—R; —RJ)N(j;s)k(j;s)
0 0

(3.7)

Here the free propagator g, is defined by

g, (t)=exp[ —~r; ~
/4Dt]l(4~Dt)

By using Eqs. (3.1) and (3.4), we also obtain

(3.8)
g(1,2;t) =aD (1+ei2) [ 5(1—2)Ji(2)a a 1

+J2(2, 1 )] . (3.12)

m—G (1, . . . , m t)=aD g e, J (1, . . . , m),

with

(3.9)

y(1,2;t)= (15—2)f (I)+G~(1,2) . (3.1 1)

By taking the time derivative of Eq. (3.11) and using Eqs.
(3.5) and (3.9), we obtain

Ji(1)=Ii(1),
J2(1,2) =I~(2, 1)—Ii(2)f (1),
J3(1,2, 3)= I3(3,2, 1)—Iq(3, 2)f (1)—I2(3, 1)f(2)

—Ii(3)Gp(2, 1)+Ii(3)f(2)f(1), (3.10)

and so on. Use of Eqs. (2.13), (3.1), (3.3), and (3.4) then
leads to

Equations (3.5), (3.9), and (3.12) give the system of ki-
netic equations which describes not only the determinis-
tic motion of growth, but also the fluctuations around it
at the microscopic level. Those equations are written in
terms of J . Since J is in general a functional of the
distribution function f (n ~ m), however, they become
hierarchy equations. Hence we next introduce the sys-
ternatic expansion method in 4' and then extract the
macroscopic kinetic equations from such hierarchy equa-
tions by exploring the asymptotic forms of J

B. Systematic expansion method in N'

Here we introduce the systematic expansion method
[28,33] which can be used to extract the kinetic process
characterized by the length and time scale (I, T) from the
microscopic process described by ((R ), to) systematical-
ly. Since l »(R ) and T))to, we introduce a scale
transformation,
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I ~SI, T~S~T, (3.13)

with S))1,where (R &, to, and all microscopic quanti-
ties such as D and p are fixed. Use of Eqs. (1.2), (1.3),
and (3.13) leads to

n ~S n, N~S N, A~S
Q~S Q, a~S a,

(3.14)

where Ro is fixed. Since T=3l /D, the time exponent P
is given by /=2. The space-time coarse graining is then
given by

r~Sr, t~S t, (3.15)

for distances )r of order l and time intervals t of order T.
Hence we find the thermodynamic limit,

N —+S" N, V—+S"V . (3.16)

Use of Eqs. (2.8) and (3.14)—(3.16) thus leads to the scaled
form

n(t) — R r t

(R &(t) (R &
'

l
' T

(3.17)

3+K
5N(R, r; t) =

4~ R
R r t

(R&' l'Y
(3.18)

which is combined with Eq. (2.13) to give the scaled form

3@ R, R2 r& r2

4~(R&'" «&'(R&' l' l'T
(3.19)

where ~ is an exponent to be determined and represents
the magnitude of y. Thus the systematic expansion
method not only permits us to carry out the space-time
coarse graining in a manner consistent with the expan-
sion in N' but also enables us to evaluate the magnitude
of the Auctuations relative to the deterministic motion,
)5N/f( —N'

We next discuss the correlation functions 6 . There
are two types of correlation functions which originate
from di6'erent interactions. One is the spatial correlation
due to the short-range interactions over a distance of or-
der (R &. As is easily shown, this gives a higher-order
contribution in N' . The other correlation is due to the
long-range interactions over a distance of order I. This
has the invariant form

G (1, . . . , m;t)

where f is a scale invariant.
Since the 4 dependence of the fluctuations 6N will

differ from that of the deterministic motion f (R, r; t), we
define a scaling exponent ~ by

1/2

where v is a scaling exponent to be determined. We
should note here that in the present system an interaction
between two touching droplets such as a coagulation does
not occur since the centers of droplets are assumed to be
fixed and to be separated by a distance of order I.

The scaling exponent K can be obtained by
integrating f and G with respect to r, . . . r
over the volume l ". Since f —n, we have
fd(1). . . fd(m)f —(nl ) . Since the correlation G
is nonvanishing only for relative distances shorter than I,
we also find fd(1). . .f d(m)G —nl . Then
G —f (nl )

' "-nl ' "". This is combined with
Eq. (3.20) to give

a =1+(m —1)d/2, v=v~=(d +2)/2 .

By using Eqs. (3.17)—(3.21), we find

~5N/f ~2 ~~/f 2~ EP(d —2)/2

(3.21)

(3.22a)

~ G~ /f 2
~ g3 /fg~

~

q)(d —2)/2 (3.22b)

When d =3, therefore, the relative magnitude of the Auc-
tuations 5N(i) to the deterministic motion f (i) is small
and the higher-order correlations are less important.
Hence the hierarchy of Eqs. (3.5) and (3.9) can be trun-
cated. Thus all macroscopic properties are described by
the closed equations for the single distribution function f
and the variation g.

We now scale the deterministic equation (3.5). Use of
Eqs. (3.13)—(3.17) leads to

f (R, r;t)=aD J) (R,Sr;S~t),
Bt ' BR R' (3.23)

+S~Jz(R2, Sr~, R„Sr,;S t)],

Gz(1, 2;t)= Da(1+e)z)
a 1

at 2 "BR, R',

XS Jz(Rz, Sr2, R(,Sr„S t),

(3.24)

(3.25)

and so on. Thus the discussion to find the closed equa-
tions for f and y reduces to the analysis of the scaled
functions J . Hence we next order all terms in J in the
scaling parameter S

C. Kinetic equations up to order @'

As is shown in Appendix 8, expanding the scaled func-
tion J i in powers of S ' leads to

J, (R„Sr,;S't)= A(1;t)f(1;t)

where the scaled function J, also depends on S through
4 included implicitly in it. Next we scale Eqs. (3.9) and
(3.12) for the correlations. Similarly to Eq. (3.23), we ob-
tain

a y(1,2;t)= aD(1+e,2)
1

Bt BR2 R2

X[5(1—2)J, (R2, Sr~;S t)

Ri R ri r t
(R&' ' (R&'7' ' l 'T

+S '[U(1;t)+A(1;t)]f(1;t)

+O(S ), (3.26)

(3.20) with the screening terms,
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A, (1;t)=1—P(r„t)p, (t),
U (I;t)=(4vrD)i f dt2 f dt3 fd (2)[ R igi2(t —t2, t)R2g2i(t2 —ti, t)A( I;t3)f (2;t2)

0 0
t 3 04'—D dt4 d(3)R, g, 2(t —t2, t)R2gz3(t2 t3)t—)

0

XR3g32(t3 t4)t) (.)(2;t4)f (2;t)f (3;t3)]

and the correlation term,

A(1;t)= — f dt2 f d(2)R, g, ~(t —t2, t)m2, (t2, t)G~(1, 2;t),1;t 0

where

P(r, ; t) = (a ) +4rrD (R ) f ds f d (2)g,2(t —s)A(2;s)f (2;s)

= (a )+4rrD(R ) f ds f d(2)gi2(t —s, t)(1 —a2)f (2;s) .
0

Here the relative droplet size p(t) and the reduced droplet radius a are defined by

p(t) =R /(R ) (t)=a /(a ), a =R /Ro .

The screening operator m 2, is given by
E2

m21(t2, t) =k(2;t2 ) 4tDf ( 1;t) dt3 f d (3)R2g23( 2 3' 9( 3 )e31

with the renormalized propagator defined through

g J(s, t)=g~(s) 4~D f d—t„fd(n)g;„(t„)R„g„(s t„,t)f (n;t —t„), —
0

(3.28)

(3.29)

(3.30a)

(3.30b)

(3.31)

(3.32)

(3.33)

where the free propagator g; is given by Eq. (3.8). In the
scaling limit S—m oo, use of Eqs. (3.23) and (3.26) thus
leads to

f (1;t)=aD A(1;t)f (1;t) .
0 1

Bt ' BR)
(3.34)

This is the kinetic equation which describes the growth
process of droplets with the length scale of order l and
the time scale of order T. The screening term )(.(I;t) is of
order N and consists of two effects; the single-body
effect, which is given by the first term of Eq. (3.30a), and
the static many-body (screening) effect due to the long-
range interactions among droplets, which is given by the
second term of Eq. (3.30a). The screening effect leads to
a screening of the free propagator g,z, and the diffusive
field around a droplet is effectively screened out by the
other droplets for distances greater than l [see Eq. (3.48)].

The first-order correction to Eq. (3.34) is given by the

X m»(t, t)G, (1,2;t)

dt3R2g2, (t t3) t)A (I) t3 )—
0

Xf (1;t)f(2;t) (3.35)

Hence G2(1,2;t) is given by the formal solution, to order
C0

second term of Eq. (3.26) and consists of two kinds of
many-body eff'ects. One is a static many-body (screening)
effect U (1;t), which contains the product of the single dis-
tribution functions. The other is a dynamic many-body
(correlation) effect A(1;t), which contains the correlation
function 62. As is shown in Appendix C, the correlation
function 62 obeys the following equation in the scaling
limit S—+ ~:

G2(1,2;t)= aD(1+e,2)
1

at 2
BR2 R22

S 1G2(1,2;t)= aD ds exp aD dx(—1+e,z) 2 m»(t x,t)—
0 0 12 gR R 2 22

X(1+ei2) f dt'g2, (t', t)A(1;t —s t')f (2;t s)f (1;t —s), — — (3.36)
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where we have neglected the initial correlation
G2(1,2;t =0) since it represents the correlation of the
two droplets separated far apart initially before the
di6'usive interaction.

The correlation term A is next dominant since it is of
order N' . If the volume fraction + is not su%ciently
small, however, it becomes important on a time scale
longer than T. In fact, balancing the term (c}/Bt)f (1;t)
and the next-dominant terms in Eq. (3.23) leads to the
time exponent /=3. Hence there are two time scales.
One is the time scale T with /=2, on which the screening
effect is dominant. The other is T'=T/4&' with /=3,
on which the spatial correlations become important. On
the time scale of order T', therefore, the single distribu-
tion function f (1;t) consists of a double-time process.
By adding the time scale T' we can generalize Eq. (3.17)
AS

f (1;t)=—,+4 ''i „ f (1;t', t") . (3.38)
dt T r}t dt"

with the screening term

u(l;t)=m))(t) f d(2)p)g&2pgq)(t)f (2;t),

and the correlation term

(3.40)

Here the first term of Eq. (3.38) balances the most-
dominant term (Af) in Eq. (3.26), and the second term
balances the correction terms (u+A)f in Eq. (3.26).
Thus the double-time scaling t ~S t and t ~S t leads, in
the scaling limit S~ Oo, to

f (1;t)=aD [ A(1;t)+u(1;t)+A(1;t)]f(1;t),a a
QR, R2

(3.39)

n(t) r t t
(,R &(t)

~ P' I
' T' T'

The time derivative of Eq. (3.37) then leads to

(3.37)
A(l;t)= —f d(2)p&g&2(t)m2&(t)G2 (1,2;t)/f (1),

(3.41)

where the pair correlation function G2 is given by

Gz (1,2;t)= — ds exp saD(l+e, 2) R2 m22(t) aD(1+e&2)
a -2 a

0 i3R
R~ 'g~, (t)A(1;t)f(1;t)f(2;t) . (3.42)

The screening operator m 2, is given by

m2, (t) =A(2;t) f (1;t)f d (—3)p2$23(t)A(3;t)e», (3.43)

where g&z(t) is a reduced renormalized propagator given

by

g&z(t)=4vrD(R ) f dsg&z( ts) .
0

(3.44)

D. A Fokker-Planck type kinetic equation for f (R, t)

The reduced free propagator g, z has the same definition
as Eq. (3.44), except that q, 2 is now replaced by g&i.
Equation (3.39) is a generalization of Eq. (3.34) to order

We should note here that if one makes a Markov
approximation in Eq. (3.30b), Eq. (3,.39) exactly reduces
to the kinetic equation previously obtained in Ref. [19],
where 13= l.

Because of the spatial inhomogeneities of the single dis-
tribution function f (R, r;t), it is not easy for us to solve
Eq. (3.39) analytically. In the following, therefore, we
discuss only a simple case where the spatial inhomo-
geneities off (R;r;t) are neglected.

g)p(t) = exp[ —lr~~l/~(r)],
(R) (3.48)

with the time-dependent screening length,

l(r)=[4~n(r)(R )(r)] (3.49)

By using Eqs. (3.27) and (3.40), we thus find the screening
terms,

A.(R, r) = 1 —P(r)p,
u (R, r;r) =(3& /p, , )'"P(r)p(p, ,—p),

with the coeScient,
rlr.

P(r)=(a )(r) 1+3f v(r, x)(A, )(r,x)dx

(3.50)

(3.51)

(3.52)

with the relative-droplet-size distribution function
F(p, r), which satisfies the boundary conditions,

f F(p)dp= f pF(p)dp=1,

where p=R /(R ) =a/(a ). Use of Eqs. (3.33) and (3.44)
then leads to

We first introduce the reduced time by

r=t/To, (3.45) v(r)=n( )rn/(0) . (3.53)

where v(r) is the normalized number density given by

where To=Ro/aD. Putting f (R,r;t)=f (R, r) and us-

ing Eq. (2.8), we obtain
Here the reduced screening time ~, is given by

r, =( T, /To) = [Q(a )(0) /4 o] . (3.54)

f (R,r)= F(p, r),n (r)
R r)

(3.46) The second term of Eq. (3.52) represents the screening
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&(.)= J~p (3.55)

As is shown in Appendix D, we can transform the
correlation term into the following simpler form:

efFect of order N and becomes important on the time
scale of order r, . Here p„(r)=(p")(r) denotes the nth
moment of the relative droplet radius p, where the brack-
ets denote the average over the relative-droplet-size dis-
tribution function F(p, r),

A(R, r;r)f (R, r)

=(3@/p3) —pA, + p —f (R, r),(k'& 0 1

Pp, ap p

(3.56)

where in order to derive Eq. (3.56) from Eq. (3.29), we
have neglected the derivatives in (8/Bp) higher than
second order. Thus Eq. (3.39) reduces to the following
Fokker-Planck type kinetic equation for f (R, t):

f (R, r)= 3 A(r)+(3@/p3) —p(pA, )+ p — f (R,r),1/2 &X') a 1

a ~pp 13@
(3.57)

where the volume fraction N is given by

~(.)=(g/. , ) ( )&"&(.) .

Use of Eq. (3.57) then leads to the growth laws,

(a ) =p3K(~) 3(A, ) [1——(34/p3)' /P],

(3.58)

(3.59a)

sity remains constant. This is the growth stage [G] and
continues up to the screening time T, (or r, ) when the
screening efFect of order N becomes important. Since
the integral on the right-hand side of Eq. (3.52) and the
correction term of Eq. (3.57) can be negligible, we thus
find

F(p, r)=&(p —1) . (3.61)
Inv(~) = K(r)/(a —)

with the coarsening rate,

(3.59b)
The growth laws for the time region 1&~(~, are then
given by

K ( 7 ) = lim F (p, r ) /p
p~O

(3.60)

Equation (3.57) is a kinetic equation for the single-
droplet-size distribution function f (R,~) and describes
the kinetics of phase separation over the entire time re-
gion after the nucleation stage. Since it does not contain
any adjustable parameters, the distribution f (R, r) can be
obtained by solving it self-consistently so as to satisfy the
boundary conditions (3.47). This will be discussed in Sec.
III F.

E. Three characteristic stages and crossovers

We here discuss the asymptotic behavior of Eqs. (3.57)
and (3.59). As is seen from Eqs. (3.59), there are two
kinds of growth mechanisms. One is the direct growth
from the supersaturated solution, which is described by
the term (A, ). This mechanism does not change the
number density v and increases the volume fraction N.
Another is the growth due to the coarsening, where the
larger droplets grow at the expense of the smaller ones
which disappear. This is described by the coarsening rate
K. This mechanism leads to the reduction of the number
density but does not change the volume fraction. Thus
there are three characteristic stages after the nucleation
stage, depending on the asymptotic properties of K and
(A, ). After the nucleation stage, on the time scale of or-
der To (or r = 1), the many-body eFects are not important
and hence the droplets grow directly and independently
from the supersaturated solution, where the number den-

K=o, (X&=I—&a), (3.62)

where the coarsening does not play any role in growth.
Use of Eqs. (3.59) and (3.62) then leads to the temporal
power laws

(a )'-2r, v= 1, C —r'" (3.63)

~, =T, /To=r, /(K p3 v, )3, (3.64)

wh«e K„=K(~),p3"=p,(~), and v, =v(r, ). In this
stage the relative-droplet-size distribution function
F(p, r) depends on time explicitly. As is shown in Ap-
pendix E, we obtain the growth law for the time region

K- —
&A, &-&a& (3.65)

Hence two kinds of growth mechanisms compete with
each other. Use of Eqs. (3.59) and (3.65) then leads to

For ~~ ~„ the droplets separated by a distance of order l
start to interact through the difFusive long-range interac-
tions among droplets and hence their growth is no longer
independent. Thus two kinds of growth mechanisms play
an important role in the kinetics of droplet growth, where
the coarsening starts to decrease the number density v
and the growth is slowed down by the long-range interac-
tions. This is the intermediate stage [I] and continues up
to the coarsening time T, (or r, =T, /To) when the
growth from the solution is over, where (A, ) -0. As is
shown in Appendix E, the coarsening time ~, is given by
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( ) 1/4 —2/3 C 1/12 (3.66)

For r ~ ~„ the coarsening stage ~ C~ starts, where the
growth is governed only by the coarsening mechanism.
As is shown in Appendix E, we have the growth laws for
the time region w ~ w„

K =K„[1+c,(a ) ']+0((a) ),
(a)= —(p,"K„/9)(a) '+O((a) '), (3.67)

where c& is a positive constant to be determined. Then
we have ~(k)/K~ &&1 for ~~~, . Hence the coarsening
dominates the growth here. Use of Eqs. (3.59) and (3.67)
thus leads to

(a ) =K r[1+A, (K w)
' ],

v=(r, /p3" )(K r) '[1—A2(K„r) ' ],
C&=Q[1 (K„r)—' ],

(3.68)

K =K„, (X)=0 (P=I),
(a ) =K„r, v=(~, /p3" )(K„r)

(3.69)

The distribution function F, (p, &) thus reaches the time-
independent scaling function FL (p, Q), which is given by
the solution of the second-order differential equation,

d4+p FL(p)
dp

3 d 1 3Q (P2
1 —p+K dp p~ p3 p,

d 1X p &p+p
dp p

XFI (p), (3.70)

where A1= —', (c1+—,') and A2= —,'(c1+1). Therefore, this

stage is further decomposed into two stages: the tran-
sient stage with the time region ~, &~&&~1, where 4 is
still increasing slowly in time, and the late stage with
~l &~, where 4=Q. Here rl =0.02 /K is the late
stage time over which the deviation of 4& from Q becomes
less than 2%. Thus the relative-droplet-size distribution
function F(p, ~) still depends on time through volume
fraction N, leading to F(p, ~)=F,(p, +). On the one
hand, in the late stage the growth laws are given by

where Eqs. (3.46) and (3.69) have been used to derive Eq.
(3.70) from Eq. (3.57). Equation (3.70) is a new equation
to describe the late stage process.

As discussed below, the screening effect of order N
turns out to alter the qualitative behavior of the temporal
power laws for the radius (a ), the number density v, and
the volume fraction @, and causes the two crossovers of
the time exponents around ~, and v, Define the time ex-
ponents gz, g„, and g+ by

(a)-r ', v-r ", e-r ',IR In rI (3.71)

where q+=3gz —g„. Then their theoretical values are
listed in Table I. On the other hand, the correlation
effect of order N' does not alter such a qualitative be-
havior but changes the quantitative behavior of the distri-
bution function f ( R, r ), leading to the volume fraction
dependence (see Figs. 2, 5, and 6).

F. Numerical solutions

We now solve the second-order differential equation
(3.57) self-consistently so as to satisfy Eq. (3.47). As the
initial conditions, we first choose the Gaussian-type dis-
tribution function f (R,O) with the average (a )(0)= l. 1

and the variance 10,which satisfies f /a —+0 as a ~0.
Next we choose the initial value of the volume fraction
under such a condition that the conservation law C&=Q
must be satisfied in the late stage. Thus we find
4 =6.47X10 (Q =0.01) and 1.47X10 (Q =0.1).
Then the values of ~„~„and ~1 are estimated analytical-
ly (see Table II).

In Fig. 1 we show the time evolution of the relative-
droplet-size distribution function F(p, r) at Q =0. 1 for
various reduced times; ~=30, 300, 3000, and 10 . The
scaling function FI (p), which is the solution of Eq. (3.70),
is also shown by the dotted line for comparison. In Fig. 2
a log-log plot of the peak height FM(~) of F(p, v ) vs ~ is
shown for Q =0.01 and 0.1. It decreases in time and
reaches the constant value at the late stage. In the tran-
sient stage of coarsening, the distribution function F(p, ~)
still depends on time through N and reaches the scaling
function FI (p) in the late stage. In Fig. 3 the volume
fraction dependence of F(p, ~) is also shown at r= 10 for
Q =0.01 and O. l. As Q increases, the distribution func-
tion becomes broader and Hatter, where its peak position
shifts to the right.

In order to confirm the theoretical results obtained by
Eq. (3.57), we can also simulate Eq. (2.5) directly. In Fig.
4 we show the histogram of F (p, r) at Q =0. 1 for r =300

Stage

TABLE I. Values of time exponents for stages [6], [I],and [C].

Time exponents

3
25
36

(=0.694)
1

0
2
9

(=0.222)
1

3

1

2
1

4

(=0.250)
1

3

0
2
3

( =0.667)
1

3
2
1

12

(0=0.083)
0
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C3

Q)

x =10 Q =0.01

CD

C3

CV 3000

C3

a.o t ~ 0 p

C3

0.0
I

2 0

FIG. 1. Time evolution of the relative-droplet-size distribu-
tion function (p, ~ aF( ) t ~~ =0. 1 for various times. The dotted
line indicates the time-independent scaling solution FI (p).

FIG. 3. Volume-fraction dependence of the relative-droplet-
size distribution function F(p, ~) at ~=~ ~ ~ ~ = 10' for =0.01 (broken
line) and 0.1 (full line).

d 10 . The analytical results are also shown by thean . e
solid lines for comparison. We see that the error int
duced by the approximations has no efFect on the first-
order correction.

In Figs. 5(a), 5(b), and 5(c) we show the time evolution
of the normalized number density v(~&, the normalized
volume fraction 4(r )/Q, and the growth rate

) /d ) f Q =0.01 and 0.1, respectively, where the
slopes of the lines indicate the theoretical values o t e

I Fi . 6 we also show the time evolution of
for ~~ =0.01the reduced average droplet radius (a )(r) for Q =

and 0.1. As Q increases, the magnitude of (a ) becomes
larger because of the correction term of order N' . n
Fig. 7 the coarsening rate K(r) is plotted versus r or

=0.01 and 0.1 on a logarithmic scale, where
K„=0.59 for Q =0.01 and IC„=0.78 for Q =0.1. As is
seen from Figs. 5 —7, the power-law behavior given by Eq.
(3.71) is satisfied and the crossovers are thus observe
around ~, an ~„ea 'd, d l ading to the three characteristic
stages.

IV. A LINEAR EQUATION
FOR THE DYNAMIC STRUCTURE FUNCTION

Thus far, we have concentrated on the deterministic
equation orf f (R t). In the present section, we investi-
gate the properties of the Auctuations around the deter-
ministic motion and thus derive an equation of motion
for the structure function.

C3

Q)

=300

Q~ '10—
O

U)

10
I I I I I I I I I

10
I I I I I I I I

10 10

C3

0.0

0

FIG. 2. A log-log plot of the peak height FM(~) vs ~ for
Q =0.01 (broken line) and 0.1 (full line). The line has a slope of—1/5 at stage [G], —1/6 at stage [I], and 0 at stage [C].

FIG. 4. Time evolution of the relative-droplet-size distribu-
tion function I'(p, r) at Q =0. 1 for &=300 and 10 . The histo-
grams indicate the results of the numerical simulation and the
solid curves the analytical results (cf. Fig. 1).
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TABLE II. The analytical estimations of ~„~„and ~L for
Q =0.01 and 0.1 at (a )(0)=1.1.

0.01
0.1

206
91

1288
361

2. 1X10
1.6X 10

A. A linear variance equation up to order N'

0.01
10 10 ~ 10 10

The Iluctuations are described by the variance y(1, 2;t).
Hence we first derive an asymptotic equation for y from
Eq. (3.24) in the scaling limit S~ ac. Use of Eqs. (2.13),
(3.11), (3.12), and (3.35) leads, on the space-time scale
(l, T), to

a a 1

&
yk(R „R2',t)= aD(1+e,2)

&R 2
m (q, pz,'r)at BR, R',

0.1 Xyk(R „R~;t),
with the screening operator,

(4.1)

10
10

s s ~ i ~ ~ l

10 10 10

P2F (P2, r)
m (q, p„r) =A(p„r) — dp, k(p, ,r)e», (4.2)

q +1
where we have neglected the spatial inhomogeneities of
the single-droplet-size distribution function f (R, r;t) to
obtain Eq. (4.2). Here the dimensionless variable q is
given by

q(r)=kl(r) (k =~k~) . (4.3)

0.1
10

'l 2

a ~ i i i &Iil s

10 10
s i i I ~ il

10

On the time scale of order T, the variance equation (4.1)
does not contain a source term. Hence the Quctuations
are generated only by an initial randomness
yk(R „Rz',r=0), which originates from thermal Iluctua-
tions. The Auctuations could also be generated by the
correlation efFect of order O' . We next investigate this.

Similarly to Eq. (3.38), on the time scale of order T',
one can generalize Eq. (3.19) as

FIG. 5. (a) A log-log plot of the normalized number density
v(~) vs ~. (b) A log-log plot of the normalized volume fraction
N(ri vs r. (c) A log-log plot of the growth rate (d(a )/drl vs

The broken line indicates the result for Q =0.01 and the full
line for Q =0.01. The slopes of the lines indicate the theoretical
values of the time exponents.

3N
yk(R), R2, t)=, ~X q, pl P2

4rr&a ' (4 4)

0

As is shown in Appendix C, similarly to the derivation of
Eq. (3.39), we thus obtain, in the dimensionless form,

2'}0—

0.1 =

„'}0
tu

'}

10 10' z 10' 10"
J

6
10 i i ~ ms ~ st

10 '}0

FIG. 6. A log-log plot of the reduced average droplet radius
( a )(r) vs r. Details are the same as in Fig. 5.

FICr. 7. A log-log plot of the coarsening rate K(~) vs ~. De-
tails are the same as in Fig. 5.
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(1+ i2) where U~(q, p2, p3) is the screening term given by

( 3@/p )3/2
+

&,
&(P2 Pi ~)4' a &'

with the linear coefficient,

(4.5)

X ' f dp3Hq(P2~P3~r)XI (R3~R ii&)
p2F(p2, r)

(p2 p3 +) @r)p3(p2 p3) b(p3 p2)
q +1

and A~(P2, p3) is the correlation term given by

Aq (p2 p3,
' r) = —

p3A (p3 )+ p3
P i P3 ~P3

(4.7)

+(3C'/c 3)'"I U, (P2 P3 r)+&, (P2 P3 ~) ~

(4.6)

X 5(p3 —p2)—
q +1

Here the source term E is given by

(4.8)

1 pzE, (p2 pi r)= &,(p2 p—i r)F(p»r)
2~ p +1

F(P2) f dP3P3e32 G2(~ pp I P2
—r)

q +1
F(p2)+ ~(pi p2) f dp3G (p.p p 'r)e ~(p )
q +1 (4.9)

where the scaled pair-correlation function Gz is given by

G2{q Pi P2 r) = QO 1 1d~exp r( I+e,2) m (q, p2) (I+e,2)A(p, ) F(P„7.)F(p2, r) .
q +1 ~Pe P~ ~Pa P2

(4.10)

B. A linear non-Markov equation for the structure function

We now derive a linear equation for the dynamic struc-
ture function S(k, t) from the linear variance equation
(4.5).

We first define the function u by

u~(p)=p g(pp),

with the dimensionless variable,

(4. 1 1)

Equation (4.5) is a generalization of Eq. (4.1) to order
and describes the fluctuations with the length scale

of order l over the entire time region. We note here that
the Fourier transform of the coeKcient H (p2, p3) is sim-
ply related to the term J

&
(2) through H (2, 3 ) = l3J

&
(2 ) /

l3f (3). This is because Eq. (4.5) is an equation for the
fluctuations which complements the deterministic equa-
tion (3.39).

The variance equation (4.5) has the source term E,
which is related to the correlation term A(1) through the
pair correlation 62. On the time scale of order T', there-
fore, the Auctuations are generated not only by the initial
randomness but also by the dynamic many-body (spatial
correlation) effect. Thus the effects of those ffuctuations
on the dynamics of the structure function S(k, t) are ex-
pected to be different from each other.

p =«R & (k =lkl), (4.12)

X u* 0 Hq(~) yk(r) up

(3@/p )' '
+ u .OE -u

( &5 P ——q—(4.13)

where lOl & =(8/Bp)p 6(p —b), and the asterisk
denotes the Hermitian conjugate. In order to derive an
equation for S(k, r) from Eq. (4.13), we introduce a pro-
jection operator matrix P by

P. A =(u* A u~)F, (4.14)

where lFl b=5(p b)F(p, ~)/(u &,
— and A

is an arbitrary matrix. Then we have
tP gk ] b =(3/4m)5(p b)S„(r)/.(R &'—(u &. As is
shown in Appendix F, the projection operator method
then leads to the following linear non-Markov equation

where f is given by Eq. (2.15). It is then convenient to in-
troduce a matrix notation as u for the column matrix
Iuz(p)I and H~(r) for the matrix whose (p, p') com-
ponent is given by H (p, p', ~). Use of Eqs. (2.14) and
(4.5) thus leads to

2

S(k, r)= 2(a &
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for S(k, r):

S(k, r)= 3 h(p, q, r)S(k, r)d 2

—f O(p, q, r;s)S(k, r —s)
0

4~%+2 I (p, q, r),
3p3

with the instantaneous term,

(4.15)

h(p, q, r)= — f db&u (p)H (b,p, r))co(bp),
u

(4.16)

where the fiuctuating force g (p, r;s) satisfies the ortho-
gonality condition & g (p, r;s)u (p) ) =0.

Equation (4.15) is a new linear non-Markov equation
for the structure function S(k, t) which is valid over the
entire time region. The source term I consists of two
terms which are related to two kinds of Auctuations dis-
cussed before. The first term of Eq. (4.18) is related to
the nonthermal Auctuations generated by the fluctuating
force g (p, r;s). This originates from the initial random-
ness gI, (R(,R2', &=0) and exists even in the limit Q —+0.
The second term is related to the nonthermal fluctuations
generated by the spatial correlations. This is of order

and vanishes in the limit Q ~0.

C. A linear Markov equation for S(k, v. )

and the memory term,

O(p, q, r;s)= f db&u„(p)H (b, p, r))
u

X ( (b, r;s),1 a
b2 gb

where the source term I (p, q, r) is given by

I (p, q, r) = f O(p, q, r;s) & u~ )(r s)ds—
0

+(3@/p3)' B (p, q, r),
with the term related to the correlation effect

B(p, q, r)=u* 0 E u

(4.17)

(4.18)

(4.19)

Since Eq. (4.15) does not contain any adjustable param-
eters, one may solve it under an appropriate initial condi-
tion to obtain the time evolution of S(k, r). However, it
is not easy to calculate it since it is a non-Markov equa-
tion and also the source term I (p, q;r) contains the
higher-order derivatives in operator (c)/c)p) to be calcu-
lated. Hence we here make the following approximations
to transform Eq. (4.15) into a simpler form. First, the
time scale of the fiuctuating force g (p, r;s) is assumed to
be much smaller than that of S (k, r ). Then one can make
a Markov approximation in Eq. (4.15) after stage ~G~.

Second, in order to find the more tractable forms for the
memory term 0 and the source term 8, we employ a
similar approximation to that used in the derivation of
Eq. (3.56), where the derivatives in (()/c)p) higher than
second order have been neglected. Thus we obtain

~(~(r;s)= Vq(s) (1 P*) Hq (r) 0* u— (4.20)

Hereto(8)=sin6/8, q =kl, andp =k&R ).
The function g (p, r;s) represents a fiuctuating force

and is given by the p component of the following matrix:

S(k, r)= [h (p, q, r) y(p, q, r)—]S(k,r)d = 2
dr a

+2 I (p, q, r),4nN
(4.22)

3p3

with the propagator,

V (s)=exp[s(l —P*) H*(r) 0*], (4.21)

with the instantaneous term h(p, q;r)=Z("(p, q;r) and
the damping term y(p, q;r)=Z(2I(p, q;r), which are
given by

Z'"'(p, q;r) =— 3
&
p3gX(ni ) +(3@/+ )1/2 (P+ I ) &

p4X(n) ) &
p2Y(n) )

&u') 139 i— (4.23)

where

X'"'(pp, q)=g(pp) (pp) —
&p (pp))

1+2(n —1)q
(q +1)" (4.24)

1+2(n —1)qY "'(pp, q) =P(pp) cos(pp) —
& p~(pp) )

(q +1)"

The source term I is given by

I (p, q, r)= &u )y(p, q, )+r(3&lp )'~ 3B(p, q, )r,

B (p, q, r) = —3 & p~PA, ) &pro)q /(q~+ I )+2&p AX(")+
I 3&p coX2"'/g)+2& p Y"2')

I
& X')
p

(4.25)

(4.26)

(4.27)
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Here we should note that the Markov source term (4.26) is valid on the time region after the stage [G]. In order to dis-
cuss the growth stage process, therefore, one should use the non-Markov source term (4.18) without the correction
term. In fact, at stage [G], the source term I is given by

I (p, q, r)= ~p [(p X g ) —(Af)(p Aitr) l(q +1)]
+3 ( )[&p&P ) —(p&g)(p &l(q +1)—&p'&g&[& Ip& —p, & p&/(q +1)I/(q'+1)] . (4.28)

D. Dynamical sealing and temporal power laws %(x,r)-x " for x ))1 . (4.35)

We now investigate the asymptotic behavior of S(k, ~).
Using Eq. (3.71) and taking a dimensional analysis of Eqs.
(4.15), (4.22), (4.26), and (4.28), we thus find a scaling law,

S(k, r)=kM 4 'II(k/kM, r),
with the peak position of S(k, t) as a function of k,

(4.29)

(4.30)

where d =3 here, and c2 is a positive constant to be
determined. Here 5=2 for stage [G] and 1/d for stages
[I] and [C]. From Eq. (1.1), therefore, the inverse of kM
is proportional to the average distance between nearest
neighbors as

(4.31)

The x tail is known as Porod's law and results from
the fact that the droplet interfaces are assumed to be
sharp after the nucleation stage. We should remark that
at the earlier stage the exponent must be different from
—4 since the droplet surface is not expected to be
smooth.

Finally we discuss the asymptotic behavior of the scal-
ing function 'P(x, ~) in the late stage where 4=Q. Put-
ting %1 (x, Q)=(3@3"/4+Q)%'(x, r) and using Eqs. (4.22)
and (4.29), we obtain

3+p VL (x, Q)
dp

[j(p, Q)%1 (x, Q)+ I (p, q)], (4.36)

The peak height of S(k, r) is then given by
S~=S(k =kM, r). Introducing the exponents rjk and i)s
by

(4.32)

and using Eqs. (4.29) and (4.30), we thus obtain the rela-
tion

j(p, Q)=— 3&pco)q'
(u )(q +1)

' 1/2

x (p'gA. ) + (pp" —1)

Ik 9R I(P/d~ IS d 1k+~ l4 (4.33) x [(p 0) —(p'itj) /p, , ]

~P(x, r)-x for x «1 . (4.34)

The x dependence of the scaling function is caused by
the nonthermal fluctuations generated by the fluctuating
force g (p, r;s). This agrees with the recent theories
[25—28].

In the limit x ))1, we have (p) -p, (co) -p
( iten ) -p ~, and ( u 2) -x ~. Therefore, we find
h -y-po, B-p, and I -p for [G] and p for [I]
and [C]. Use of Eqs. (4.15) and (4.22) then leads to the
asymptotic form

The theoretical values of these exponents are listed in
Table I. The scaling relation (4.29) holds over the entire
time region after the nucleation stage. In stage [C] the
scaling function %'(x, r) depends on time only through 4
and becomes independent of time in the late stage.

We next discuss the asymptotic behavior of the scaling
function %(x,r ) in two limiting cases; x « 1

(p «q «1), and x ))1 (q ))p ))1), where x =klkM.
In the limit x « 1, we have (1t ) —1, (co) —1, and
(u ) -p6. Since X"'-I'"-q and X' ' —Y' '-q, we
obtain h -q, B -q, and I -q". From Eqs. (4.15) and
(4.22), we thus find the asymptotic form

(4.37)

where A, = 1 —p, q =p(3Q/p3 ) '~, and I (p, q) is given

by Eq. (4.26). This is a new equation for the scaling func-
tion VL (x) in the late stage. From Eq. (4.36), we thus
find the asymptotic solution

+L, (x, Q) = (6/lt „)p ' f dy y'I (y, Q)
0

Xexp (6/K„)I dz j(z)/z
3'

(4.38)

where p =x (k~(R ) ) =xQ' /cz.

E. Numerical results

Finally we discuss the numerical solution of the Mar-
kov equation (4.22). Figure 8 shows the plot of the struc-
ture function S(k, r) vs kRO at Q =0. 1 for times (a) up to
300 and (b) from 3000 to 10 . With increasing times, the
structure function becomes narrower with the peak posi-
tion shifting towards small wave vector and the peak
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FIG. 10. A log-log plot of the peak height SM(~) vs ~. De-
tails are the same as in Fig. 5.

FIG. 8. Time evolution of the structure function S(k, r) at
Q =0. 1 for times (a) up to 300 and (b) from 3000 to 10 .

by

2&k~S(k, r) 2' %(x,r)S(x,r)= J dk k S(k, r) J dx x %(x,r)
0 0

where x =k lk~. In Fig. 12 we show the plot of S(x,r)
vs x at Q =0. 1 for different times r=30, 300, 3000, and
10 . The time-independent scaling solution SL (x, Q),
which is obtained from Eq. (4.38), is also shown by the
dotted line for comparison. As time increases, the nor-
malized scaling function becomes narrower with the in-

(4.39)

height increasing rapidly. Figures 9 and 10 show a log-
log plot of the reduced peak position k~RO and the peak
height SM vs r for Q =0.01 and 0.1, respectively. They
satisfy the power law be-havior given by Eq. (4.32). The
crosso vers in the time exponents are also observed
around ~, and ~, . In Fig. 11 a log-log plot of the struc-
ture function S(k, r) vs kRo is shown at Q =0. 1 for time
(a) 300 (stage [I])and (b) 3000 (stage [C]). Here the lines
in small kRO have a slope of 4, while the lines in large
kRo have a slope of —4. It is interesting to note here
that a secondary maximum or a shoulder shows up for
large kRO and becomes more evident at the later stage
[34,35].

Finally, we discuss a normalized scaling function given

creasing peak height and reaches the scaling solution
SL(x, Q) for r&10. In Fig. 13 we also show a log-log
plot of the peak height of the scaling function, S( l, r), vs
r for Q =0.01 and 0.1. It increases in time and reaches
the constant value at the late stage. Figure 14 shows a
log-log plot of the half width b. »2(r) of the scaling func-
tion S(x,r) vs r for Q =0.01 and 0.1. As r increases, the
half width decreases. As Q increases, it also decreases.
As is seen from Figs. 13 and 14, the scaling function
S(x,r) also becomes narrower and higher as Q increases.
Finally, we should mention that the slope of —,

' of the peak
height S~ in stage [G] is different from the theoretical
value of 3. This is because the above numerical results in
stage [G] were obtained by solving the Markov equation
(4.22), which is not valid at stage [G]. In order to obtain
the correct results in stage [G], therefore, one should
solve the non-Markov equation (4.15) with Eq. (4.28) it-
self.

V. CONCLUSIONS

%'e have presented a systematic theory for the dynam-
ics of phase separation in the quenched binary systems
into the metastable states. In Sec. II we have first derived
the basic equations for the radii of droplets, Eq. (2.5),

(6)
7=3 (b)

10—

0

0.1 =
0.1 =

4

0.01
'10 10'

0.01
0.0'1

I I I I I I III I I I I I I I I (

Og1
l R 0.01 0.1 1

kR~

FIG. 9. A log-log plot of the reduced peak position k~RO vs
~. Details are the same as in Fig. 5.

FIG. 11. A log-log plot of the structure function S(k,~) vs
kRO for (a) stage [P (~=300) and (b) stage [CJ (~=3000). The
line has a slope of 4 for small k and —4 for large k.
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where 4=Q.
The second important feature is that the dynamical

scalings, Eqs. (3.46) and (4.29), have been found to hold at
each stage, where the time exponents are obtained analyt-
ically. In stage [G], only one length (R ) is relevant
since n (r) is constant. In stage [I], two lengths (R ) and
L (or kM') are thus relevant since n (~) depends on time,
and hence the scaling functions F(p, r) and %(x,r) de-
pend on time explicitly. In stage [C], only one length
(R ) is relevant. The scaling functions F(p, r) and
V(x, w) depend on time only through C&(~) and become in-
dependent of time in the late stage.

The third important feature is that the linear equation
for S(k, t) has two kinds of source terms. One is the
source term related to the nonthermal Auctuations gen-
erated by the fiuctuating force gzq (p, r; s). This is given
by the first term of Eq. (4.18) and exists even in the limit
Q~O. This leads to the x dependence of the scaling
function 4'(x) for small x. The other is the source term
related to the nonthermal fluctuations generated by the
spatial correlation. This is given by the second term of
Eq. (4.18) and vanishes in the limit Q ~0.

The fourth important feature is that the secondary
maximum shows up in the structure function S(k, r) for
large k values at the later stage. This type of shoulder
has been observed in experiments [35) as well as in
theoretical [36] and numerical [37] calculations.

The final feature is that the present theory enables us
to describe not only the earlier stage of phase separation
but also the late stage in a simple manner. Recently, the
late stage process was studied extensively by TKE [19]
for finite volume fraction and their results agreed with ex-
periments well [5,38]. In the late stage, however, the
present theory provides much simpler results than theirs.
In fact, the scaling function FI (p, Q) is determined by
solving the second-order differential equation (3.70), and
the scaling function VL (x, Q) is given by the solution, Eq.
(4.38), of Eq. (4.36). Although Eqs. (3.70) and (4.36) are
simpler than those of TKE [19], all results obtained here
agree with theirs within errors less than 1%.
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APPENDIX A: DERIVATION OF EQ. (2.5)

To eliminate the boundary conditions (2.2) and (2.3)
from Eq. (2.1), we first write Eq. (2.1) as

N

C(r, t)=DV' C+ g f dQ, .5(r —x, )o, (Q,., t) .
at i=1

(A 1)

where o.
,
- denotes the strength of the interactions between

the concentration field and the ithe droplet at point A; on
its surface. By solving Eq. (Al), we obtain

where gp(x, t)=exp[ —
~x~ /4Dt]/(4rrDt) ~ . In order to

solve this equation for o.;, it is convenient to introduce
the inverse propagator g i(Q, , Q,') of the free propagator

by

g, (x, x,', t —r'—) =g (Ap, , Q,'; r t')—
f d "f dQ,"g,(A, , Q,";t,t')gp(Q, ",fI,' ;r" t'). . —

=5(A, —0,')5(r t') . —

On the time scale of order T, we then find

fd 0, fdic,
'gi(Q, , Q,

'
, r, t..') =25(r .t')(4mDR, ).— . .

By using Eq. (A3), we can invert Eq. (A2) to

(A3)

(A4)

C(x;, t)=Cb+ f dt'f dA, 'gp(x; —x,', t t')a—;(0,', r')
0

N
+ g f dt'f dQ, gp(x, x, , t —t'—)o., (Q, , r'),

j (Ai)

(A2)

o;(0;,t)= f dt'f dQ,'g, (&;,&,';t, t') p (a/R; —bp) —g f dt" f d&,"gp(xp xJ' &' t")o (&" r ')
j (Ai)

(A5)

As shown in Sec. III, only the long-range spatial interac-
tion over a distance of order l is important. Hence we
have gp(xz, t t')=gp(x, ",r t')—+0((R )/—1). On the
length scale of order I, use of Eqs. (2.4) and (A2) —(A5)
thus leads to Eq. (2.5).

correction term AI

I =I o+AI

I p(l, . . . , m)=f (1) f ( )A(mm;t) .

(B1)

(B2)

APPENDIX 8: DERIVATION OF EQ. (3.26)

By inserting Eq. (3.3) into Eq. (3.6), we first decompose
the function I into the most-dominant term I o and the

In order to find the explicit form of the correction term
AI, we next expand it formally in powers of the free
propagators g . Iterating Eq. (3.7), inserting it into Eq.
(3.6) and using Eq. (Bl), we then find
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AI = [f(1, . . . , m) f—(1) .f (m)]A(m;t)

+ g ( —1)" f dt +&f dt +2
. . f dt„ fd(m+1). . . f d(n)

n =m+1

XR g +, (t t +—&) R„,g„&„(t„, t—„)A(n, t„)F„(l,t;. . . ;m, t;m + l, t +„.. . , n, t„),

with the function

(B3)

F„(l,t;. . . ;m, t;m+1, t +, , . . . , n, t„)

= g e(~r J ~

—R, —RJ ) + e(~rk —rk, ~

—Rk —Rk, )N(1;t) . N(m;t)5N(m +1;t +, ) . . 5 N(n;t„),
ij k =m+1(i' )

(B4)

where n ~ m + 1 and m ~ 1. Here the expansion in
powers of g; is merely formal since the higher-order
terms are not necessarily small compared to the lower-
order terms. Use of Eqs. (3.10) and (Bl) then leads to the
decomposition of J

F„(l,t;. . . ;m, t;m+1, t +„.. . , n, t„)
= F„(l,t;. . . ;m, t;m + l, t;. . . ;n, t)

(BS)

J =J 0+AJ

J 0=6,f (1)A(1),

b J2(1,2)=bI2(1,2) —f (1)bI,(2),
(B5)

and so on. Applying the scaling (3.13) and (3.15) to Eqs.
(3.10) and (B5) thus leads to

J,O~S f (1)A( 1 ) b J ~S hJ (B6)

T exp[ —~r; /l~ /(4Dt/T))
g;.(t) =

tJ (4mDt/T) i (B7)

one can here make such a simple approximation in Eq.
(83) that all times t; contained in the function F„may be
replaced by t,

S ~ J)' —— [

The first-order correction term AJ& in the kinetic equa-
tion (3.23) becomes important on the time scale of order
T'. Since the free propagator g is scaled as

where (t t;)(8—/Bt) is of order T/T'=0&'~ . Then the
errors introduced by this expansion have no effect on the
first-order correction.

The F„expression rapidly becomes unwieldy as n in-
creases. In the following, therefore, it is convenient to
use the same diagrammatic representations as those in-
troduced by Tokuyama [29]. The diagram elements and
their algebraic expressions are given in Table III. The di-
agrammatic representation of 6J, is then given in Fig.
15. Its algebraic expression thus leads to Eq. (3.26).

APPENDIX C: DERIVATION
OF EQS. (3.35) AND (4.5)

Similarly to Eq. (3.26), the scaled functions S J2 and
S J3 are expanded in powers of S ' as in Fig. 16. The
algebraic expression of S J2 is then given by

S J2(R, , R2, r„r2, t)

=m»(t, t)G, (1,2;t)
—f dt3R~g2, (t —t3, t)A(1;t3)f (1;t)f(2;t)

0

+S '[bX,2(t)+b, I',2(t) ]+0 (S

.''] + o (s- ')

FICs. 15. The diagrammatic expression of the renormahzed
perturbation expansions of S '6J

& up to order S .

In the scaling limit S~~, Eq. (3.25) thus reduces to Eq.
(3.35).

Next we derive Eq. (4.5). The correction terms bX&2
and b F&2 of Eq. (Cl) become important on the time scale
of order T'. On such a time scale, therefore, the propaga-
tors g, z and g, 2 in Fig. 16 are replaced by $,2 and g, z, re-
spectively. The algebraic expressions of AX, 2 and EY,2

are then given by
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(C2)bX&z(t) = J d(3)v@3(f)X(3, 1;t) —5(1—2)v (2)f (2),
r

~+12( ) k21~12G2 (I 2)+ J d (3) g23g'3(&( 1)f(2)G2" (1,3)—A23(f )X(3, 1)—5(1 —2)f d (4)$23/34&(4)f (2)G2 (3 4)

$23m3z . G3 ( 1,2, 3)—J d (4)[5G2 (2, 3)/5f (4)]X(4, 1 ) (C3)

(b)

S3J AX)z=

+ S '(&Xiz+&&), ) + o (s-') 0--.

S6J3' = 0----'
I

Irr

0-.
o C

0--.

(&&2 'II
O-. O.-.

I

0

0--,

;] + 0(S i)

(c)

0--

FIG. 16. (a) The diagrammatic expression of the renormalized perturbation expansions of S'J2 and S J3 up to order S ' an
respectively. (b) The diagrammatic representation of ~». (c) The diagrammatic representation of ~». (c) The diagrammatic rep-
resentation of 6Y».



47MICHIO TOKUYAMA AND YOSHIHISA ENOMOTO1176

S J3(R„Rz,R3, r„rz, r3;t)=m»(t, t)G3(1, 2, 3;t)—(1+e3z)W(1,2, 3;t)+O(S '),
with

W(1,2, 3;t)=(3zA(2)[f (2)Gz(1, 3)+f (3)Gz(1,2)]

—f d(4) . [g„g, k(4)+g g A, (2)]f(2)f (3)G (1,4)

(C4)

—$34~(4)Gz(1, 3)Gz(2, 4)+ fd(5)[$,~$4,A(5)f (3)[Gz(2,4)Gz(1, 5)+Gz(2, 5)Gz(1,4)]]

The scaling of Eq. (3.9) thus leads to (C5)

TABLE III. The diagram elements used in the present paper.

Order in SAlgebraic expressionDiagram elements

S

fd(i)f(i)

Ai = Qi SA, (i;t; )f (i)

f d(i)A(i;t;)f(i)

where Uz3(f)=5[v(2)f (2)]/6f (3) and Az3(f)=5[A(2)f (2)]I6f(3). Neglecting the spatial inhomogeneities of the
distribution function f (i) and applying the double-time scaling to Eq. (3.24) we thus obtain Eq. (4.5).

Finally we discuss the explicit form of the triple correlation function G3 which appears in Eq. (C3). In order to ob-
tain G3, we further need to calculate J3. From Fig. 16(a), the algebraic expression of S J3 is given by
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a
G3(1,2, 3;t)= QD—(l+e»+e32) R3 [m33G3(1, 2, 3;t)—W(1,2, 3;t)] .

a
at 3 aR3

This is then integrated to give the formal solution for large t,

(C6)

oo aG3" (1,2, 3;t)= — ds exp sQ—D (1+e»+e32)
0 3

R3 'm» QD(l+e»+e32) R3 'W(1, 2, 3;t),
aR3

(C7)

where we have neglected the initial triple correlation G3(t =0).

APPENDIX D: DERIVATION OF EQ. (3.56)

Using the Fourier-Laplace transformation, we can write Eq. (3.41) as

A(1)f (1)=(34 /p 3)' f dx2p&g(x~q)

X J dq exp(iq x~q)B, (p~', 5) —p2F(p&) f dxA(&23) J dp3~(3)exp('q'x»)Be(p»5) (q +1),
(D 1)

with

B (p&,'5)=4' fdp2A(2)[5+0&+02 —M&(q) —M2(q)] '(1+
&e)20&p&k(2)f (l)f (2),

where 0; and M, are operators and given by

0 =
I

a -2
PI

pi

M;(q)= [0pzF(p, )/(q +1)]J dp k( j)e," .

By using the operator identity

[5+0;—Mi] '=[5+0, ]

(D3)
F(p, r)=F0(p)+F&(p)r '+F2(p)r '+ . (E3)

where the terms are ordered so that 0&y, &y2. . . . In
the following we discuss only the case where ~ is close to
r, . Since we have 4 —Q near r„use of Eqs. (2.11), (2.12),
and (El) then leads to

We expand the relative-droplet-size distribution function
F(p, r) in powers of r to obtain

+[5+0, ] 'M, [5+0,—M;] b (r)/Q = —5,r ' —52' (E4)

where 6, is a constant to be determined. From Eqs.
(3.51), (E2), and (E4), we then obtain

calculating each term of Eq. (D2) and summing over the
resulting series, we thus find (A, )(r)=1+(a)[5,r '+52' '+ . ] . (E5)

Bq(p, ;5=0)=4~q —A(1)+ 0&p& f(1), (DS)
p

where we have omitted the terms higher than the
second-order derivatives in 0, ~ This is combined with
Eq. (Dl) to obtain Eq. (3.56).

By using Eqs. (3.53) and (El), we then obtain

APPENDIX E: DERIVATION
OF EQS. (3.64), (3.65), AND (3.67)

We first derive Eqs. (3.65) and (3.67). Use of Eqs.
(2.12) and (3.57) leads to

4= —3Q(A, )v/~, .
d

d7.

'" = —(y,y, y„,)(,/3 .)'"-"&.) -" .

Use of Eqs. (E5) and (E6) then leads to

(E7)

(A. ) = —y, (r, /3v~(a ) )[1+y2(r, /3vr(a ) )+ . ],

Since ( 1, ) —0 near r„ from Eq. (E5), we thus find

5,r '= —(a ) '. This leads to y, =rI~. To derive the
values of the higher order y„'s, we write down the expan-
sion for Eq. (El) as

—y $6]7 ' —y2627

= —(3/r, )v~(a ) [52' '+53' '+ ] .

The time dependence of the left- and right-hand side of
Eq. (E6) can only be balanced if all y„=ngz. Hence we
find

13= ( a )&(~)/Q . (E2) (E8)
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where y„=nett. Hence we obtain Eq. (3.65). We note
here that the above derivation is also valid for stage [C].
Therefore, we also obtain Eq. (3.67).

We next derive Eq. (3.64). In stage [1], from Eq.
(3.71), we have the relation

APPENDIX F: DERIVATION OF EQ. (4.15)

Use of Eqs. (3.11) and (4.14) leads to

(1 —P) Xk =(1—P) Gt, . (F1)

In stage [C], from Eq. (3.69), we have

v(r)r=v(r, )r, =r, /(K„p3") . (E10)

—1/( 1 —g„)
7 —7 (K )M3 v ) (El 1)

Assuming that Eq. (E9) holds even at r =r„and using
Eq. (E10), we find

Using yk =P.yk+(1 P).y—k, we can write Eq. (4.13) as

d
1

S„( )=(2/& &')h(p, q)S ( )
d1"

+2( )'(4 /3) .O.H .(1—P) G .

+2(4~/3 )( 3@/p3 )
~ 8 (p, q) . (F2)

We next discuss the term (1 —P) Gk. By using Eqs.
(3.11) and (4.5), one can generalize Eq. (3.35), to order
e'/2, as

Since this holds even in the limit Q ~0, we have

a Gk=(l+e) 0 [Hk. Gk Tk]— (F3)

—1/(1 —q„)
~, /r, -K„(Q=0)

where the source term Tk contains the term of order
. This is formally solved to give

Gk(r)= f ds exp[(r —s)0 Hk]
0

Since K„K(r,—), use of Eqs. (3.65) and (E12) then leads
3( 1 —Tl„)to (a )(r, ) —(r, /r, )

" in stage [I]. On the other
hand, we have ( a ) (r, ) —r, in stage [C]. Therefore, we
find rl„=2/3 and obtain Eq. (3.64).

X [ Gk (s)* Hk 0 Tk (s)*]—,
where Gk(0) =0. by using the operator identity

(F4)

(1—P) exp[tO Hk]= Vk(t)" (1—P)+ f Vk(s)" (1—P) O.H& P exp[(t —s)0 Ht, ],
0

and multiplying Eq. (F4) by (1—P ), we obtain

(1—P) Gk(r)= f ds Vk(s)* ~ (1—P) 0 Hk P Gk(r s), —
0

where we have simply neglected the first term of Eq. (F5). Use of Eqs. (3.11), (F2), and (F6) then leads to Eq. (4.15).

(F6)
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