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Verhulst-type kinetics driven by white shot noise: Exact solution by direct averaging
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The inAuence of parametric noise on a class of a growing-rate-type model is studied. The formal
time-dependent solution is found analytically for any linearly coupled white noise. The Mellin-Barnes
technique is used in order to extend this solution on a whole parameter space in the case of Gaussian
white noise and white shot noise. The asymptotic behavior in diff'erent regions of parameter space is ex-
amined. A digital averaging is done which supports the analytical results. It is found that, in contrast to
the deterministic case, the relaxation in the presence of the noise needs not be purely monotonic.

PACS number(s): 05.40.+j, 02.50.—r, 05.70.Ln

I. INTRODUCTION

It is now well known that both kinetic and stationary
properties of nonlinear macroscopic systems are strongly
inffuenced by the presence of noise (ffuctuations), up to
the appearance of new types of behavior, such as the sta-
bilization or destabilization of the process, the appear-
ance of noise-induced transitions, among others [1—9].
These changes may depend both quantitatively and quali-
tatively on the character of the noise present, i.e., on the
properties of stochastic processes which describe the
noise considered [2,3].

In general, there are two possibilities of studying the
influence of stochastic effects on dynamical systems de-
scribed by equation

x(t)=f(x, t )+g(x, t )g, ,

where g, denotes the noise and x is the time-dependent
order parameter, chemical concentration, or other mac-
roscopic characteristics of the system. The first one con-
sists of calculating the probability density P(x, t), usually
by solving appropriate differential equations —the
Fokker-Planck equation, the master equation, the Smolu-
chowski equation [1,4]. The observable quantities are
then obtained by averaging the appropriate functions of x
with P(x, t). Closely related are the so-called decoupling
methods [5], where one considers approximate relations
between different averaged quantities (correlation func-
tions, reduced probabilities, etc. ) by truncating appropri-
ate infinite hierarchies of equations for these quantities.
The second group, the so-called direct methods [3,6—9],
look for stochastic quantities —like the solution x(t) of
stochastic kinetic equation (1.1)—themselves, the aver-
aged (observable) quantities then being calculated by
averaging of appropriate functions of x (t) over all reali-
zations of the stochastic process [10].

Most popular in the literature is the approach using
the Fokker-Planck equation (FPE), and most specific re-
sults concerning the influence of noise on kinetic process-
es have been obtained by using this formalism. However,
so far its usefulness is limited almost exclusively to sta-
tionary properties, although there is recently some pro-
gress in finding time-dependent solutions of FPE's [8,11].

Moreover, in most cases only the Gaussian white noise
(GWN) is considered. The explicit form of FPE for white
shot noise (WSN) is also known, but again its practical
use is limited to some specific types of WSN only [2,12].
In the case of colored noises the very formulation of
proper FPE's is still under debate [13].

In all these aspects, direct methods may be considered
as complementary to the FPE. When the solution of Eq.
(1.1) is known, time-dependent problems can be treated
on equal footing with stationary ones. When averaging is
done numerically, different types of the noise —both
white and colored —can be simulated with equal ease.

The disadvantage is that the solution (in quadratures)
of the ordinary nonautonomous equation (1.1) must be
known and it restricts the forms of f and g. The latter
condition can be met, in particular, for systems with ki-
netic equation of the Verhulst type

x(t) =a(t)x b(t)x"+'— (1.2)

Such equations can model many different processes and
are discussed in the literature frequently [14].

In this paper we propose a version of direct method for
treatment of the solution of the kinetic equation (1.2),
when the parameter a(t) contains (multiplicative) noise
and the deterministic coefficients are assumed to be con-
stant [15]. The method proposed enables analytical treat-
ment of moments (x"(t)) for different types of white
noise. The formulas obtained will be used for the deter-
mination of parameter regions in which noise destabilizes
the kinetic process. Also, conclusions on the asymptotic
behavior of the relaxation under the influence of noise
can be drawn.

The outline of the paper is as follows. In Sec. II we
discuss some basic properties of the considered model, in
Sec. III the general formulas for the (transient) moments
in the presence of white noise are obtained by direct
averaging. Section IV is devoted to the analysis of the
influence of some particular types of white noise. In Sec.
V the numerical results are presented, and Sec. VI con-
tains final remarks and conclusions. Technical details, re-
lated to the use of the Mellin-Barnes representation of the
infinite series in Sec. IV, are presented in the Appendixes.
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II. THE MODEL —BASIC PROPERTIES

Let the coefficients in Eq. (1.2) be

a(t)=a+ Ag, , b(t)=b, (2.1)

x, =xoe "exp( 3 'N, )

where g, describes the noise, which will be specified later,
AAO and bp&0. The last condition enables us to con-
sider the stochastic solution

The independence of increments of the process
enables us to write the following equality:
( exp[y('K, —'K, ) ] ) ( exp(y "K, ) ) = ( exp(ylV, ) ) . Then,
using stationarity of increments of 'K, we obtain
P(t —s,y)+P(s, y) =P(t,y ), and conclude that P must be
a linear function of time.

For GWN g, with the strength A, [i.e., with the auto-
correlation ( g, g, ) =2X5( t —s ) ], 'N, is the Wiener pro-
cess and

X 1+px &&b f ds e""exp(p A 'K, )

where v= 1/p, t & 0, and

%'„=f g, ds

(2.2)

(2.3)

and for g, being (generalized) WSN [17]:

(2.6)

(2.7)

(x,"(a, A, b, v, xo)) =(x, (cuba, cod, cob, trav, xo )) . (2.4)

Thus the higher (transient) moments [16] of x, for the
system [a, A, b, v, xo] [i.e., the physical system charac-
terized by values of parameters a, A, b, v of Eq. (1.2),
and by the initial state xo] are determined by the
first moments of appropriately rescaled systems
[boa, co A, cob, cov, xo ].

Such a procedure is useless when the averaging is to be
done numerically [6]. Hence the knowledge of analytical
averaging formulas seems to be desirable, and such
analytical averaging is the main aim of this work. Unfor-
tunately again, such formalism can be constructed only
for some types of noise. For other types there remain, so
far, numerical computations. Nevertheless, the formal-
ism reported here enables us to obtain several results
which are very difficult to get from the FPE method. In
this sense the proposed formalism may be understood as
complementary to the Fokker-Planck equation. Especial-
ly, the main advantage of the present method is that both
the stationary and the time-dependent distributions can
be obtained with the same amount of work, whereas the
time-dependent solutions of the Fokker-Planck equation
are practically unknown (except for some of the simpler
cases).

The general form of the moments generating function
(MGF) of the process 'lV, given by Eq. (2.3) as an integral
of white noise, reads

(e px( Ny, ))=e ''P'~' . (2.5)

In order to prove (2.5) let us define e~"~'= (exp(y%', ) ).

for xo=x, o from the whole domain (0, + ~), without
restrictions on "phase space. "

The probabilistic characteristics of the stochastic pro-
cess x, may be obtained by the averaging (over all possi-
ble trajectories of stochastic process 'N) of appropriate
expressions built of the solution (2.2). For this purpose
note that the increments of processes 'lV, will be station-
ary and independent for the (stationary) white noises g, .
Note also that for a complete characterization of the
Markov process, x, given by Eq. (2.2) it is sufficient to
know the mean value (x, (a, A, b, v, xo) ) as a function of
its arguments. Namely, (2.2) gives immediately the fol-
lowing "scaling" rule:

where t, are the random points on the time axis given by
the Poisson process with parameter A, , and g„are in-

dependent random variables with the same arbitrary dis-
tribution; function y satisfies the relation

y(y) = (expyg) —y ( g) —1, (2.8)

i.e., it is simply related to MGF of the distribution of g,
which generates the WSN. It takes the particular form of

(2.9)

III. AVERAGING —GENERAL FORMULAS

As we have seen in the preceding section, to solve our
problem, we have to calculate the mean value of (2.2).
Although, in the case of GWN it has been done by the
method based on binomial expansion of (2.2) (see, for in-
stance, Refs. [9,18]), it is more convenient in the cases
considered here to express (2.2) in the form of a Laplace-
type integral

oo v —1 —pat —p A%',
x, = ds exp[ —sxo "e ']

o I v
—paz —p A%'

X exp —spb dz e
0

(3.la)

v —1S —sxO I" at+ A'N,x, = ds e ' e
o I v

t paz+ p A'lV
X exp —spb dz e

0
(3.1b)

where (for simplicity) v & 0 (v= 1/p) is assumed.
Equation (3.1a) results from the change of variable of

integration (s~t —s) in (2.2) and from stationarity of in-
crements of "W Expanding the exponents in (3.1a) we get

for WSN with random weights gE(0, ~) given by the
probability density p(g) =Pe
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V —1 0O j co

(x, ) = f ds g . g (
—spb)"@& (t; —jpa, —jpA, —pa, —pA ),

o r(v), o J!
where

R'K
ePte t

& r
4i, (t;P,R,p, r ) = f dz eI"e

4 0

= f ds, f dsz. f dsjexp[P(t —s, )]exp[(P+p)(s, —s2)] . exp[(P+kp)s&]
0

X(exp(R%', , ))(e xp[(R+r)'N, , ]) . . (exp[(R+kr)lH, ])
=exp I [P +Ay(R ) ]t ] e . . e exp I [P +kp +Ap(R +kr ) ]t J

k

+ [z (P+i—p ) —Ay(R +ir ) ]
i=0

expI [P+ip+4p(R +ir))t]
k

[(i—m )p+&[p(R +ir ) —y(R +mr ) ]]
rn =0

(, mwi)

(3.2)

(3.3)

where the asterisks indicate convolution of functions. The first equality of (3.3) defines the function 41, . In the second,
the stationarity and independence of increments of %' is applied to factorize the averaging. Next, using Eq. (2.5) we ob-
tain N& in the form of convolution, evaluated finally as the inverse Laplace transformation (it was assumed, to simplify
the notation, that all poles are simple) of a product of appropriate Laplace transforms.

Introducing the result of (3.3) into the right-hand side of Eq. (3.2) we obtain an expression containing the triple sum,
which, after some reordering, takes the form

oo

(x, &
=f ds g ( —s)~F+(s,j)f+(j,t),

o I v
(3.4)

~here

F (sj )= g ( spb)" Q—[0 (j)—0 (j+n)],
k=0 n=1

f (j,t)=
n (j )t

'

( b p )i

xiv ~ (J —i )!
[0 (j)—0 (j n)]-

n=1
(3.5a)

0 (i~)= spa+kg( ——spy ),
and where function q& is related to white noise g, via Eqs. (2.5) and (2.3). A similar procedure applied to Eq. (3.1b) leads
to the representation (3.4) with

—p QO k

F+(s,j )=e ' g (spb)" g [fl (j++n) —0+(j)],

f+(j,t)=e + (pb)J + [Q+(j)—Q+(j n)], —
n=1

0+(x)=II (
—v —~) =a+vpa+hp( 3 +spA ),

(3.5b)

which, although formally equivalent to the former, may
in some cases be more suitable.

Equation (3.4) and the scaling rule (2.4) give the formal
solution of the kinetics (1.2), (2.1) driven by (any) white
noise g, . However, the practical usefulness of these for-
mulae is limited for two reasons: (i) The term-by-term in-
tegration in (3.4) frequently cannot be done [even in the
case of (3.5b)], and therefore the detailed knowledge of
the behavior of F(s,j) is required. (ii) The series (3.4) may
contain an infinite number of terms (of different signs)

which become divergent, when t grows to infinity, and
thus the reordering and resummation is required in order
to obtain the true time dependence in the whole domain
of parameters. Unfortunately, as long as the products in
the denominators of (3.5a) or (3.5b) are not explicitly ex-
pressed as some "simple" functions (with respect to j and
k), it is difficult to say anything about properties of the
series.

Nevertheless, there exists a class of functions qo, corre-
sponding to some specific noises g„ for which our F and
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f turn out to be the series representation of some special
functions. In particular, for y given by Eq. (2.6) or (2.9)
(corresponding to GWN or WSN with exponentially dis-
tributed weights, respectively), and more generally, when
y(y) is a rational function [19] of y, it is possible to ex-
press products in Eq. (3.5a) and (3.5b) in terms of
Pochhammer symbols [u] =u(u+1) . (u+m —1)
=I (u+m )/I (u). Then functions F(s,j) become the ap-
propriate (generalized) hypergeometric functions of well-
known properties [20].

In the case of GWN, we get from Eqs. (3.4) and (2.6)

different regions of parameters space is given in the next
section.

IV. TIME-DEPENDENT SOLUTIONS

We begin this section with a short presentation of use-
ful technique of handling the alternating power series,
which is known as the Mellin-Barnes representation
(sometimes referred to as the Borel-summation method).
Suppose that we have a power series of complex variable
z:

F (s,j)=oF, (; I+2j —h;sg),
(3.6a)

C(k)
k=0

(4.1)

„, X0f (j,t)=e "J'J "" . ,F, (
—j;1 2j +h—;gx)o ),J.

or

a=a/A, , b=b/k, t=kt, A =A/P (3.7)

(and omitting bars, to simplify the notation) and using
(3.4) and (2.9), we obtain

F (sj )=)F,(j+v/A+1;j +8 (j)+1;—sQ),
(&')g( —Q)J I (v/A+j)l (6 (j))f (j,t)=e" j! I (v/A )I {0 (j)+j)

X2F)( —j,8 (j);v/A;xo "/Q), (3.7a)

or

—sxO )" VF+(s,j)=e ',F, j+v — +1;j+6+(j )+1;sQ

„(J),QJ I (v —v/A+J )I (8+(J))f+(j,t)=e j! I (v —v/A )I (8 (j)+j)
(3.7b)

where Q=b/(a —A) and

(z)= +
A (a —A )(1+z)Lt A)

V(z)=v—
(a —A )(1—A —zpA )

(z) = —p(a —A )z —1+ 1

1+zpA

g+(z) =(a —A )(1+)L(z )
—1+ 1

1 —3 —zpA
Note that, in contrary to the case of OWN, the sign of
the parameter A (to which the noise is coupled) plays a
significant role, which is related to an intrinsic asym-
metry of the noise. The analysis of properties of (x, ) in

F+(s,j)=e ' oF)(;h+2v+2j+1;sg),

f ( ),„„g'I(h +2 +j )
(3 6b)j!I(h +2v+2j)

where h =a /D p, g =b /D p, and D =A, 2 . For WSN
with exponentially distributed weights, introducing re-
scaled variables

A. The case of Gaussian white noise

This case has been examined by the use of several
methods [22]. The final result may be easily obtained
from Eqs. (3.4) and (3.6b) because the term-by-term in-
tegration is possible in this case. The resulting series re-
quires analytical continuation in the long-time limit. It
has been done, using Mellin-Barnes (MB) representation,
in Refs. [23,18].

New technique details, which will be especially impor-
tant in Sec. IVB appear when one wants to recover the
results (cf., e.g. , [18]) starting from (3.4) and (3.6a). Such
an analysis is presented in Appendix A.

The asymptotic (stationary) behavior of (x, ) depends
on values of parameters a, b,p, D in the following way
[18]:

I (h+v) if a,p)0 or a & —D &0& —pg.r(h)
(x),„= 0 if p)0, a &0

sf p&0, —D +a
(4.3)

where (x )„=lim, „(x,).
B. The case of white shot noise

(with exponentially distributed weights)

Introducing (3.7a) or (3.7b) into Eq. (3.4) we get

where C(s) is analytical in a right half-plane Re(s) ~0,
except, maybe, at a finite number of points, where it has
the poles. Suppose next that we want to know the analyt-
ical continuation of (4.1) for some values of z outside of
the disk of convergence. Consider the contour integral

Ids I (
—s+cr )C(s —o )z ', ~arg(z)

~
& vr,

27Tl

(4.2)

where the path of integration starts and ends in infinity,
and separates the poles of I ( —s+o) from those of
C(s —cr) ois. an auxiliary parameter usually taken as
zero. This integral in regions of z, where it is for the ap-
propriate choice of path convergent [21], usually gives
the representation we are looking for. In fact, for z be-
longing to the common area of convergence, the evalua-
tion of (4.2) as a (minus) sum of residues on the right of
the path leads just to Eq. (4.1).
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(+sQ)J r(a, (j))1 (j+u+ ) ~ —(j),
(x, &

= ds g . . e. ,F,(j+u++ 1j +6+(j)+I;+sQ)G+(sj ), (4.4)

where u =v/A and G (s,j)=2Fi( —j,8 (j);v/A;
—SXO )"

xo ~/Q), or u+ =v —v/A and G+(s,j)=e ', respec-
tively. The way of handling Eq. (4.4), which expresses
the mean value as a function of rescaled parameters (3.7),
depends essentially on the signs of two composite param-
eters p(a —A ) and (a —A ) A. The former determines the
sign of Q=b/(a —A) (remember that we are working
with a condition bp) 0), the latter specifies the qualita-
tive character of the behavior of g+. Namely, for posi-
tive (a —A ) A, i)+ is monotonic both to the left and right

I

I

of its pole (equal to —u+ ), whereas it has a local
minimum on the one and a local maximum on the other
side of its vertical asymptote, for (a —A )A &0. In the
first case, the zeros of ii+(z) are intersected by the pole,
and in the opposite case, they are separated by the local
minimum and lie on the same side of the vertical asymp-
tote.

There are four different cases with respect to the signs
of the above-mentioned parameters:

0&p, 0&A &a
p&0, a&A &0

case I (upper)

A&0&p, A&a
p&0&A, a&A
case IV(MB,lower)

0&p, a&A &0
p&0, 0& A &a
case II (lower)

0&p, A, a&A
p, A&0, A&a

case III (MB,upper)

Re(a), Re(y —a), Re(x) )0,

r(a)r(5)r() —a)
x-r(7 )r(S—~)

In cases I and III, Eq. (4.4) with upper signs will be used.
For cases II and IV the lower signs in (4.4) will be chosen.
Cases III and IV require the reexpression of the series in
order to carry out the integration in (4.4).

Case I corresponds, e.g. , to the case when, say, a small
positive parameter of noise coupling (A) does not exceed
a deterministic one (a), and p) 0. Choosing the upper
signs in Eq. (4.4) and provided 1+v/A —v) 0, one can
termwise integrates in (4.4), using the formula [20]

(x &„=Q

r &-v+ r l+
A A(a —A )

1 —v+v/A )0, (4.6)

and a relaxation is governed by the second term of the
series.

Case II may be examined in a similar manner. Carry-
ing out the integration in (4.4) with lower signs, one ob-
tains

and obtaining (x, &=x,
i =0

( —Qxio )'[vl; [v—v/A ];
exp[i)+ (i)t ]

X 2F, ( v+ i, 1+v — +i; 1+iV

Q l(v/A) +8+(i);Qx~() ) . (4.7)

[ vl, r«-(J ) )[j+&-(j)l

0 j!r(1—v+8 (j))[j+v/A ]

Xp P

Xexp[i) (j)t] zF, j;8 (j);—
(4.5)

All terms of the series (4.5), except the first one, decay ex-
ponentially (with rate growing with j) with time, so the
stationary mean value reads

Here, and hereafter, the Gauss hypergeometric function
of a variable y ~ —1 is understood as given by the analyt-
ical continuation (5.1).

If p) 0, all terms relax to zero ((x &„=0),and it is not
unexpected because then both linear and nonlinear parts
of Eq. (1.2) describe annihilation. If p &0 and 0& A & 1,
ri+(i) is positive for 0&i & —v, and (x, & growths
infinitely. For p &0 and A ) 1, the mean value of x, does
not exist for any t )0 (and for any a). It does not result
from character of evolution, but it is a trivial conse-
quence of the fact that the average over (exponentially
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distributed) weights g does not exist in this case, which is
clearly seen from Eqs. (2.2), (2.8), and (2.9). Therefore
the case of p &0 and A & 1 should be excluded from all
considerations.

Cases III and IV will be examined, by the use of
I

Mellin-Barnes method. Equation (4.4) with upper signs
in the former and with lower signs in the latter case
should be chosen. Then, the (alternating) series in Eq.
(4.4) may be replaced by the Mellin-Barnes integral (4.2)
with o. =v:

dz

Rr Z-
Z

r(u)

RI (u —z)lsg I' 'I u—
Z

I (z)

exp[g(z —u )t ],F, z+ 1;z—R +1; I g I

R &o
2F1 U Z;U;U;

Z

—sx
e

(4.9)

where

R RI ( —z+v)l u — I (v —v+z)1 v —u+

(4.&)

where R =
I
v

I /&( 2 —a ) 3 and v =u+, g =q+, respectively. The path of integration should separate the poles
vk =v+k of I (v —z) from those of I (u —R /z) [i.e., from poles at points vk being images of vk by the inversion with
respect to the circle C(O, R )], and those of I"(z) (mk = —k), k =0, 1,2, . . . . The point z =0 is the essential singularity
of the integrand, and lies to the left of all vk.

In order to carry out the integration over s, the reexpression of cF is still required. This important, but very technical,
part of the analysis is presented in Appendix B. The final result reads

d [R —
U] OO OO(,)= ,'f —.~( ) — g ( +k)+ g' (

——k)+ g (
—1 —k),

2&l k=0 k=0 k =[R]

IIr( ) I g I

v [g(z —v)t]

R Rr(v)r(u)r —z r z—

' G(z),

and r(u)=res[ W(z);z=u], [w]=entire(w). The function G(z) is defined below Eq. (81) in Appendix B. The integral
is taken along the counterclockwise-oriented circle C(O, R), and the prime indicates that terms with k H [u —v —R,
v —v+R] (i.e., the appropriate residues at points lying inside the circle) in the middle sum should be removed. The first
sum, if empty, is treated as zero; the last does not appear in case III.

The integral (which evaluates a contribution from the continuous spectrum) in the angular parametrization takes the
form which is explicitly real

x„(t)=f dp

R sing sinh(2rrR sing) I —
g I v — +g

A

2~'I g I
"r(v)

(a /A —2+ 2/1 —a /A cosP))t yr ~ ye 4'p / (4.9a)

&(p) =
I 1 —v+

where either /=Re'~ and

V V

I

in cases III and IV, respectively. The residues r(u+a),
which appear in the first and second sum, may be com-
monly written as

Ig I

.r(v+k)[~+a-(~)]
k!r( v) I (u —)[~+u —]

Xo"
lgl where

X exp[g+ (a )t ]Z+ (~), (4.9b)

or g= —Re'~ and

&(p) = I
r(1+Re'~) I'

or

H(y)=I (v —y)/I (1 —y) if x.=k

I v — I 1+ +2R cosg
A

XF, —g; —g'; +1

XO"
+2R cosg;1—

H(y)=I (y)/I (1—v+y) if ~= —v —k

and where

lgl

or

Z (x)= I 1 —v+ 2E& a;8 (K);—V V
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r( I+u+ +a )r(1+u+ —8+ (a ) )
Z+(a)=

I (1+v+u++a —6~(a))

X~F, v+a;v —8+(a); 1+v+ u++i~ —8+(a);1—

The last sum appears only in case IV. Provided v/A is not a negative integer, its summands may be expressed as

r( —j)=
I. —1 I — +j I — +V V v R

A A A j
R

(q
—1)!Ig gl'+ -"r( )r — r j

(4.9c)

(x &., =IQI '
r 1 —v+ r v+V va

A(A —a)

Equations (4.9) solve the kinetics in regions of parame-
ters space covered by cases III and IV, giving the spectral
decomposition of moments of x, . In contrast to (4.5) and
(4.7) the continuous spectrum appears. It fills up the gap
between values taken by q on the left and on the right of
its vertical asymptote. X„(t)~0, if t grows to infinity.
Only finite number of terms, which do not decay ex-
ponentially in time, may appear, namely as the first few
terms of the left or middle sum in Eq. (4.9). Elementary
analysis, which is not presented here, shows that, for the
positive v, (x, & either approaches (finite) stationary value
if a )0, or relaxes to zero, otherwise (see Fig. 1). For
negative v and A, the mean value growths infinitely if
a ) A /(A —1), or remains finite for
a&I A, A /(A —1)]. And, for v(0 and positive
(x, &~ac if a is positive, or remains finite, otherwise.
(Remember that, in the latter case, we consider 2 ( I
only. )

The stationary value (if positive finite) is given by (4.9b)
with k =0 and reads

for an arbitrary given ending time T, the particular reali-
zation of (standardized) compound Poisson process %V

has to be chosen. It is the piecewise constant function,
having T~ steps at some points t, uniformly distributed
on (0, T), each one of a random height g, governed by ex-
ponential distribution p(g)=e ~. T, is a random in-

teger, chosen according to Poisson distribution
P( T„=X)= e T /N!. For each realization I t;, g;:
i =0, 1, . . . I (to=0, go=0) the value of x, is given ele-

mentary by

x, ( t t, , g, I ) =xoe' ""e

X 1+pbx Io

where tTo=go, o&+, =o.k+gk+„and t, I,I+, =t ( T. The
(x, & is then calculated as the arithmetical average of
several thousands, obtained for different sample realiza-
tions, values.

I 1+ I
A(A —a)

p, b(0
iQ

p, b) 0

in case III, or

(x &,„=g
r — r v+

A A(A —a)

v va
A(A —a)

(4.10)

'l~l 11

IIIIIIII
I

tY' i(4.11I

I I II I III
I I

I
I I I I I

II —
I

I !LVI

I I

I{t.11)
I

I I I! I I I I

IY 0

0

v —v/A &0, (4. 1 1)

V. NUMERICAL RESULTS

In order to confirm the analytical results of Sec. IV B,
the digital averaging of (2.2) has been done. To this end,

in case IV. The asymptotic behavior in different areas of
parameter space is shown in Fig. 1.

FICx. 1. Asymptotic behavior of (x, ) in diff'erent regions of
the {A,a) plane. The left and right graphs correspond to
b, p&0 and b,p) 0, respectively. The labels of appropriate
cases and corresponding stationary values (x &„are listed. The
condition of validity of {4.6) and {4.10), 1 —v+ v/A & 0, involves
the particular value of v, and therefore it is not shown. The
curve intersecting area III on the left graph is given by
a = A2/{ A —1).
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On the other hand, the (analytical) mean value is com-
puted by truncating the infinite series in Eq. (4.5), (4.7), or
(4.9), respectively (after approaching the required level of
accuracy). Their radii of convergence turn out to be
given by r ( 1,

T ~X08

1.050

1.025

where A & 0 and a are some parameters. Therefore these
series are convergent for any arbitrary xo, at least for
su%ciently large t. The Gauss hypergeometric function
(if it is not simply a polynomial) is computed the same
way. At least one of its equivalent (in the analytical con-
tinuation sense) series representations

1.000—

0.975—

2F, (a;b;c;y)=(l —y) '2F, a;c b;c;—
3'

(5.1)

is convergent, and may be directly used.
Finally, the integral (4.9a) has been numerically evalu-

ated, using Romb erg technique. The comparison is
presented in Figs. 2—5. The agreement is very good for
all times. The interesting effect is observed for Eq. (1.2)
describing creation and annihilation processes (i.e., for
a, b, p having the same sign) if the initial state is close to
the finite stationary value. Namely, as it is shown in
Figs. 2 —4, at the beginning of evolution, the mean value
increases and approaches the local maximum. In con-
trast, the deterministic relaxation is always monotonic.

This type of behavior may be explained as follows:
From Eq. (3.3) one can easily obtain (e.g. , using Laplace
transforms) that

P+A,qr(R) if k =0
4k (t;PR,p, r)= 1 if k=1

'f k=2, 3, . . . .

0.950
0 10 15

FIG. 3. Plots (x, ) vs t for x0=0.95, 1.0, 1.05; and v= 1,
a =0.2, b =0.2, 3 =0. 1 (case I). N=50000.

It gives (A & 1 [24])

(x,~) =x, [a+V(A) —bx~o] .

The sign of the last expression determines the character
of the evolution at the beginning. It may act against the
global trend xo~(x )„.

Consider, for instance, the true Verhulst model (v= 1 ),
for which the stationary mean value is not affected by the
noise, being equal to the deterministic stationary state
x„=(b/a )

' ". [This follows immediately from (4.3) for
GWN, and from appropriate equations in Sec. IVB for
WSN, and seems to be some general rule. ] Therefore, for
all xo from [xst, x„+y(A)/b ], the effect described above
will be observed [25]. For negative a, b,p( —1 the re-
verse effect may appear, viz. (x, ) may have a local
minimum; see Fig. 5.

1.3—

1.2—
1.08—

1.0— 1.04—

0.9—

0.8

1.00 —
& &

~ ~~A m A ~ n m MRSset- g~—

100 5 15 25 t
FICx. 2. Comparison of analytical results and digital simula-

tion. Plots (x, ) vs r (rescaled, dimensionless time) for different
initial values x0=0.8, 1.0, 1.2; and v=1 (true Verhulst model),
a=0.2, b=0.2, A =0.4 (case III). Each mark represents the
arithmetical average over N =50 000 values obtained for
different sample realizations.

0.96
0.0 0,5 1.0

I

1.5 2.0

FIG. 4. Plots (x, ) vs t for xo=0.95, 1.0, 1.05; and v= 1,
a=10, b=10, 2 = —1 (case IV). N=100000.
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1.245—

1 .235—

been examined (Fig. 1), and stationary mean values have
been found (4.6), (4.10), and (4.11).

Several other quantities of interest may be easily ob-
tained from the spectral decomposition of moments.
Namely, the transition probability density is given by the
inverse Mellin transformation

P(x, t~xo)= f dsx ' 'm, (s;xo) .
277 l C

—i oo
(6.1)

&.225— If a, b, p have the same sign, the stationary probability
distribution [28] is found [m, (s;xo)—:(x')„ in (6.1)] in
the form

& .205—
P ( ) ~~( )x

—) —a/(a —A)A~ P Q
—

l~
—)+v/(a —2) (6 2)

where

FICr. 5. Plots (x, ) vs t for xo = 1.20, 1.23, 1.25; and
v= —0.5, a = —0.45, b = —0.45, 2 = —0.4 (%=100000).

VI. FINAL REMARKS

This paper has been devoted to the analytical studying
of the evolution of the Verhulst-type model in the pres-
ence of linearly coupled white noise. Our main results
are (i) the general formula (3.4) for (transient) moments of
x„which is valid for any type of white noise g, present;
and (ii) the exact time-dependent solution of kinetics
driven by white shot noise (with exponentially distributed
weights), contained in Eqs. (4.5), (4.7), and (4.9).

(i) Equation (3.4) gives, for any white noise g„ the mo-
ments of the process x, (with the initial condition
x, o=xo), in the form of the Mellin or Laplace trans-
forms of some function represented formally by series ex-
pansion. The direct averaging method presented here
does not in principle require that noise is white, and may
also be applied in the case of colored noise. Similarly, the
deterministic coefficients in Eq. (1.2) need not be con-
stant. It gives several possibilities of consideration of
more complicated models based on Bernoulli equation
(1.2) (e.g. , the cases of simultaneous presence of two
noises, or of the presence of the noise and regular pertur-
bation, etc. [26]). However, our simple general way (3.3)
of calculating the appropriate 4& is then not available,
and therefore each case will require the special treating.
[Moreover, if x, is not a Markov process, it is also not
completely characterized by its (one-point) transient mo-
ments. ]

(ii) In Sec. IV the particular cases of GWN and WSN
[27] have been analyzed by the use of contour (Mellin-
Barnes) integral representation of appropriate series.
Such procedure has enabled us to find the analytical con-
tinuation of the formal solution (3.4) in the whole domain
of parameters. The final results, Eqs. (4.5), (4.7), and
(4.9), give the spectral decomposition of transient mo-
ments m, (co;xo)=(x,") for different interrelations be-
tween parameters. The asymptotic behavior (t~ ~) has

e(Q —x) if 3 (0&a, or a & A &0
g(x)= 'e(x —Q ') if 0& A &a, or a &0( A

e(x) if 0(a & 3, or A &a &0,

and 0 is the unit-step function. This form complies with
the general one obtained in Ref. [2] from the appropriate
Fokker-Planck-type equation.

The probability density distribution and its moments
follow from integrating of (6.1) or m, (co,xo) over
x&E(0, ~) (with some initial distribution), respectively.
The autocorrelation function is given by the double in-
tegral

(x,+~, ) = f dc@ m, (a);xo)f dy y "(x,(y) ),
and the stationary autocorrelation function simply by

K„(r)= f dy P„(y )y (x,(y) ) .
0

The behavior of the latter quantity, in the case of GWN,
has been examined in [23]. The properties of the auto-
correlation function, in the case of WSN, will be studied
in a separate paper. The comparison of the digital simu-
lation of (2.2) (with appropriate compound Poisson pro-
cess %') and the numerical calculation of (4.5), (4.7), or
(4.9}has been done in Sec. V (Figs. 2 —5).
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APPENDIX A: CALCULATION
OF THE MEAN VALUE IN THE CASE OF GWN

The way of handling Eqs. (3.4} and (3.6a) is the follow-
ing: Function F and the (confiuent) hypergeometric po-
lynomial in (3.6a) may be expressed by a modified Bessel
function and Whittaker function [20], respectively. Then
(3.4) gives
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e g
g" o / —1/2 oo v —1+h/2

(x, ) = h, ds 2(s, t),
(xylo ) o I v

where

( —1)'
2(s, t)= g, (2j —h )I (j—h )I „(2&sg )

(A 1)
cording to Cauchy theorem) of (A3) along the appropri-
ately indented (in a general case) line.

APPENDIX B: CALCULATION
OF THE MEAN VALUE IN THE CASK OF WSN

Equation (4.4) with the contour integral (4.8) instead of
the series is examined:

Wl /2+ h /2, h /2 —J (gx 0 )
Dp2j (j —h)p p

The series in Eq. (A 1) cannot be termwise integrated, so
its reexpression is needed to carry out the integration.
The proper way is to replace it by the Mellin-Barnes in-
tegral [corresponding to (4.2) with o = —h /2]

+i oo dz h2[I,]= I —z ——2zl z ——I,(2V gs)—i oo 2&l 2 2

Xe "' Wi/2+h/2, — (g'xo ) (A2)

where the path of integration separates the poles of
I ( —z —h /2) from those of I (z —h /2). If we at first as-
sume that (i) h (0 the path may be taken simply as the
imaginary axis.

Then, by changing of variable z ~—z in (A2), we ob-
tain [29] 2[I2, ]=2[ I 2, ]. T—aking the sum of these
two integrals, we easily get 2[I2,(2v'sq ) ]
=2[—sin(2zvr)K2, (2&sg )/1r], where K is a modified
Bessel function of the second kind. The point is that, in
(Al) with J' given by the last expression, we can carry out
the integration over s, using the well-known formula [20]

—p
dss~ 'E, 2 sg = I +z I —z

Re(P+z ) )0,
provided (ii) v+ h /2 )0. It gives

(x, ) =i JV(t) J dz e " ' 'z sin(2mz) Wi/2+h/2, (gxo )
g oo

v —1

(x, ) = f ds 8[,F, (z+1;z—R /z+1; ~sg~)] .
o r(v)

Our problem is to find the proper way of interchanging
the integrations over s and z. To this end three "auxili-
ary" conditions will be assumed. Nevertheless, the final
results will be extended on the whole domain of parame-
ters.

The first assumption, (i) R (U, enables us to choose the
contour of integration in (4.8) (described below the men-
tioned expression) as consisting of the line Re(z)= —R
and counterclockwise oriented circle of radius R at the
origin. Call the integral over the line 8&, and that over
the circle aio. Define two new integrals cft and do, where

I 1+R /z
r(R '/z —z)

and where

g(a;y;x )=,F, (a;y;x )
I'(1 —y )

I 1+a—y
r(y —1)+ x ' 1',F,(1+a—y;2 —y;x )I (a)

is the second solution of Kummer equation.
The change of integration variable z —+R /z in cfo

leads just to the integral containing the second part of P,
and thus

~0 2~0 '

Moreover, under the condition (ii) R ( 1, we have also

where

h hxr —z ——r z ——
2 2

h hxr &+—+z r v+ ——z
2 2

—v go —at/4Dxi" /2 2

t) g
2( p )h/2+1/2r( )

(A3)

because then both integrands have the same poles, with
the same residues, on the left-hand side of l. Namely,
they are the residues at negative integers z, for which the
second parts of appropriate g( —k; y;x) vanish.

Introducing 8&+ —,do instead of the series into Eq. (4.4)
and assuming (iii) v) R+U, we may interchange the or-
der of integration, and carry out the integration over s by
the use of formula [20];

d ' a;c;q e
0

r(b)r(b —c+1)
q I (a+b —c+1)

The result may be formulated as follows. The mean value
of x, is given by the contour integral (A3), where
the path of integration have all poles of
I ( —z —h/2)I ( —z+ v+5 /2) on its right-hand side, and
all poles of I (z —h/2)I (z+v+h/2) on its left-hand
side. This formulation enables us to remove the specific
restrictions (i) and (ii). The explicit form of the spectral
decomposition of (x, ) follows from the evaluation (ac-

X2F& 6'b c+ 1 a+6 c+ 1' 1

I (b) I (b —c + 1)I (a b)—
q I (a)I (a —c+1)

where Re(b), Re(b —c+1),q, y )0. The limiting form
(for y =0) is valid if, moreover, Re(a b) )0. It gives—
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~g~- -~, y „„, „r(—z+u)r(u —R'/z)l (v —u+z)l (v —v+R'/z)
277l I I (v}I (u }I(R /z —z)I (z —R /z)

(B1)

where

G(z) =z 'I (1—v+ v )

X 2F, ( u —z; u —R /z; v; —x o
"/i g ~

)

in case III {if,moreover, 1 —v+ u )0), and

6 r(1+z)r(1+R'/z)
zl (v —u+z+R /z+1)

X2F& v —U+z;v —U+8 /z;v —
U

+z+R /z+1;1—

in case IV.
Now we want to remove the specific restrictions (i), (ii),

and (iii), which are not essential for the convergence of
the integrals in (Bl). For this purpose, note that the in-
tegrand of (B1) has the following location of poles:
all the poles uk =u+k and wk =u —v —k (and
m, = —1, m2 = —2, . . . , in case IV) lie outside the circle
[because of (i), (iii), and (ii), respectively]. Therefore all
the remaining poles uk and wk and (and mk in case IV)
are inside, as the images of the former poles by the inver-
sion with respect to this circle. Only the poles wk (and
mk) lie on the left-hand side of l, and the first integral in
(Bl) may be evaluated as the sum of residues at these
poles:

(2rri )
' I = g res(wk ) [+res(mk+, )] .

k

The direct calculation shows the important relation
res(ck)= —res(ck), where c=u, w, or m. Thus the in-
tegral over the circle contains implicitly the contribution—

—,'gkres(vk)+res(wk) [+res(mk+, )], among that from
the essential singularity. The conclusion is that (x, )
consists of the continuous part given by the second in-
tegral in (Bl); the discrete part such that the total contri-
bution from each vk and its counterpart uk is —

—,'res(vk );
and from each pair wk, wk (mk+„mk+, ) is + —,'res(wk)
[and + —,'res(mk+, ), in case IV]. Equation (4.9) expresses
this formulation analytically, and therefore it is valid gen-
erally, irrespective of the particular relation between pa-
rameters.

Note that the crucial points of the analysis in this and
in the preceding section are the same. Namely, we have
shown the proper way of replacing some functions —the
modified Bessel function I in (A2) and the confluent hy-
pergeometric function, F, in 8—by the associated one, It.
or f (the second solution of Bessel or Kummer
differential equation, respectively), without affecting the
values of the integrals of interest. Such a procedure has
enabled us to interchange the order of integration and
carry out the integration over s. The ways of extending
the results on the whole parameter space have been
analogous.
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