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Ion-director coupling in a ferroelectric liquid crystal
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The coupling between the motion of ionic impurities and the bend™type director distortion in a fer-
roelectric liquid crystal is examined theoretically. We calculate the relaxation rate of the (fast) director
mode to lowest order in the ion concentration. Moreover, we calculate the ratio Kf„t(~=0)/X(~=0),
where E(~) is the amplitude of the temporal autocorrelation function for director fluctuations, ~ is the
correlation time, and Kf„t(~) is the corresponding value for the quickly decaying component of this
quantity. The ratio, which can be measured in a light-scattering experiment, yields the inverse Debye-
Hiickel screening length ~.

PACS number(s): 61.30.—v, 05.40.+j

Since their invention in 1975 [1] ferroelectric liquid
crystals have played a central role in both the physics of
low-symmetry systems and in the technologically impor-
tant electro-optics industry. In consequence, the behav-
ior of the Goldstone and soft modes in the chir al
smectic-C (Sm-C*) phase has been of particular interest,
generating substantial activity on both the experimental
and theoretical fronts [2—5]. In a recent paper [6] we
showed experimentally that, for a bend-type Goldstone
mode, the spontaneous polarization Po gives rise to a
space charge; the ensuing electrostatic energy adds a con-
tribution to the effective elastic constant 8 &, thereby re-
sulting in an effectively stiffer system. As noted in this
paper, two relaxation processes were observed in the
light-scattering autocorrelation function: a fast mode
dominated by thermally driven director fluctuations, and
a much slower mode caused by ionic diffusion. (The slow
mode is observable in a depolarized light-scattering ex-
periment because the local director very rapidly reorients
in order to establish a V Po to partially screen the ions. )

Since relaxation rates for the fast process are of order
1000 times larger than for the slow, the fast mode could
effectively be analyzed without regard to ionic motion.
Our experiments showed a very nice linear relationship
between Po and this polarization contribution to 8&, as
predicted by theory, and revealed that the effective elastic
constant is, in fact, completely dominated by this polrai-
zation contribution; the bare elastic constant B, of the
racemate is much smaller than B

&
. Nevertheless, despite

our neglect of ionic motion, the role of ionic impurities
remains an important issue both fundamentally and in
electro-optic devices. In earlier light-scattering experi-
ments on free-standing ferroelectric films, for example,
director fluctuations had been too rapid for observation
of ionic screening [7—9]; on the other hand, ionic impuri-
ties completely overwhelm the polarization term in the
much slower process of domain-wall formation [10]. In
bulk, ionic motion can clearly result in interesting mode-
coupling phenomena in the Sm-C* phase, as witnessed by
the existence of the slow relaxation in Ref. [6]. In this
paper we theoretically investigate the coupling between

the bend-type director mode and charge motion in the
bulk. We calculate the screening correction to the fast
(primarily Goldstone) contribution to the correlation
function, the relative amplitudes of this fast mode and
slow ionic diffusion mode(s), and suggest a means of
measuring the Debye-Huckel screening length sc . With
appropriate assumptions about the ionic charge and a rel-
atively simple measurement of electrical conductivity, the
result will also yield the average ionic mobility.

Consider a chiral Sm-C* system with n species of ionic
impurities, such that the equilibrium concentration of the
i '" type of impurity is c; and the local concentration Auc-
tuation (the difference between the actual concentration
and the equilibrium concentration) is 6c, (x). The
geometry is the same as in Ref. [6] (Fig. 1). In the smec-
tic 3 phase the molecular director n is aligned homotrop-
ically, parallel to the z axis. In the Sm-C* phase the mol-
ecules tilt by a polar angle 0 that precesses azimuthally
about the z axis with a pitch P; the local polarization vec-
tor Po, which lies in the x-y plane perpendicular to n,
precesses accordingly. A sufficiently large electric field E
applied along the y axis will couple to the ferroelectric
polarization, thereby unwinding the helix and producing
a monodomain structure with a macroscopic polarization
Po parallel to E.

We choose a light-scattering geometry such that the
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FICx. 1. Schematic representation of sample. Sample cell and
smectic layers lie in the x-y plane and molecules tilt by polar an-
gle L9 with respect to the z axis.
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soft mode is excluded and only the bend-type azimuthal
fluctuation, involving the elastic constant 81, is sampled.
In this geometry, which probes variations of the azimu-
thal director orientation y along the x axis only, the bare
distortion Helmholtz free-energy density for small azimu-
thal angles y can be written

Fi, (x)=—,'B, + —,'POEy(x)

Terms involving derivatives of y with respect to y and z
are irrelevant since the light-scattering geometry estab-
lishes momentum transfer q =q„. Noting that the
chemical potential of ionic impurity i is p;
= king T inc;=dF, /dc;, the free energy F, associated with
fluctuations of the ionic impurity concentration can be
expressed as

(5c;(x))
F,(x)= —,'k~ Tg

i=1

where kz is the Boltzmann constant and T is the absolute
temperature. Note that the indices i and j will always
refer to one of the n ionic species. Finally, the electric
contribution to the Helmholtz energy, which includes
contributions from both polarization charges and ionic
impurities, is given by

F, = —,'p(x) V(x) .

where gq is the time-dependent susceptibility. From the
calculated susceptibility we will then use the fluctuation-
dissipation theorem

2k~ T
K(co)= f e' 'K(r)d~=- g"(co),

where g"(co) = Im f e' 'g(t)dt, to determine the measured
quantity K(co). Thus introducing the term —h(x, t)y to
the Helmholtz potential, we obtain a total free energy

2

F= d x —'8 + 'PE —(x)x'2 1 a 20 V'x

[5c;(x)]+ —,'ks Tg + —,'p(x) V(x)
i=1 i

—h (t)e 'q "qr(x) ' .

We now introduce the following Fourier transforma-
tions:

y(x)= fd'q y e'q ", 5c, (x)= f d'q 5c, (q)e'

V(x)= f d q Vqe'q", p(x)= f d q p~e'

On substituting these expressions into Eq. (5), we obtain
after some algebra the Fourier transform of the
Helmholtz free energy,

F (q) = ,'& iq„'lq, I'—+,'POE
I q, I'—

[5c;(q)]+ ,'k, Tg —+,'p, V, -h, —(t)tp, , —
i =1

p(x)= ge, 5c;(x)+Po aq(x)
(4)

where

V is the overall electric potential which satisfies Poisson's
equation g &8 [e g&V(x)]= —4~p(x), where e &

is the
dielectric tensor and p is the total charge density:

where e; is the charge of ionic species i.
In a light-scattering experiment we measure the auto-

correlation function Eq(~) [—:(y (0)y ~(r))] of the
director distortion. In order to compute K~(r) we first
calculate the response of g to the time-dependent exter-
nal field h (t):

(q q(t) ) = (pq(t) ),q„,,+ f dt'yq(t —t')hq(t'),

p~
= g e;5c;(q)+iPoqyq .

Owing to our choice of geometry, it's understood that
q =q„ throughout the remainder of this work. The elec-
trical potential is determined by the Fourier transform of
Poisson's equation, viz. , V =4mp /q e, where e=e
Substituting V and p into Eq. (6), we obtain

F(q) = ,'8",q'+ ,'P E+——2~I'o
2

n 1 k~T

i =1 Ci

+ Po g e;Re[i5c;( q)y~]+ —g e, e 5c, (q)5c ( q) h(t.)p——4~ 4~

The third term on the right-hand side of Eq. (8) involves
ionic screening of the polarization space-charge buildup
due to director fluctuations. The polarization space
charge is spatially phase shifted by m. /2 relative to the
director distortion [cf. Eq. (7)], and is thus maximum
when y is zero. Thus one also expects a buildup of im-

purity ions at these positions as well, i.e., spatially phase
shifted by ~/2 relative to the director Auctuations. This
occurs, of course, when 5c; iy [cf. Eq—. (8)], and is con-
sistent with expectations from the charge induced by a
polarization gradient.

We now turn to the dynamics. If we assume a viscosity
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BF(q)
Bt Bc@

(9)

Additionally, we have the condition of charge conserva-
tion, viz. ,

(10)

g associated with a bend-type director fluctuation, we can
write a dynamical equation for y:

where the current J; is given by J;=m;c;V
[c)F(q)/c)5c;( —q)], and where m; is the mobility of the
ith ion. Equation (10) can thus be rewritten in the form
of a generalized difFusion equation for charge:

c)5c;(q) 5F(q)
I x

We now suppose that both yq(t) and hz(t) vary as
exp(icot). On substituting Eq. (8) into Eqs. (9) and (11),
we find

igco+B &q +PoE+
4~Po .4~

qrq i —PO Q e, 5c;(q) =h (co),
E qE

(12)

4am;c;e, -

iPoqcP~+ pe 5c (q) +(ico+m;keTq )5c;(q)=0, i =l, . . . , n .
j=1

(13)

(i rico+B,q +POE)Vq i Po—pq
= q(co) (14)

4~nz, c;e; /e
+1 p tPoqy =0 . —

, iu+m, k, Tq'
(15)

Equations (12) and (13) represent a set of n +1 linear
equations in n +1 unknowns. To simplify our task we
eliminate the summation over ionic impurity concentra-
tion by using Eq. (7) for the total charge density p . The
n + 1 equations reduce to two equations:

ionic species, there will be n slow modes, all of order
10 —10 times slower than the fast director mode. In or-
der to make a zeroth-order estimate of the fast and slow
relaxation rates, we first assume that only one species of
ionic impurity is present (n =1). This, of course, is a
completely unphysical assumption, since it would imply a
sample with a nonAuctuating charge density compensat-
ing this single ionic species. Nevertheless, it serves an
important pedagogical purpose in that it allows us to
easily separate out the fast mode from the one slow mode.
By letting the mobility m;~0, we can obtain from Eq.
(17) a zero-order approximation for the fast mode relaxa-
tion rate I t,s, ( = icot„,):—

q&~(co) can easily be calculated from Eqs. (14) and (15):

h (co)

1I „,=—B,q +P E+ (18)

y~(co) =
I,gm+B &q +PoE+

4m.Po

4@m c.e
+e

, =, I.~+m, k, Tq2

(16)

Equation (16) can be rewritten in terms of the susceptibil-
ity y (co), i.e. , q& =y (co)h (co). Whence,

g, (co)=
i geo+ B &q +PoE +

4+P o

47rm;c e.
, +e

—i f 67+ m. kg Tq

(17)

We know from experiments that there are at least two
relaxation rates: a very fast rate corresponding principal-
ly to director Auctuations, and a much slower rate or
combination of slower rates corresponding primarily to
ion difFusion. (These latter processes are observable by
light scattering because the ion density couples to the po-
larization, and thus to the director orientation. ) For n

To first order, r&„, is thus given by the solution of the
equation

igco+B&q +PoE+
4~Po (4vrPD )

gm;c, e, =0,
l COE

(20)

This is the same expression obtained in Ref. [6]. Similar-
ly, by disregarding director fluctuations and the polariza-
tion Po, we can obtain the slow relaxation rate,

l,&, =m, k&Tq + e; m;c; .4'

We note that I,&, is independent of ion concentration.
We now relax the restriction on the number of ionic

species n, allowing values n ) 1. To obtain the first-order
correction to I &„, which comes about from ionic screen-
ing, we assume that in)) m;kz Tq . The last term in the
denominator of Eq. (17) can then be approximated by

4~Po 4w
2

1 —. pmce;
l 606
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which corresponds to

1r„„——B,q +P,E+
I

4~Po
n+1

4&P oqB,q +PoE+
e(~ +q )

4~Po
B,q +PoE+

(26)

(4npo ) n

mici. e 1

+ 028 lq +PoE+4mPo/e
(21)

n+1 ak
x, (~)= g

k=1
(22)

Equation (21) represents one of the two central results of
this work, for it explicitly shows the effects of ionic
screening on the relaxation rate of the Goldstone mode.

In a light-scattering experiment we measure the auto-
correlation function K (r) of the director distortion. The
relaxation rates of K (r) will be the same as those for the
susceptibility, corresponding to Eqs. (19) and (21). Thus
the ionic correction to the fast mode [Eq. (21)] can, in
principle, be examined in a light-scattering measurement.
Moreover, since we can measure the total amplitude of
the correlation function at ~=0, as well as separate out
the amplitude of the fast component, we will now calcu-
late these quantities in terms of physical parameters.
First, we note that the susceptibility can be written as the
partial fraction expansion

where the inverse Debye-Hiickel screening length K is
1/2

4~
ek T.Te c (27)

Kf„,(r=0)
K(r=0)

k~ Taf„,
n+1

ksTQ ak
k=1

477'P oq8 lq +PoE+
e(~ +q )

4aPo
B,q +PoE+

We now need to express the ratio of susceptibility am-
plitudes given by Eq. (26) in terms of a measurable quan-
tity derived from the time autocorrelation function K(r).
The Fourier transform K(co) of the temporal autocorrela-
tion function K(r) can be expressed in terms of the sus-
ceptibility. We see immediately from Eqs. (23) and (26)
that

n+1
Kq(r) = g ks Takexp( —I k r~ ) .

k=1
(23)

To obtain the amplitude of the fast mode we make a par-
tial fraction expansion of Eq. (17) and find

1 Bq+PE+
afast

4m.Po

(4vrPO)
pm;c, e;

+g-
B,q +PoE+4+Po!e

(24)

Moreover, from Eqs. (17) and (22) we note that

n+1
x(~=0)= gak=

8 lq +PoE+
4mPo

4~e. c-
+e

i=1 k+Tq

Retaining only the zeroth-order terms in Eq. (24), we find

where ak is the amplitude of the kth mode comprising
the susceptibility and I k is the relaxation rate of this
mode. Note that the summation over the index k refers
to a summation over all modes, the one fast mode and
the n slow modes. It follows that

Equation (28) corresponds to the second major result of
this work. In a previous experiment [6] we measured the
bare elastic constant 8,. Moreover, the polarization Po
can easily be obtained using a standard capacitance cell.
Thus a measurement of the ratio of correlation function
amplitudes allows us to determine the inverse Debye-
Hiickel screening length K. From the standpoint of appli-
cations this is an extremely important quantity for which,
to our knowledge, there is no other convenient means of
determining. Since our earlier experiments showed that
in the material SCE12 (BDH, Ltd. ) the Po term complete-
ly dominates the elasticity, the ratio of correlation func-
tion amplitudes in Eq. (28) reduces to approximately
q /(~ +q ) for q (10 cm '. Since we found this ratio
to be of order O.S for q =3X 10 cm ', our results would
imply a not unreasonable screening length K

' of several
thousand angstroms.

Equation (28) now gives us a way to directly measure a
in ferroelectric materials. Additionally, one could dope
the sample with an appropriate salt. A measurement of ~
would then yield the equilibrium ionic concentrations c,
[cf. Eq. (27)]. Then, since the conductivity is proportion-
al to the product of the concentration and the ionic mo-
bility, a measurement of the conductivity o. will yield an
effective mobility. In principle a detailed analysis of the
slow relaxation modes would also permit a separate mea-
surement of the mobilities of different ions when many
species are present. However, as we expect these mobili-
ties to be comparable, and the resulting exponential de-
cays dificult to sort out, we do not pursue this possibility
here. Owing to a variety of experimental difhculties,
there is a paucity of data for either Debye lengths or
mobilities [11] in the literature; now we have shown that
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these quantities can be determined experimentally in a
very straightforward manner.

To summarize, we have examined the coupling be-
tween the Goldstone mode and ionic impurities in a fer-
roelectric liquid crystal. We have calculated the tem-
poral autocorrelation function for director Auctuations
and related the result to the Debye-Huckel screening
length ~ ', and have determined the relaxation rate of

the Goldstone mode to lowest order in ionic concentra-
tion.
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