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Crystal growth in a channel: Numerical study of the one-sided model
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The growth of two-dimensional crystals with and without anisotropy in a channel is analyzed by a
Green s-function method. A one-sided diffusional model is treated in quasistationary approximation.
Our numerical results on the steady-state growth of symmetrical Angers are in agreement with approxi-
mate analytical predictions (E. Brener, M. Geilikman, and D. Temkin, Zh. Eksp. Teor. Fiz. 94, 241
(1988) [Sov. Phys. JETP 67, 1002 (1988)]). For fixed supercooling the dependence of growth velocity
versus channel width is nonmonotonic, passing a maximum. We did not find stationary solutions for su-

percooling less than 0.5. When the width of the channel exceeds some critical value we observed that
the symmetrical finger becomes unstable against tip splitting. In this case we found stable steady-state
growth of nonsymmetrical fingers. We have also found an expected instability of two Angers in the corn-
mon diffusion field caused by competition.

PACS number(s): 61.50.Cj, 05.70.Fh, 68.70.+w, 81.30.Fb

I. INTRODUCTION

The growth of a crystal in a channel is expected to
show pattern selection similar to the problem of a free
dendrite (for a review see [1—3]). For the case of a free
dendrite, the anistropy of the surface energy has a strong
infIuence on the types of possible patterns —there are no
dendrites without anistropy. For crystal growth in a
channel, interaction with the channel walls through the
diffusion field allows stable stationary patterns even
without anistropy. It has been concluded by Pelce and
Pumir [4] that in the limit of small Peclet numbers

p = Uw/2D ~0 (U is the growth velocity, to is the channel
width, D is the diffusion coefftcient), formally this prob-
lem is equivalent to the Saffman-Taylor problem [5]. The
following results have been obtained by Kessler, Koplik,
and Levine [6] within the limit p —+0. For isotropic sur-
face energy the stationary growth is only possibly if the
dimensionless supercooling 6 )—,

' and the resulting veloc-
ity is U

—to (5—
—,
'

)
~ (a similar result was obtained in

the Saffman-Taylor problem). This would mean that the
growth velocity decreases with increasing supercoohng 6
and therefore this solution should be irrelevant to real
dendritic growth (but not to the Saffman-Taylor prob-
lem). Indeed, it has been shown by Pelce [7] that this
solution is unstable. However, Brener, Geilikman, and
Temkin [8] have found a second branch of solutions on
which the growth velocity is higher and increases with
supercooling. When the surface energy becomes aniso-
tropic, the second branch describes a transition to the
growth of a free dendrite within the limit ur~ ~, and
seems to be relevant to the physical process. These re-
sults seem to be consistent with a numerical linear stabili-
ty analysis (Kessler and Levine [9]). The second branch
is associated with the fact that the interface profile differs
form the Saffman-Taylor profile due to the finite growth
velocity (in other words, due to the difference between the
Laplace and the diffusion equations).

A prerequisite for an analytical treatment of this prob-

lem is knowledge of the interface profile in the limit of
zero surface energy. Since the exact solution is not avail-
able for arbitrary Peclet number, a model expression was
used in Ref. [8] (the exact result was obtained only in the
limit 6—+ —,', where the Peclet number becomes small).

One aim of the present paper is to find dynamically
selected stable patterns depending on the growth condi-
tions. Also we have investigated some time-dependent
properties of this system like tip splitting of a Anger or
competition between fingers in the common diffusion
field. All these properties presumably are important for
understanding of the pattern formation in so-called
"dense-branching" morphology. This will be discussed
shortly at the end of the paper.

II. BASIC EQUATIONS AND NUMERICAL METHOD

We consider the two-dimensional growth of a crystal in
a channel of width m with nonpermeable walls. We as-
sume that crystallization involves one conserved quantity
such as crystallizing material or latent heat of freezing
which by diffusion has to be transported towards or away
from the moving solidification front. We assume that
diffusion takes place only outside the solid phase. This
leads to the so-called one-sided model. For simplicity of
notation here, we speak of temperatures as the diffusing
quantity, although the one-sided model in principle is
more appropriate for chemical diffusion. With that in
mind, the dimensionless temperature field u is governed
by the thermal-diffusion equation

Here u =(T —T )l(l.c '), T is the temperature field,
T is the temperature far away from the crystal, D is the
thermal diffusivity, I, is the latent heat, c is the specific
heat, and y is the axis along the channel. At the walls the
boundary condition is
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BQ

x =+w/2
=0.

The latent heat generated during the freezing process has
to be carried away through the diffusion field. This re-
quires a continuity condition at the interface,

vn
= Dn'VQ (3)

v„ is the normal velocity, and n is the unit vector normal
to the interface. Due to the Gibbs-Thomson effect, the
temperature along the interface differs from the melting
temperature T by a term proportional to the local cur-
vature of the interface. The assumption of fast attach-
ment kinetics at the interface implies local thermodynam-
ic equilibrium and so defines the other boundary condi-
tions:

y(0) =go[1+icos(48) ],
which implies for the capillary length

d=do[1 —icos(40)], @=15' . (7)

Equations (1)—(7) together with initial conditions consti-
tute a complete mathematical description of the problem.

A numerical approach to this problem in quasistation-
ary approximation was developed in Ref. [10]. This ap-
proximation means that the diffusion Aeld follows the in-
terface instantaneously. So, instead of the exact Eq. (1),
one solves a stationary diffusion equation in a frame mov-
ing at velocity v:

1 Bu 2 v Bu=0=V' u+—
D Bt D By

This does not mean that all the time dependence is lost,
because U„ in (3) is still a time-dependent quantity. In
free growth the velocity of the coordinate system v

should be chosen to closely approximate that of the actu-
al finger (in order to maintain the quality of quasistation-
ary approximation); therefore an additional equation is
introduced, to have it relax to the tip velocity of the
finger:

& I;„,=b, —dk .

Here b, = ( T —T ) l(Lc '
) is dimensionless supercool-

ing, k is the local curvature of the interface g(x, t):

a'gyax'
[I+(Bg/Bx) ]

~

and d is the capillary length. Its anistropy is described in
terms of the angle 0 between the normal vector n and the
y direction:

d(8) = [y(6)+y"(6) ]T cL

where y and y" are surface energy and its second angular
derivative. We assume that the crystal has fourfold sym-
metry and write the following simple model expression
for y(0):

where the relaxation ~ is taken small in comparison with
all physical time scales; v„ is the velocity of the most ad-
vanced point of the finger. Further details of this numeri-
cal approach can be found in Ref. [10].

We conclude this paragraph by introducing the dimen-
sionless velocity V and the dimensionless width of the
channel 8':

VJO W

D '
do

(10)

For steady-state growth (where quasistationary approxi-
mation is exact), the global conservation law requires the
asymptotic finger width k to be equal to 6w. The
steady-state velocity V is a function of 5, 8, and e. Even
instabilities of stationary structures can be exactly locat-
ed as long as they are not of Hopf type, so we hope that
the procedure can describe a number of time-dependent
phenomena at least in a semiquantitative sense.

III. NUMERICAL RESULTS
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FIG. 1. Cxrowth velocity vs supercooling for fixed {relative)
channel width W = 100. The solid line corresponds to a
square-root fit to the data.

We first look at the behavior of a crystalline finger
which is symmetrical about its axis growing in the chan-
nel. For the first set of runs we keep the channel width
8' fixed and vary the supercooling h. For 5 smaller than
some critical value 6* depending on 8'we never found a
steady-state solution. The finger becomes fatter and
fatter thereby slowly filling the channel width. The con-
servation law accordingly forces the velocity of the finger
to decrease in time approximately as t ' for long times
as expected for a Oat interface. For 6)5* we found the
steady-state behavior after some transition time. The ve-
locity goes to a finite value which depends on 6, and the
width of the Anger also reaches an asymptotic value
which satisfies the conservation condition A, =wh within
1%. The dependence of the steady-state velocity versus
supercooling 6 for Axed channel width 8' = 100 is
presented in Fig. 1. The critical value 6*=0.67+0.01
was obtained by fitting the data with a square-root depen-
dence of Vversus (6—b, *) (solid line in Fig. 1).

For the second set of runs we kept 6 fixed and varied
the channel width 8. Again we found the steady-state
solution only for S' bigger than some critical value,
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FIG. 2. Growth velocity vs channel width for fixed 6=0.7.
The 0 symbols correspond to the isotropic case, the open circles
to an anisotropy parameter a=0.05 for the capillary length.

which depends on A. The dependence of the steady-state
velocity V versus channel width 8 for fixed 6=0.7 is
presented in Fig. 2. This dependence is nonmonotonic,
containing a maximum, and in particular the velocity
finally decreases with increasing channel width. We also
have checked that small anisotropy slightly increases the
velocity but does not change the qualitative behavior.

If we increase the channel width up to some new criti-
cal value, the symmetrical finger becomes unstable
against tip splitting. It is not clear whether this is a
linear instability. The finger splits into two symmetrical
fingers (Fig. 3). Note that there is a mirror symmetry in
the middle of the channel along its axis. Therefore, the
final configuration here corresponds to a finger in a chan-
nel with half the width of the initial one. However, now

n
~nnn

FIG. 3. Splitting of the symmetrical finger: Stroboscopic
plot for 6=0.7, 8'=200.
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FIG. 4. Two symmetrical fingers competing for the common
diffusion field. For details see text.

there is no symmetry implied on the shape of the fingers,
its symmetrical shape about the axis being dynamically
selected.

In the following figures we present some results for the
collective behavior of several fingers in a channel. In Fig.
4 there are two symmetrical fingers competing for the
common diff'usional field (symmetry of both initial fingers
implied by the boundary condition). Because of this com-
petition, one of them wins and "kills" the other one. Im-
mediately after this, the winner becomes unstable against
tip splitting and arrives at the final situation, as just de-
scribed (Fig. 3).

Furthermore, we investigated the competition between
two fingers in a channel without any additional symmetry
conditions. In order to show that competition provides
an instability, we started from a symmetrical
configuration and looked at the time evolution (Fig. 5).
Again, one finger wins in this competition, but now the
winner is nonsymmetrical. An attempt to split this finger
apparently was not successful. In the final configuration
mirror-symmetry is imposed in the troughs correspond-
ing to the channel walls. Clearly, a single nonsymmetric
finger (here shown with mirror images) occurs as a sta-
tionary solution, which we have checked for stability by a
very long run.

Finally we have compared the essentially free dendrite
(in a wide channel) with the growth in a channel of a
width of about twice the diffusion length. The result is
shown in Fig. 6. Parameters were D =1, do=0. 0003,
tv =0.7 (0.2), 5=0.58, @=0.1, leading to v =22. 3 (18.7)
in absolute units. Now the growth speed decreases with
decreasing channel width. Note, however, that this is op-
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FIG. 5. A single nonsymmetrical finger (here shown with
mirror images) as a consequence of a coarsening process. For
details see text.

posite to the behavior found for relatively small channel
width and for zero or small anisotropy (Fig. 2), as is to be
expected.

IV. DISCUSSION

Our numerical results on the steady-state growth of a
symmetrical finger are in agreement with analytical pre-
dictions of Ref. [8]. For fixed width of the channel,

FIG. 6. Comparison of two fingers growing in a wide and in a
narrow channel at supercooling 6)

2
with capillary anisotropy

@=0.1 (for details see text). The wide-channel dendrite fulfills
dendritic scaling relations within 10%. The narrow-channel
finger moves about 17%%uo slower due to self-competition for the
diffusion field. The diffusion length 2D/U in the narrow channel
was about half the channel width. All parameters except the
channel width were the same.

steady-state growth exits only for 6 bigger than some
critical value 6*& —,'. The growth velocity increases with
b, (Fig. 1) and corresponds to the upper branch of solu-
tions in Ref. [8] in agreement with the arguments given
there. We have not found any evidence of another
steady-state solution which could correspond to the
Saffman-Taylor branch. A recent indication [11]for den-
dritic solutions without anistropy in a channel seems to
be induced by numerical effects.

For fixed 5 the dependence of growth velocity versus
channel width is nonmonotonic, passing a maximum (Fig.
2), and again qualitatively agrees with the analytical re-
sult of Ref. [8]. Even quantitative agreement exists apart
from factors of order unity which presumably come from
approximations in Ref. [8]. Inclusion of a small anisotro-
py does not change the qualitative behavior.

These findings support the analysis given in Ref. [8]
stating that there are no stationary solutions for 6 (6
and that 6* approaches —,

' from above as the Peclet num-

ber goes to zero.
If the width of the channel exceeds some critical value,

we observe that the symmetrical finger becomes unstable
against tip splitting (Fig. 3). It is not clear whether this is
a linear instability, whether it is induced by external (nu-
merical) noise or whether we did not have appropriate in-
itial conditions when changing the channel width.

When the symmetrical fingers were unstable in that
sense, we have found stable steady-state growth of non-
symmetrical Angers (Fig. 5). This is a somewhat unex-
pected result, since in the theory of Saffman- Taylor
fingers there is the statement that only symmetrical finger
should be selected [12,13]. On the other hand, in the
somewhat related problems of directional solidification
and eutectic growth, broken-parity solutions were found
[14,15] to appear with increasing wavelength. We have
also demonstrated that the competition between two
fingers in the common diffusion field leads to the death of
one of them. It means that a periodic set of fingers is un-
stable against coarsening processes because of this com-
petition. On the other hand, tip-splitting processes lead
to finer structures.

These two opposite processes finally could be responsi-
ble for the formation of so-called "dense-branching" mor-
phology [16], or "seaweed" structure [17,18] in free-
growth conditions. Of course, the resulting pattern can-
not be expected to be spatially periodic but should be
chaotic. Nevertheless, the experiments [18] and comput-
er simulations [19,20] indicate that this structure has a
well-defined characteristic length scale and average veloc-
ity of the envelope. In our previous paper [17] we as-
sumed the operating point of this structure to be related
to the maximum-velocity point (Fig. 2) and consequently
to depend only on A. Of course, it is still conceivable
that the length scale where tip splitting occurs depends
on noise, and therefore the length and time scales of the
resulting pattern also depend on noise. Even the notion
of a specific "phase" (dense branching or compact
seaweed) in contrast to "compact dendritic" morphology
in this case may become questionable. More work, there-
fore, is needed to explain the free-growth patterns at low
anisotropy in detail.
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