
PHYSICAL REVIEW E VOLUME 47, NUMBER 2 FEBRUARY 1993

Repeated transients of weakly nonlinear traveling-wave convection
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I present experimental observations of weakly nonlinear traveling-wave convection in ethanol-water
mixtures in a narrow, rectangular cell of variable aspect ratio. Over ranges in aspect ratio separated by
approximately unity, the first nonlinear state seen above the onset of convection consists of irregular "re-
peated transients, " in which small-amplitude traveling waves initially grow with no change in spatial
profile, then lose stability, and finally collapse back down to small amplitude. These states differ qualita-
tively from the "blinking" states seen just above onset at other aspect ratios, in which wave amplitude al-
ternates regularly back and forth across the cell. The collapse in the "repeated-transient" state appears
to be caused by a dephasing of the pattern which is due to the nonlinear dependence of wave number on
amplitude. This dephasing shifts the pattern off resonance, causing its decay.

PACS number(s): 47.27.Te, 47.20.Ky

I. INTRODUCTION

Convection in thin, horizontal layers of binary Quid
mixtures has attracted a great deal of experimental and
theoretical attention in the past few years because the
typical convective state observed in this system is one of
traveling waves (TW's) [1]. In a narrow rectangular or
annular container, the nonlinear TW states seen above
the onset of convection consist of convective rolls aligned
parallel to the short side of the container which propa-
gate laterally, parallel to the long side [2].

Because of the Soret effect [3], four dimensionless num-
bers must be used to characterize the convective state in
the binary Quid mixture: the usual Rayleigh number R
(proportional to the applied temperature difference), the
Prandtl number P (the ratio of the kinematic viscosity to
the thermal diffusivity), the Lewis number L (the ratio of
the diffusivities of solute and heat), and the separation ra-
tio g, which is defined as follows:
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Here, p is the density, c is the solute concentration, T is
the temperature, and Sz- is the Soret coeKcient. The sep-
aration ratio parametrizes the importance of density
stratification due to the Soret effect relative to that
caused by thermal expansion. For f( I. -0, the criti--

cal Rayleigh number for the onset of convection is
suppressed above that in a pure fluid by a factor
r„—1 —g. For g ( —0.25, this suppression is large, and
the first state seen above onset in a narrow container con-
sists of large-amplitude, spatially uniform convective rolls
and which propagate laterally at low velocity. Recent ex-
periments [4,5] have clarified the way in which mixing of
the concentration field by the convective Aow affects this
propagation. Because of the convective mixing, such
"strongly nonlinear" TW states cannot be well described
by a theoretical model such as the Ginzburg-Landau

(GL) equation [6], which assumes that the convective
flow is a weak perturbation of the quiescent state seen
just below onset. For this reason, a quantitative theoreti-
cal accounting of the experimental work in Refs. [4,5] has
required numerical integration of the full Navier-Stokes
equations [7].

In the present work, I discuss a different regime of non-
linear TW convection. For —0.1(g( —0.01 the con-
vective mixing of the concentration field is found to be
weak in a narrow range of Rayleigh numbers just above
onset. Because of this, my co11aborators and I have re-
ferred to this regime as "weakly nonlinear" [8]. In this
regime, the first nonlinear state seen above onset consists
not of spatially uniform, slow TW's but of fast TW's
whose amplitudes vary in space and time [8,9]. In a nar-
row, rectangular container, both the linear TW's seen ex-
actly at onset and the nonlinear states triggered above on-
set are quasi-one-dimensional, consisting of superposi-
tions of TW's which travel in the two directions parallel
to the long side of the cell ("left" and "right"). The typi-
cal behavior seen just above onset consists of a modulated
state in which TW amplitude appears alternately in the
left- and right-going components. This causes the TW to
"blink" back and forth between the two ends of the cell,
with a period that diverges as the Rayleigh number is in-
creased [8—10]. Because the effect of the ffow on the
diffusive concentration profile is weak in this regime, the
perturbative approach inherent in the GL model is
justified, and such a model does an excellent job of repro-
ducing the sequence of dynamical TW states seen near
onset in these experiments [11]. A marginal-stability
analysis of the GL model, including complex linear
coefficients [10],also gives an excellent accounting of the
modulation period in the blinking state.

In a rectangular convection ce11 of moderate length,
the physics of weakly nonlinear TW states is dominated
by the principal ingredients of the model of Ref. [11]:
convective growth of TW's, reflections from the ends of
the cell, and nonlinear competition between oppositely
propagating TW's. An important aspect of this model is
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that, for simplicity, it uses real coefficients and zero-
phase-shift end-wall reflections, so that the TW ampli-
tude fields are also real, exhibiting only a discrete phase
corresponding to the two propagation directions. As will
be shown below, the nonlinear evolution of the phase field
has a crucial effect on the dynamics of experimental TW
patterns in this regime, and such effects are not included
in this model. In particular, this model also neglects non-
linear disperison [12,13], but this effect does not seem to
be an important part of the physics of regular blinking
states seen in moderately long rectangular cells. Ap-
parently, end-wall reflections cause a damping which
overcomes the focusing effects of nonlinear dispersion. In
an annular geometry, because there are no reflections,
and because unidirectional states can be created, non-
linear dispersion dominates the dynamics [13]. This
causes weakly nonlinear TW states in an annulus to be er-
ratic at onset and to have a character which is quite un-
like the first states seen in a rectangle [13]. However, this
behavior is still at least qualitatively understandable in
the context of a GL model with complex coefficients
[12—14]. Nonlinear dispersion may also play a role in
weakly nonlinear convection in very long rectangles [15],
where end-wall reflections have a weaker relative effect
than in short cells.

Despite the success of the GL model in explaining im-
portant aspects of experimental observations in the weak-
ly nonlinear regime, there is one facet of the results re-
ported in Ref. [8] which have not been explained on this
basis: the effects of small changes in the cell length. In
Ref. [8], we found that the first weakly nonlinear state
seen above onset depends quite sensitively on I, the ra-
tio of the cell length to its height. Changing I by only
0.25 (typically, I —17 in those experiments) sufficed to
drastically change the character of the first nonlinear TW
state. The sequence of states seen near onset as I was
changed was observed to be approximately periodic in
I . Pure blinking states were seen only in rather narrow
ranges of I separated by unity. At most aspect ratios,
the TW state seen just above onset was what we called a
"repeated transient. " In this state, the overall TW ampli-
tude grew up slowly with no modulation, appeared to sat-
urate briefly, and then abruptly decayed. This cycle then
repeated irregularly. The experiments in Ref. [8] were
performed in a rather wide cell (transverse aspect ratio
I' =4.90), and we found that the TW pattern exhibited
structure in the transverse dimension during the high-
amplitude part of the repeated-transient state. Repeated
transients were seen only in a narrow range of Rayleigh
numbers above onset. Above this range, regular blinking
behavior was recovered.

The fact that repeated-transient states occur with unit
period in I is a clear sign that resonance effects are
playing a role. Like any other system of TW in a
reflecting cavity, TW convection exhibits quantized reso-
nant modes. Modulation due to beating between adjacent
modes has been studied in detail in this system in the
linear regime [16]. I suggest below that resonance effects
are also crucial in the destabilization of the repeated-
transient state in the nonlinear regime. These effects, of
course, depend on the phase of the TW field in the con-

vection cell, and this aspect of the flow cannot be ex-
plained by a GL model with real coefficients. The solu-
tions of a GL equation with complex coefficients and
complex end wall reflections could in principle exhibit a
sensitive dependence on aspect ratio. This would be the
minimum extension of the model in Ref. [11] that could
explain the experimental results. It may also be neces-
sary to explicitly take account of the fast spatial varia-
tions of the TW phase. These small spatial scales are
averaged away in the derivation of the GL equation.

In order to stimulate theoretical work in this direction,
I present further observations of repeated-transient states
in this paper. The experiments of Ref. [8] have been re-
peated in a narrower convection cell ( I" =3.00), in
which the TW states are purely one dimensional. I con-
tinue to observe repeated-transient states in ranges of I
separated by approximately unity. The nature of these
states is explored in detail as a function of cell length and
Rayleigh number, using shadowgraphic flow visualization
and image-processing techniques. I conclude that
repeated-transient behavior is the natural weakly non-
linear evolution of single-mode linear TW s in this sys-
tem. The key to the physics of this state appears to lie in
the nonlinear dependence of the wave number on the TW
amplitude. Because of this dependence, the growth of the
TW amplitude shifts the pattern out of resonance, and
destructive interference, signaled by spatiotemporal de-
fects, causes the collapse of the pattern. Blinking states,
by contrast, represent a special case in which the oscilla-
tions of the phase of oppositely propagating TW corn-
ponents exactly cancel, leaving the system continually in
resonance.

II. APPARATUS

The experimental apparatus and procedures used in
this work have been described previously [8,16,17], so I
only give a brief review here. The convection cell con-
sists of a thin frame of ULTEM polyetherimide plastic
which is clamped between a rhodium-plated, mirror-
polished, electrically heated copper bottom plate and a
water-cooled, transparent, sapphire top plate. The exper-
imental fluid fills a rectangular slot in the plastic frame;
one end-wall of the slot is a leaky, movable plug, which
allows the length of the cell to be continuously varied un-
der computer control. I used two different plastic frames
in the course of this work, both with thickness d =0.35
cm. The first, used in the work described in Ref. [8], had
width I =4.90, and the other had width I =3.00. The
cell length I can be set with a resolution of about 0.002.
I concentrate in this paper on cell lengths I „ in the range
15-21.

The temperature difference applied vertically across
the cell is typically about 2.8 K at onset and is held con-
stant with a fractional stability of 5+7X10 by a
computer-controlled ac bridge-servo system. Rayleigh
numbers are quoted in this paper in terms of fractional
distance e above the measured onset of convection. The
fiuid was a 0.3-wt. % ethanol-water solution, with separa-
tion ratio itj= —0.021, Prandtl number 6.97, and Lewis
number 0.0077 [18]. The time scale in the experiment is
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III. RESULTS

The weakly nonlinear states described in this paper ex-
hibit spatiotemporal structures which have much in com-
mon with that exhibited by the linear TW's seen exactly
at onset. Thus, although these linear TW's have already
been described in some detail [16,17,19], it is useful for
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FIG. 1. Time-averaged spatial profiles of the left- TW
(dashed) and right-TW (solid) amplitudes (top) and wave num-
bers (bottom) are shown for neutrally stable, linear TW's seen
exactly at onset, using a fiuid with f= —0.239 in a rectangular
cell of dimensions 1X4.01X20.51. In this system, the initial
linear onset transient consists of a superposition of oppositely
propagating TW's which grow in their direction of propagation,
leading to approximately exponential spatial amplitude profiles.
Except for boundary regions near the ends of the cell, the
wave-number profiles are approximately constant in space.

set by the vertical thermal-diffusion time, ~„=84.3 sec. I
also observed repeated-transient states at f= —0.013 and
—0.043, but these results will not be described in this pa-
per. Some additional supporting observations, such as
that in Fig. 1 below, were made using cells of different
sizes and Auids with different separation ratios.

The Aow patterns are viewed from above by a shadow-
graphic Aow-visualization system. This optical system,
and the complex-demodulation techniques which are
used to analyze the data obtained from it, have been de-
scribed in detail in Ref. [17]. The flow patterns exhibit
nontrivial structure only in one spatial dimension in the
narrow cell, along the axis designated X. The complex-
demodulation and distortion-correction techniques de-
scribed in Ref. [17] allow the profiles of the left- and
right-going TW amplitudes AL ~ (x, t ) and wave numbers
kL z (x, t ) to be extracted from sequences of shadowgraph
images. Often, it is useful to integrate these quantities
over the cell length, to obtain spatially averaged wave
amplitudes and wave numbers, as in Figs. 6—8 below. I
also record the light intensity integrated over a stripe per-
pendicular to the x direction, a few wavelengths away
from one end of the cell, using a photomultiplier tube.

the purposes of orientation to repeat some of this descrip-
tion before proceeding.

If the Rayleigh number is increased from below to
above the threshold for the onset of convection, small-
amplitude TW's are amplified from the noise. These
linear TW's grow in amplitude as they propagate through
the system, acquiring an approximately exponential spa-
tial amplitude profile. They also reAect with loss from
the end walls of the container [17,19,20]. If, after the TW
amplitude has grown to some small but nonzero level, the
Rayleigh number is reduced back to the threshold value
@=0, then the temporal growth ceases, and the transient
evolves into the time-independent neutrally stable state il-
lustrated in Fig. 1 for almost a11 aspect ratios I „. In this
state, the left- and right-TW amplitudes exhibit roughly
exponential spatial profiles which result from the com-
bination of propagation and temporal growth. A healing
region near the end walls is caused by the reAection of the
TW there [11,17,20]. The wave-number profiles also ex-
hibit strong gradients near the end walls but are fiat and
equal near the center of the cell.

The linear TW state in Fig. 1 is a transient whose
growth rate has been reduced to zero by setting the Ray-
leigh number exactly equal to the threshold for linear
growth. If the Rayleigh number is now increased above
this threshold, this linear transient will evolve into a
weakly nonlinear state. In general, the instantaneous am-
plitude and wave-number profiles observed in weakly
nonlinear states are similar to the linear profiles shown in
Fig. 1; in particular, roughly exponential spatial ampli-
tude profiles are common (see for example, the blinking-
state amplitude profiles in Refs. [8,17] or the repeated-
transient-state profiles in Fig. 9 below). However, unlike
the case of the neutrally stable linear state of Fig. 1, the
wave-number and amplitude profiles seen in weakly non-
linear states exhibit strong time dependences. It is the
sensitive dependence of this nonlinear spatiotemporal be-
havior on the aspect ratio I „ that is the subject of this
paper.

As seen in Fig. 2, this aspect-ratio dependence is exhib-
ited by the first weakly nonlinear state seen above onset.
Here, I plot the image intensity at one point in the cell as
a function of time for many different aspect ratios. All of
these time series were acquired in the I =3.00 cell, at
the same distance above onset: e=3X10 . The data
are arranged by writing the aspect ratio I „as the sum of
an integer part n and a fractional part 6I =I —n. The
three different frames contain data for different values of
n, and the vertical position of each time series represents
the value of 6I . Arranged in this manner, the data clear-
ly show an approximately periodic dependence on I
with period unity. Pure blinking states, which are
characterized by a regular, strong modulation of image
intensity, are seen only in narrow bands of aspect ratios
centered at 5I =0.63. Repeated transients, recognized
by a smooth, slow increase in image intensity, followed
by a saturated period, and then a sudden collapse, are the
first nonlinear TW state seen for 5I -0.13. In between
these values, the dynamics exhibit features of both kinds
of state, with the repeated-transient character actually
dominating for most values of I . In line with the trend
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FIG. 2. The image intensity measured at a single spatial
point in the 1 ~

=3.00 cell is plotted as a function of time for
e=3X10 for several diFerent cell lengths I . The three
frames contain data for which the integer part n of I is
difFerent, while the vertical axis shows the fractional part
61 =I —n. Thus, for example, the bottom-left time series is
for I =17.00, while the top-right time series is for I =15.75.
Pure blinking states, which exhibit regular modulations in im-
age intensity, are seen only in a narrow range of 6I centered
around 51 =0.63. At most other aspect ratios, the state has
more of a repeated-transient character.

shown in Fig. 2, the first state seen above onset at
I „=20.79 was also a blinking state —see Fig. 10(b)
below.

The behavior shown in Fig. 2 is representative for cells
of moderate length. The authors of Ref. [15] observe
more complex dynamics near onset for very long cells:
I -45. At I —10 and I =4.90, as reported in Ref.
[8], the first state above onset also depends sensitively on
I „, but the distinction between states seen at I" =9.75
and 10.00 cannot be characterized as clearly as that seen
in Fig. 2. The aspect-ratio dependence shown in Fig. 2 is
also observed in the I =4.90 cell. However, the values
of 6I at which the different states are seen depends on
the cell width. For I =3.00, blinking states are seen at
5I =0.63, while for I =4.90 blinking states are seen at
51 =0.25 (see Fig. 7 of Ref. [8]). This dependence on
cell width is discussed in greater detail in Sec. IV below.
In contrast to the repeated-transient states reported for
I =4.90 in Ref. [8], the fiow patterns are truly one di-
mensional for I =3.00. The two-dimensional structure
seen in the wider cell, characterized as a "tearing" of the
convective pattern in Ref. [8], is not seen in these one-
dimensional patterns and thus appears to be irrelevant to
the physics of the repeated-transient state.

It is important to note that pure blinking states are ob-
served at values of I in both cells at which the linear
TW's seen exactly at onset exhibit strong, persistent
modulation due to the interference between adjacent res-
onant modes [16]. At the aspect ratios at which
repeated-transient states are observed, this linear modula-
tion is only observed, if at all, as a rapidly decaying tran-
sient at onset. Apparently, despite the quantitative
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FIG. 3. The image intensity measured at a single spatial
point in a cell of dimensions 4.90X 16.75 is plotted as a function
of time for diA'erent values of the Rayleigh number: (a)
e =0.0006; (b) e=0.0008; (c) @=0.0015; (d) @=0.0030; (e)
@=0.0105; (f) e =0.0111. The repeated-transient states seen at
the lowest values of e [(a), (b)] give way at higher e to blinking
states [(c), (d)] whose period grows quite long at the highest
values of e shown [(e), (f)] and diverges at e'-0.012.

differences in the behavior caused by the width of the
cell, the resonance condition which determines the wave
number of linear TW's also plays an important role in the
evolution of the weakly nonlinear state. We will see
below that this is the key to the difference between blink-
ing states and repeated transients.

Repeated-transient states are only observed in a nar-
row range of Rayleigh number. This is illustrated in Fig.
3, where time series of image intensity are shown for
difterent values of e in a cell of size 4.90X16.75. As
shown by the curves labeled (a) and (b), the first state
above onset is a repeated transient. Curve (b) shows that
the repeat time in this state can be variable —this is dis-
cussed below. Pure repeated-transient states are seen for
@80.0010. As shown in curves (c) and (d), the signal
starts to acquire the character of a blinking state as the
Rayleigh number is increased above e -0.0015. At
higher e [curves (e) and (f)], blinking states of increasing
modulation period are observed, as documented in Refs.
[8—10].

Figures 4 and 5 show the dependence on e of the
modulation times ~,d of the weakly nonlinear states ob-
served in the I =4.90 cell for I =16.75 and 16.25, re-
spectively. For blinking states, r,d is just the modula-
tion period, while, for repeated-transient states,
represents the average time between the sudden decreases
in amplitude that mark the end of each "repeated tran-
sient. " ~,d is normalized by the oscillation period ~o of
the linear TW's seen exactly at onset. The time-series
data in Fig. 3 are represented as some of the data points
in Fig. 4. The repeated-transient states observed below
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e-0.002 at I „=16.75 are shown as the diamonds in Fig.
4. These modulation periods are quite variable from
transient to transient, as shown by the error bars, and
they appear to diverge as e is reduced to zero. It is worth
noting that this variability is far in excess of what would
be caused by the measured temporal fluctuations in e,

FIG. 4. The modulation period of the weakly nonlinear
states observed in a cell of dimensions 4.90X 16.75, normalized
by the oscillation period of the linear state seen at onset, is plot-
ted as a function of the distance e above onset. The circles
represent blinking states, and the diamonds represent repeated-
transient states. Repeated transients are seen only at low values
of e, and their modulation period diverges as e is reduced to
zero. The modulation period of the blinking states seen at
higher e diverges as e is increased. The error bars in this graph
and Fig. 5 represent states in which the modulation period
varied in time.
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FIG. 5. The normalized modulation period of the blinking
states observed in a cell of dimensions 4.90X 16.25 is plotted as
a function of e, as in Fig. 4. At this aspect ratio, only blinking
states are observed. Their modulation period diverges as e in-
creases, as in Fig. 4.
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TIME (1000sec)

FIG. 6. Evolution of the TW pattern in one cycle of a
repeated-transient state observed at e=5X10 in a cell of di-
mensions 3.00X17.10. (a) Time series of the image intensity
measured at a single spatial point near the left edge of the cell.
Smooth growth followed by modulations and sudden decay are
observed. (b) The spatially averaged left- and right-TW ampli-
tudes, as computed from complex demodulation of the shadow-
graph data, are shown as the dashed and solid curves respective-
ly. Initially, both components grow smoothly. They then begin
to oscillate out of phase and then decay. As discussed in Ref.
[17], the initia1 slight diff'erence between the two wave atnpli-
tudes may be caused by a small asymmetry in the experimental
cell. (c) The wave numbers of the left- (dashed) and right- (solid)
TW components, as measured in the center of the cell, are
shown as functions of time. Initially, both wave numbers are
constant. They then increase slightly and oscillate out of phase
as the amplitudes grow, go unstable, and decay. The loss of one
wavelength in the left-TW component is seen as an abrupt drop
at time t =44000 sec.
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even given the strong dependence of ~,d on e at the
lowest values in the graph. Because of this variability, it
is not possible to deduce the functional dependence ofr,d on e, but these data are not inconsistent with an e
dependence.

Above e-0.002, the repeated-transient states give way
to pure blinking states at I =16.75, as shown by the cir-
cles in Fig. 4. The modulation period in this state
diverges as e is increased to about 0.012, leading to a
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FIG. 7. Evolution of the TW pattern in two cycles of a blink-

ing state observed at e = 3 X 10 " in a cell of dimensions
3.00X 17.63. (a) Time series of the image intensity measured at
a single spatial point near the right edge of the cell. A smooth,
complete modulation of the signal is observed. (b) Temporal
evolution of the spatially averaged left- and right-TW ampli-
tudes. The modulations in the time series in (a) correspond to
an oscillation of the wave amplitude back and forth between the
two TW components. (c) The spatially averaged wave numbers
of the left- and right-TW components are shown as functions of
time. Both wave numbers oscillate weakly in phase with the
amplitude modulation. The right-TW component gains and
then loses one spatial wavelength once per modulation cycle.
The total round-trip phase remains constant, modulo 2~, during
this run.

stable confined state [8—10,21]. This behavior matches
that seen for I „=16.25, where blinking states are seen
all the way down to onset (Fig. 5). This divergence has
been explained using the marginal-stability hypothesis in
Ref. [10]; indeed, the data in Fig. 5 appear in Fig. 1(b) of
that work.

Figures 6 and 7 illustrate the detailed differences be-
tween the Aow patterns in the repeated-transient and
blinking states. Figure 6(a) shows the single-point
image-intensity time series for a single cycle of a
repeated-transient state observed in the I ~

=3.00 cell at
@=5X 10 . The characteristic slow growth, near satu-
ration, destabilization, and collapse are plainly seen in
this graph. These features are also evident in Fig. 6(b), in
which the spatially averaged left- and right-wave ampli-
tudes are plotted as functions of time. During the initial
growth of this transient (t ~ 30000 sec), the ratio of the
two wave amplitudes is constant. The pattern in this
phase is the same single-mode, counterpropagating TW
pattern seen in the linear state exactly at onset [17,19],
and the duration of this smoothly growing phase is in-
versely proportional to e. Above a certain amplitude,
however, the amplitudes of the left- and right-TW's begin
to oscillate out of phase with each other, with a period of
about 5000 sec. As in the blinking state, the likely dom-
inant cause of this oscillation is the stabilizing nonlinear
interaction between the two TW components. After this
oscillatory phase, whose duration is variable from tran-
sient to transient, the How pattern decays abruptly, and
the growth starts again.

Figure 6(c) shows the time evolution of the left and
right wave numbers measured in the center of the cell
during this run. At the low initial wave amplitudes, the
two wave numbers exhibit spatial profiles similar to those
seen in Fig. 1, are approximately constant in time, and
have values in the center of the cell of approximately
2.90. As the TW amplitudes increase, the wave-number
profiles begin to grow nonuniform, with high-amplitude
regions exhibiting higher local wave numbers. This evo-
lution causes the center wave numbers plotted in Fig. 6(c)
to increase. This behavior is apparently caused by a non-
linear dependence of wave number on amplitude and is
clearly seen in the blinking state in Fig. 7(c) as well.
Then, coincident with the onset of the oscillations of the
TW amplitudes (time r -35 000 sec), the local wave num-
bers also begin to oscillate, although these oscillations are
found to cancel out when the total round-trip phase of
the TW is calculated. Note in Fig. 6(c) that the left wave
number, shown as the dashed curve, exhibits a sharp
drop at t=44000 sec. The amount of this sudden de-
crease is equal to the wave-number difference b k between
two adjacent resonant modes in this cell. This wave-
number drop corresponds to a spatiotemporal defect in
which one pattern wavelength in only the left-TW com-
ponent is abruptly lost. The right-TW component also
exhibits several spatiotemporal defects during this run,
but the right-TW defects happen to occur far from the
center of the cell and are thus not seen in Fig. 6(c). Spa-
tiotemporal defects are also seen in the individual TW
components in blinking states —see Ref. [17] and Fig.
7(c).
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I believe that the behavior of the wave-number profiles
contains the key to the physics of the repeated-transient
state and the difference between this state and the blink-
ing state. The wave number increase seen in Fig. 6(c) is
numerically small, but it is not negligible compared to the
wave-number difference hk between adjacent modes. Of
course, it is the round-trip phase of the TW which deter-
mines the stability of the system against destructive in-
terference, not the local wave numbers. The round-trip
phase in this run was carefu11y calculated using the full
demodulated wave-number profiles and found to increase
by 0.4 rad during the growing-amplitude part of this run.
Thus, because of the nonlinear dependence of the wave
number on the TW amplitude, the growth of the ampli-
tudes shifts the pattern out of resonance, and this appears
to cause destructive interference that is responsible for
the ultimate decay of the state.

The exact history of the pattern during its dephasing
and decay is highly variable from transient to transient,
and this suggests why the modulation period in the
repeated-transient state is so erratic. This can be clearly
seen in curve (b) of Fig. 3. The fourth collapse in this se-
quence brought the signal to much lower amplitude than
the previous three transients (compare the amplitudes at
times 20 and 30 h). Thus, the system took much longer
after that episode to grow back up to a nonlinear ampli-
tude, even though the growth rate at small amplitudes is
the same throughout the run.

Because the stability of the TW pattern is so sensitive
to dephasing, it makes intuitive sense that the destabiliza-
tion and collapse that are the signatures of the repeated-
transient state should be seen at almost all aspect ratios.
However, the experiments show that, if the aspect ratio is
tuned exactly right, the system can find a state just above
onset in which the dephasings of the opposite TW com-
ponents exactly cancel, so that the total round-trip phase
is constant, and the system remains in resonance. This is
the blinking state. Figure 7 shows the temporal evolution
of this state. As seen in Figs. 7(a) and 7(b), the TW am-
plitudes oscillate regularly, with a period of 8000 sec-
comparable to the oscillation period in the high-
amplitude phase of the repeated-transient state. As docu-
mented in Refs. [8,9,17], the alternation of TW amplitude
between the two components seen in Fig. 7(b) corre-
sponds to a "blinking" of the pattern back and forth
across the experimental cell.

Figure 7(c) shows that the spatially-averaged wave
numbers also oscillate in the blinking state. As in the
repeated-transient state, higher wave numbers coincide
with higher amplitudes in this state. Observe that the
sum of the spatially averaged left- and right-TW wave
numbers, which is proportional to the round-trip phase of
the pattern, remains constant during the run, except for
phase jumps of 2~ caused by spatiotemporal defects,
which appear as regular pulses in the right-wave-number
signal. These defects do not affect the round-trip phase
of the pattern, modulo 2~. Thus, despite the nonlinear
dependence of wave number on TW amplitude, the blink-
ing state remains continually in resonance and is thus
stable.

While the nonlinear dependence of the wave number

on the TW amplitude seems to play an important role in
the physics of the repeated-transient state, the nonlinear
competition between the left- and right-TW amplitudes
that is assumed in the model of Ref. [11]is still an impor-
tant effect. I believe that the similarity of the oscillation
periods in the blinking and repeated-transient states—
8000 and 5000 sec, respectively —is a sign of this.
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FIG. 8. Lissajous plots of the spatially averaged TW ampli-
tudes for three weakly nonlinear states. (a) The blinking state of
Fig. 7, with I =17.63 and e=3X10 . The curve forms a
figure 8, representing a nearly periodic repulsion from the
dashed equal-amplitude line. (b) The repeated-transient state of
Fig. 6, with I, =17.10 and e=5X10 . The arrowheads show
the direction of time. The state initially grows up along the
equal-amplitude line and is then repelled from it, decaying back
down to small amplitude, while oscillating back and forth
across the line. (c) An irregular repeated-transient state, with
I „=17.24 and e=7X 10 . The first collapse is interrupted by
a sudden amplitude burst and decay, accompanied by crossings
of the equal-amplitude line. The growth and repulsion from the
line then start again.
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Another way of highlighting this competition is to plot
the spatially averaged left- and right-TW amplitudes
against one another, making a Lissajous pattern, as was
done in Ref. [17]. This is shown for three different weak-
ly nonlinear states in Fig. 8. Figure 8(a), taken from Ref.
[17], shows the plot for the blinking state of Fig. 7. The
curve exhibits nearly periodic oscillations in the form of a
figure 8, representing a regular exchange of wave ampli-
tude between the left- and right-TW components. This
figure-8 shape was also observed in numerical integra-
tions of a generalized GL model in Ref. [22]. The curve
in Fig. 8(a) appears to be repelled from the equal-
amplitude line [dashed line in Fig. 8(a)]. As pointed out
in Ref. [17], this repulsion is a sign of the nonlinear com-
petition between the two TW components and is a hall-
mark of all weakly nonlinear T& states.
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Figure 8(b) shows the repeated-transient state of Fig. 6
in the same representation. Here, the arrowheads indi-
cate the direction of increasing time. Initially (before the
point labeled a), the state moves out along the equal-
amplitude line, presenting a pattern of counterpropagat-
ing, linear TW s which grows up with no change in spa-
tial structure. Above a certain amplitude, however, the
pattern loses stability, and the curve is repelled from the
equal-amplitude line [moving to point b Fig. 8(b)]. The
collapse of the repeated-transient state is accompanied by
an exchange of amplitude between the two TW com-
ponents, as represented by the oscillations of the curve
back and forth across the equal-amplitude line, between
the points labeled b, c, and d. This can also be seen
directly in the spatial profiles of the left- and right-TW
amplitudes. The amplitude profiles corresponding to the
labeled points in Fig. 8 are shown in Fig. 9.

The irregular modulation period observed in the
repeated-transient state was associated above with a sen-
sitive dependence of the stability of the TW pattern on
the round-trip phase. As shown in Fig. 8(c), this is
reAected in erratic dynamics during the collapse of the
TW pattern. In this run, the amplitudes initially grow up
along the equal-amplitude line and then collapse, as in
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FIG. 9. The spatial profiles of the left-TW (dashed) and
right-TW (solid) amplitudes are shown for the points marked
a —d in Fig. 8(b). The decay of this repeated-transient state is
accompanied by the exchange of wave amplitude back and forth
between the two TW components.

FICs. 10. The time evolution of the image intensity measured
at a single spatial point is shown for two experiments in which
linear TW's evolved into blinking states. (a) r =1S.7S. In this
run, the linear state was held exactly at onset for such a long
time that all linear modes but one decayed to zero amplitude.
The increase in e to 3X10 at time t =28000 sec was followed
by growth, saturation, oscillations, and abrupt decay, exactly as
in a repeated-transient state. The system then evolved into a
blinking state. (b) I"„=20.79. As can be seen at the beginning
of the graph, this run began with strong modulation due to the
interference between adjacent linear TW modes. The system
was held at onset until t =200000 sec, which was not long
enough for the weaker linear mode to decay completely. The
subsequent increase in e to 3 X 10 resulted in an almost direct
transition to the blinking state.
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Fig. 8(b). Here, however, the curve makes an additional
oscillation across the line, accompanied by a burst in am-
plitude, before finally decaying to small amplitude and
slowly growing back up again.

Figure 10 shows a final observation concerning the ini-
tial evolution of linear TW into weakly nonlinear states
upon increasing the Rayleigh number just above onset.
As can be seen in the final state in the two parts of the
figure, both experiments were performed at aspect ratios
for which blinking states are the first nonlinear state
above onset. The di6'erence between these two experi-
ments is that the run in Fig. 10(a) was begun by waiting a
very long time at small amplitude near onset, so that all
linear modes except one had decayed away before the
nonlinear state was created. The system was also held at
onset very long time in Fig. 10(b), but not long enough
for the beats between adjacent linear modes to decay
completely. Figure 10(a) shows that, even at an aspect
ratio for which the final state is a regular blinking state,
the natural nonlinear evolution of a single linear mode is
one cycle of the repeated-transient state. After the first
collapse of this state at time ( =40000 sec, the system
evolves into blinking (the same evolution can be seen for
1,=16.63 in Fig. 2). By contrast, in Fig. 10(b), when a
second linear mode is present in the initial linear state—
even at small amplitude —the system evolves almost
directly into blinking. The initial linear state in Fig. 10(b)
already exhibits blinking of the TW amplitudes, with a
spatially uniform wave-number profile [16]. The only ad-
justment required to form the nonlinear TW pattern is
for the modulation to deepen and for the TW amplitudes
to grow. This in turn causes the initially uniform wave-
number profiles to be modulated as in Fig. 7(c).

IV. DISCUSSIQN

The experiments reported in this paper show that, for
small ~P, the natural evolution of single-mode, linear,
counierpropagating TW's just above onset in a rectangu-
lar cell of moderate length consists of slow growth, satu-
ration, destabilization, and collapse back to small ampli-
tude. At most values of the aspect ratio I, this process
repeats irregularly, making a "repeated-transient" state.
To obtain a regular blinking state close to onset, careful
tuning of the cell length is required. Above a certain
threshold, this tuning is no longer necessary to get a
blinking state. These are the bare experimental facts
which lack a theoretical explanation.

The nonlinear evolution of the TW phase field seems to
be the key physical ingredient that needs to be added to
theories of weakly nonlinear TW convection to account
for these observations. The initial destabilization of the
intermediate saturated TW in the repeated-transient state
appears to be caused by the real nonlinear competition
between the left- and right-TW amplitudes. However,
this alone does not cause the sudden collapse of the wave
amplitude, as shown by the existence of regular blinking
states in narrow ranges of I . I have presented evidence
that the wave number of the pattern depends nonlinearly
on the TW amplitude in both states. The dephasing of
the pattern that this dependence causes at high amplitude

appears to be the true cause of the abrupt collapse of the
pattern in the repeated-transient state. This phase argu-
ment suggests why repeated-transient states are seen for
most aspect ratios and why the repeat times in this state
are so irregular.

Viewed in this context, regular blinking states are very
special solutions to the equations which govern this sys-
tem. SuKciently close to onset, the precise tuning of cell
length that they require is necessary for the nonlinear
phase shifts in the oppositely propagating TW to cancel
exactly, so that the pattern remains continually in reso-
nance. At aspect ratios where blinking states exist close
to onset, they are quite robust: Even if the system is
prepared in a single linear mode, so that the first non-
linear event in a run is a transient of the type seen in
repeated-transient states, the system starts to blink im-
mediately after the first collapse in TW amplitude.

Judging from the single-spatial-point image-intensity
time series in Figs. 2 and 3, repeated-transient states ap-
pear to be similar to the "dispersive chaos" seen in annu-
lar convection cells under similar experimental condi-
tions [13]. Both states are seen just above onset and con-
sist of slow, linear growth followed by an abrupt collapse
in TW amplitude. However, this resemblance is
superficial. Dispersive chaos can be observed in unidirec-
tional TW states, where the nonlinear competition be-
tween oppositely propagating TW's is irrelevant, and
dispersive chaos has been shown to be caused by strong
nonlinear dispersion [13,14]. Repeated-transient behav-
ior, by contrast, appears in manifestly counterpropagat-
ing states only, and I have suggested that the oscillations
seen in the intermediate, nearly saturated state that pre-
cedes the abrupt collapse are evidence of real nonlinear
competition between left- and right-TW amplitudes. This
being said, it may still be that nonlinear dispersion is an
important part of the physics of repeated-transient states,
since this eQect couples TW amplitude and phase. This is
discussed below.

Given the importance of resonance e6'ects and the pos-
sibility of computing spatial wave-number profiles from
shadowgraph data, it is very tempting to try to draw
quantitative conclusions from the data about the relation-
ship between the observed TW wave numbers and
theoretical predictions concerning linear TW's [23] and
modulational instabilities [24]. For example, it would be
quite useful to insert the wave numbers k„measured in a
nonlinear state into the resonance condition,

k„l +P, =nrem

(with P„ the phase shift of the TW on reflection from the
end walls and n the mode number) and deduce the value
of P„. One would also like to compare the wave number
of a nonlinear state with the theoretically computed
linear critical wave number k„as was done by Fineberg,
Moses, and Steinberg [9]. However, this kind of under-
taking is very hazardous, for several reasons. First, the
wave-number profiles in both linear and weakly nonlinear
TW states vary in space as well as in time, with especially
strong spatial variations near the end walls [17]. Thus,
the wave number k„of the nth mode is not well defined.
Because of this, the resonance condition must be rewrit-
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ten in terms of a round-trip phase [or a spatially averaged
wave number, as in Fig. 7(c)]. This round-trip phase is
quite sensitive to small distortions and computational er-
rors, so that even this quantity cannot be computed very
accurately. (Fortunately, these errors affect the round-
trip phase in the same way in the middle of the run in
Fig. 6 as they do at the beginning, so that the statement
that the nonlinear wave-number dependence causes a
round-trip phase shift by 0.4 rad is fairly accurate. )

Not only is the wave number poorly defined in these
states, but the linear critical wave number k, is also very
difficult to determine. k, is quite sensitive to the width of
the cell, even at I ~

=5 [25]. Thus, calculations of k, for
I = oo [23] are not a useful guide in these experiments.
It is for this reason that linear mode beating and blinking
states just above onset are seen at such different values of
61 for the two values of I „ in these experiments. In ad-
dition, even the experimentally observed wave number of
linear TW's may not bear a straightforward relationship
to the true value of k, . In Ref. [16], we analyzed per-
sistent beating caused by interference of adjacent linear
modes by expanding the linear part of the GL equation in
powers of I '. To first order, we found that persistent
beats between modes n and n + 1 are observed when the
aspect ratio is tuned to a value I „ for which
(k„+k„+,)/2=k, . Since repeated-transient states are
observed for I"„-I„——,', this appears to mean that the
linear wave number is close to k, for aspect ratios at
which repeated-transient states are observed. However,
terms encountered at order I in the expansion of the
GL equation have the effect of introducing an extra phase
shift into the formula for I „, so that persistent beating
between linear modes may actually be happening at as-
pect ratios where the linear wave number is much closer
to k, [26]. Thus, without extensive measurements of
linear mode beating over a range of cell lengths, the
linear critical wave number can be quite uncertain. For
this reason, I have not phrased any of my interpretation
of repeated transients in terms of quantitative compar-
isons with linear or nonlinear theories of laterally infinite
TW's, and I think that any conclusions based on such
comparisons are as yet unreliable.

Given that quantitative wave-number measurements
are not a useful guide to the physics in this system in the
sense just described, it is natural to ask whether there are
any theoretical approaches which could predict the prop-
erties of repeated-transient states in a qualitative manner.
There are several avenues which have been explored.
Cross [11]has shown numerically that a supercritical GL
model of real TW amplitudes in a finite container with
real coefficients can exhibit blinking states. The sequence
of blinking states seen in Ref. [11] matches the experi-
mental observations in Refs. [8,9]. The dynamical behav-
ior in this model is caused by advection, end wall
reAections, and the nonlinear competition between oppo-
sitely propagating TW components. Because the TW
fields in this model are strictly real, they cannot exhibit a
spatiotemporally varying wave-number profile or any sen-

sitivity to small changes in aspect ratio. However, both
of these effects are possible if the end wall reAection
coefFicients are made complex, even if the coefficients in
the GL equation remain real. In this case, the TW fields
must also be complex, and the system acquires a round-
trip phase. However, the nonlinear dependence of wave
number on amplitude has not been explored in this mod-
el, and preliminary numerical work has revealed no sensi-
tive dependence of the TW state above onset on the as-
pect ratio [27).

It is known that, for the fluid used in the present
experiments, the nonlinear frequency-renormalization
coefficient in the complex GL model of this system is
very large [13,14]. It is this fact which is responsible for
the observation of "dispersive chaos" in long, annular
convection cells [12—14]. This coefficient is set to zero in
the real-coefficient, complex-field model outlined in the
previous paragraph. If this model still fails to exhibit
repeated-transient solutions, an obvious next step would
be to include the nonlinear frequency renormalization
term, since this term couples the TW amplitude and
phase.

Dangelmayr, Knobloch, and Wegelin [28] have also
studied weakly nonlinear TW patterns in finite con-
tainers, this time using a multiscale expansion to produce
exact, small-amplitude solutions to the complex GL
equation. They also see a sequence of blinking states near
onset, and they find a unit-period dependence on the as-
pect ratio. However, repeated-transient states have not
been seen explicitly in this work.

There is another extension of the GL model which
might introduce a sensitivity to cell length: the inclusion
of nonadiabatic effects. Normally, the GL model is de-
rived using a separation-of-scales analysis in which all
structure on length scales comparable to or smaller than
the pattern wavelength are averaged away. In a finite
system, however, such structure may not average exactly
to zero. Bensimon, Shraiman, and Croquette [29] have
shown how such nonadiabatic effects can be introduced
into the GL equation as a small perturbation, and they
discussed the conditions under which this could cause
pinning of fronts of TW's. It is not known, however,
whether such effects would cause a sensitive dependence
of dynamics on the length of a rectangular convection
cell.

In summary, the key to the repeated-transient state ap-
pears to lie in the nonlinear coupling between the ampli-
tude and phase fields. There are several ways in which
this effect can be introduced into the real GL model that
is often invoked to explain the dynamical states seen in
these experiments. I hope that the careful measurements
presented in this paper will encourage theorists to pursue
these directions.
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