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Differential condition of thermodynamic consistency as a closure
for the Qrnstein-Zernike equation
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The differential condition of self-consistency relating the thermodynamic functions and their deriva-
tives locally at a studied point of the phase diagram has been suggested as a closure for the Ornstein-
Zernike {OZ) equation. This produces an infinite set of OZ-like equations together with functionals-
these are conditions to determine exact values of correlation functions and bridge function. To solve the
problem an efficient method was developed that allows one to obtain not only 14 virial terms for a hard-
sphere Quid {low-density limit) but the equation of state at high density with good accuracy.

PACS number{s): 61.20.Gy, 05.70.Ce, 05.70.Fh

INTRODUCTION

Gibbs's distribution is known to generate the infinite
hierarchy of Bogolyubov-Born-Green-Kirkwood- Yvon
(BBGKY) equations for one-particle distribution func-
tions which can be rigorously transformed into the
Ornstein-Zernike (OZ) equation [1,2]. However, the OZ
equation contains not only the radial distribution func-
tion g (r) but also a bridge function 8 (r) (r is the distance
between the particles). The latter is given by an infinite
sum of irreducible diagrams —the remainder of the
senior distribution functions sequence removed from
BBGKY. But in practice it is impossible to obtain 8 (r)
by means of calculating these diagrams. So, the OZ equa-
tion determines the relation between two unknown func-
tions g (r) and 8 (r), which is why it can be solved only in
combination with an additional equation, called the clo-
sure equation.

In the theory of liquids, the closure equation is defined
as a function 8 =8(g(r)), and its concrete expression is
selected on the basis of diagram analysis and partial sum-
ming of these diagrams. The closure equation incor-
porated into the OZ equation leads to the well-known in-
tegral equations of liquid-state Percus- Yevick (PY),
hypernetted chain (HNC), or some other approximation.
These approximations are quite satisfactory above the
critical point, but hardly applicable for dense systems,
lower temperatures, and phase equilibrium problems.
Moreover, the replacement of real B(r) by 8(g (r)) in-
volves an unknown error, and the accuracy of the in-
tegral equation can be verified only by means of compar-
ison with the numerical experiment, which makes the
theory semiempirical.

The approach called reference HNC (RHNC) was re-
ported in [3]. According to this method [4], the condi-
tion of thermodynamic consistency in the form of a func-
tional I(p)=I[g,B]=0 is taken instead of the closure
function 8(g(r)). The unknown bridge function

8(r,p, O) (p is the density and 8 is the temperature) for
studied systems is replaced by BHs(r, pHs) known from
Monte Carlo hard-sphere (HS) simulations [5]. The refer-
ence system density pHs is fitted to satisfy I(p)=0. The
RHNC results are better than in the method of integral
equations, but they are still insufficient [I]. It has been
mentioned above that the uncertainty of the bridge func-
tion approximation is not a priori available.

Using BHs instead-of B means that the thermodynamic
consistency functional 1(p,B) is always minimized in the
restricted set of the unique basis function. To enlarge the
supposed class of bridge functions we assume
8 =g;a;(p)y, (p, r), where tp;(p, r) is a complete system of
basis functions and a, (p) are unknown coefficients which
are to be found using the condition of
~I(p, g;a;(p)p;(p, r)} as a minimum. Generally speak-
ing, this procedure permits us to find the exact g (r, p, O)
and 8 (r, p, O) values.

Total thermodynamic consistency demands not only
the equality of virial and compressibility pressures, but
all their derivatives with respect to p and 0 have to be
equal at any point:

gk + 1p vir g k + 1p compr

a~'ae' ap BO'

This condition brings us to an infinite sequence of ther-
modynamical consistency functionals Ik 1

=0 and an
infinite sequence of corresponding OZ equations (see Sec.
I). In this paper we have derived the set of basic expres-
sions (Sec. I) and have worked out a method of solving
the problem at any density. The hard-sphere Quid was
taken to demonstrate the eSciency for the examples of
low (Sec. II) and high (Sec. III) densities. The method al-
lowed us to evaluate up to 14 virial terms and the equa-
tion of state for dense fluids.
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I. THERMODYNAMIC CONSISTENCY CONSTRAINT

Generally, three thermodynamic average values can be
determined [6] if we know the correlation functions C(r)
and h (r). The virial theorem gives pressure as

P(p)=p8 1 — r g(r, p)4mr drp ~ d@(r)

Isothermal compressibility is

It should be pointed out that Eqs. (4} and (6) are true at
any density and temperature point where the equilibrium
Quid exists. This means that all their higher derivatives
with respect to p and 0 are also equal to zero. The corre-
lative functions for examined HS Auids are independent
of temperature, and (6) is always satisfied. For this
reason we have omitted its further consideration.

Integral (4) contains three unknown functions C, h, and
Bh /Bp. The first two satisfy the OZ equation:

BP
~o (p}=p

Bp

r

=pO 1 p—f C(r,p)4vrr dr
0

h (r&2)=c(r&&)+pc(ri3)oh (r23) (7)

Internal energy of a system is

p+ a)
E = 'SN+ — f @(r)g(r,p)4~r dr,

2 0
(3)

where o is a convolution operator symbol. Bh /Bp can be
found by solving the OZ equation di6'erentiated with
respect to p [8]:

where p =N / V is the density, X is the total number of
particles in a system, O=kT is the temperature, 4&(r) is
the pair interaction potential, g (r) =exp[ —(N/0)+co] is
the radial distribution function, co(r) is the thermal po-
tential, h (r)=g(r) —1 is the total correlation function,
C(r)=h (r) —y(r) is the direct correlation function, and
y(r) =co(r)+B (r), which does not have any special name.

It is obvious that any thermodynamic characteristic
calculated from (1)—(3) should be the same independent
of the evaluation formula. The coincidence among these
three values can be estimated by two identities. The first
one is the pressure compressibility consistency expres-
sion, which we get by differentiating (1) with respect to p
and comparing the result with (2):

ah„aC„aC„
+p

~
oh23+

~
o C)3

p p p p

+C23 h3i . (8)

BI(p) f Bc(r)
Bp 0 Bp

In (8) we have another unknown function Bc/Bp, and the
set of (4), (7), and (8) still remains unclosed.
Differentiating (4) with respect to p we come to the
second order-consistency constraint for (8):

I(p)= f C(r) —2 ( )+
{} 6QH dr Qp

=0. (4)

r dN(r) Bg (r) 8 g (r)
60 dr c}p gp~

+p r dr

The second identity relates pressure to energy. It can be
derived from the thermodynamic equation [7]:

=0 P
BO 0 V

Substituting for pressure and energy in terms of (1) and
(3) we obtain the second condition,

J(p, O)= f +(r) g(r)+p
0 Bp

7 (",)(p)=p y cp!.h(", -~)
j=0

k —I

+ y CP).ag-'-~) (10)

Here we see the same situation as in the previous stage
[i.e., Eqs. (4) and (7)]. The constraint contains a higher
derivative than the corresponding integral equation, so
the next-order OZ must be included. By repeating this
process we have obtained a sequence of equations

+ g(r) 0'
r dN Bg
3 dr BO

r dr=0. (6)
together with

j=0

I(")(p)=f C("l(r}— [(2+k)g(")(r)+pg(" ')(r)] r dr=0, k =0, . . . , ce .60 dr

Here and below the superscript symbol [k] denotes the
[8 /(k!Bp")] operator.

The set of equations (10) and (11) becomes closed in an
infinite limit k ~ ao. The physical idea of (11) is the ap-

plication of total thermodynamical consistency to all
derivatives of correlation functions. It is the same as the
exact identity of curves ~(p) found from (1) and (2).
Equations (10) and (ll) cannot be solved if we have not
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closed the OZ system by the suggested above 8(r) ex-
pression,

and m~ ~ is found from the recurrence

8(ro)= g a, (p) p, (p, r) .
i=1

In this case our closure is

C(p, r) =h (p, r) ~(p—, r) g—a, (p)y, (p, r) .
i=1

(12)

k —1

h IJ]~[I —J] y[1]
k

where for each k all co[i] . co[" '] present in (15) are al-
ready known from the previous stage and the first, co, is
defined by

The differential closure form can be obtained by apply-
ing the [k] operator to (13):

~[ ]=»I[h[ ]+1][f(r)+1]} .

C["](p,r) = h ["](p,r) —~["](p,r)

—g g a,[J](p)~'" J'(p, .)
i =1 j=O

(14)

f (r) is the Mayer function exp( —4/8) —l.
To collect the complete system of (10), (14), (1S), and

(11) we have to rewrite them:

y[~](p)pyC(j]~hP —Jl +yCIJ], hP
—

~
—Jl

j=0
oo k

co["](p, r) =y'"](p, r)+ g g a;["(p)y(" '](p, r),
i =1 j=0

k —1 L h[i]~[I —i]
k

(16a)

(16b)

(16c)

I["l(p)= C["](r)— [(2+k)g[ ](r)+pg["+'](r)] r dr =0, k =0, . . . , ~ .
0 60 r

(16d)

To solve (16) we should fix a maximum number M instead
of the infinite upper limit of sum (12) and organize an
iteration process evaluating them step by step
(16a)~(16b)~(16c)~(16a) . with a,[J] values simul-
taneously satisfying (16d) for k =0, 1,2, . . . , M. Per-
forming this process, we have noted that no approxima-
tions had been used and that the problem (16) is
equivalent to the initial one. The choice of a suitable
number of basis functions allows us to solve it with any
required accuracy.

II. I.OW DENSITIKS

At lower density limits (16a) does not contain the first
sum in the right-hand side and gives us simple expres-
sions which can be solved consequently as a set of in-
tegral equations. Substituting density expansions for
correlation functions (1) and (2), (16d) can be reduced to

Bu ~g[k](1)

(o.= 1 is a particle radius) .

found from the corresponding (16a),

yI"](p)= y CIJ].hP-'-~]
j=0

To close these equations we have to choose a basis
function cp;. For simplicity we take them in the form

8 =a2(p)cu and 8 =2a (p) I exp[co(p, r )]—1 —co(p, r )]

(20)

y' '(r) = ~[ "](r)+[a2(p)~'(p, r ) ]'"l (21)

Using C["] from (16c), we have substituted it in (18),
satisfied B~+2 =BI', +2, and obtained 8&+4 with a [

For k =0 and 1 solutions of the OZ equations are in-
dependent of (20) because the second term in (21) is equal
to zero:

This is the generalization of the Martynov-Sarkisov (MS)
8 =co~/2 and the Percus-Yevick 8 =exp(co) —1 —co ap-
proximations [1]. So, the differentiated closure is

Bk are virial terms evaluated from the virial theorem and

Bi+2 —— C r dr .c 4~ [k] 2

k+2 (18)

Bk are the same terms evaluated out of the compressibili-
ty expression. The correlation function derivatives are

k =0, co[ ](r)=0, y[ l(r)=0,
h [ ](r)=C[ ](r)=f(r) .

Next, k = 1, y['l =f i3ofq3, and

(22)
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4m r
co['](r)= 3 16

3'+1
4

if r&2

r 2
2K 5 2mB = andB2 3 8 3

0 if r)2,
1,[1] [I] g [1] [1+f(r)]~[1]

C[&]=f (r)~[& 1

It gives exact consistent values for

(23)

For k =2, (19) is

yI' =cI', .hf', .

Substitution of (23) for (24) gives

(24)

2'
3

2

'2

2

15
8

47
16

3151' T 0( ( 1
8 4

129r 9r 3r 9r r 81
40 16 8 80 560 280r

2~
3

81 162r
16 40

9r r 9r
16 8

+
80

r 243
560 280r

=0, 3&r~~
~[&]=y[2] aP]~[&1'

g[2] [1+f (r)][( l a(ol )~[1] +),[2]]

I, I. &l = [2j

+[2] [1+f(r)][( i a(0] )~[1] +@[2]] y[2]

(25)

Using (25) in B4 =B„' we have found that a@=0.4172
and B4=2.594. The first two coefficients of the expan-
sion a2(p) =g;a('] 5p' are found numerically by the same
procedure as shown in Table I. The procedure con-
sidered made it possible to find 14 virial terms, evaluating
ten derivatives of correlation functions. One can see a
close correspondence of our data and the diagram virial
terms. The most important difFerence is the value of B4.
It is probably explained by the insufficiency of the a&co
function. The value a2 =0.437 was reported by Herst [9].

However, obtained small values of a("], good convergen-
cy of virial expansion, and agreement with MC data [10]
make the suggested approximation rather attractive. On
the other hand, independently of y;, absolute values of
Bk coincide with the error range. One can see that the
differences between modified MS and PY virial terms (see
Table I) are less than the differences between any of them
and the MC data. Thus, since e —1 —co —=co, the de-
cisive role is played by the co term. This result has been
obtained independently at p —+0 and corresponds to con-
sistent solution for dense HS Quid.

TABLE I. Virial terms. Bk ' denotes diagram virial terms. III. HIGH DENSITIES

g(dg)
k

4 2.6363
5 2.1242+0.001
6 1.5555+0.016
7 1.1647+0.034
8 0.707—0.884
9
10
11
12
13
14

2.5929
2.0555
1.4500
1.0089
0.6955
0.4143
0.2336
0.0693
0.0780
0.0877
0.0866

0.4174
0.0298
0.0308
0.0129
0.0114

—0.0013
—0.0042

0.0156
0.0047
0.0578
0.0285

Martynov-Sarkisov

y; = —aco
[k —4]

Percus- Yevic

2.5929
2.0268
1.4009
0.9369
0.6307
0.4004
0.2336
0.0820

0.4174
—0.0532
—0.0334
—0.0096

0.0097
0.0038

—0.0285
—0.0112

(p; = —2a (e —1 —co)
[k —4]

The exact proof of convergency for virial sum in dense
fiuids is unknown [11]. Probably the convergency density
is less than phase transition borders. In order to apply
Eq. (19) for dense systems it is important to develop a
method to avoid density expansions near p=0. An ac-
ceptable closure function should be expandable near
p=po, a2(p)=g;aP5p'. We can select y; such that the
unlinking procedure can be done by neglecting a P.
First-order expansion near po is a2(p)=az(po)+a[' 5p.
Thus the OZ equation must be solved in two close points:
po and po+ 5p, with simultaneous minimizing consistency
functionals for both of them. Scanning through density
from 0.2 to 1.0 we have found the result independent on
5p~0. 02. Exact consistency has been obtained. The
corresponding function az(p) is well fitted as
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TABLE II. Equation of state. p is the density of HS fiuid; a@ is the coefficient in (25); a[" is the
derivative of a P~ under density (25); Z, =P/pO is the evaluated compressibility factor (1) (according to
the algorithm described in Sec. III); ZMc is the compressibility factor from Monte Carlo [10] (for densi-
ties greater than 0.86, it is extrapolated); Z„„=1++„2B„p is the compressibility factor from the
virial equation of state (Bk are found by the algorithm described in Sec. II); ~, is the compressibility de-
rived from virial theorem (1); ~, is the compressibility derived from expression (2).

0.1

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

aP'

0.414
0.422
0.428
0.435
0.441
0.449
0.458
0.469
0.478
0.487

0.0965
0.0639
0.0568
0.0616
0.0763
0.0831
0.776
0.0773
0.0768
0.0757

1.239
1.553
1.966
2.515
3.253
4.259
5.649
7.606

10.423
14.583

ZMc

1.240
1.554
1.968
2.522
3.269
4.295
5.726
7.768

10.754
15.256

Zvir

1.240
1.553
1.966
2.515
3.254
4.259
5.647
7.593

10.363
14.356

pQH

1.512
2.269
3.388
5.048
7.534

11.304
17.118
26.259
40.913
65.075

PC)Kc

1.512
2.269
3.388
5.048
7.534

11.304
17.113
26.246
40.900
65.141

a2(p) =0.4135+0.039 47p+0. 03607p

(0.2 &p &0.95) . (26)

The small coeKcient for the p term confirms that first-
order expansion for a2(p) is quite suitable. Here we see
an important feature of the self-check. For example,
usage of basis y, =r' (o &r & 1.4o ) with the first-order
density expansion for coefficients a; gave results of
insufhcient quality. These results were not acceptable be-
cause of high values of coefficients a; ~ derivatives. This
is the reason why they cannot be neglected while unlink-
lng.

With p —+0, the a2 value taken from the expression (26)
(0.4135) is about the same for the virial terms evaluation
(0.417). The compressibility factor Z =P/pO calculated
in this way (see Table II) is about 0.5%, consistent with
compressibility according to Eqs. (1) and (2). The abso-
lute values are in excellent agreement with the virial
equation of state.

IV. DISCUSSION

There are two ways to evaluate the thermodynamical
functions of a liquid: the solution of integral equations
and the minimizing of free-energy functional F [g]. We
have already said that the first way is unsuitable to obtain
an exact solution. The general expression for F [g] is un-
known. Therefore while realizing the second approach
we have to involve an additional approximation [12].
Our method of thermodynamic consistency provides a set
of exact equations (16a)—(16d) instead of the approximate
expressions relating a radial distribution function and a
bridge function. These expressions are derived ab initio
and used in differential form, which makes possible local
evaluation of disconsistency. Broadly speaking, the
minimization of disconsistency makes it possible to find
an exact solution of the problem.

The method contains a number of advantages. First,
the higher the order of the derivatives in the initial equa-
tions that are taken into consideration, the more exact

solution could be obtained. Comparing them, we can find
out the accuracy of the results without using the numeri-
cal simulation data (MC or MD). Second, in our method
we replace the integral of consistency

P0
P'(po) = J [pir(p)] 'dp=P "(po) (27)

with a set of local conditions (16d). In (27) P'(p) is deter-
mined by (1). To evaluate the integral (27) it is necessary
to find a(p,. ) for 0&p; &po. In any of these points the
compressibility is determined with an error, caused by
the inexact consistency of the previous solution. While
evaluating the integral this error is inherited from the
previous points, which makes usage of (27) to obtain ac-
ceptable accuracy impossible. The equivalent expressions
(16d) are free of this shortcoming.

The bridge function plays an important role in the
theory of liquids, because it can provide information
about the accuracy of the solutions. There are only two
methods known for bridge function computation: the
direct evaluation of elementary graphs and the simulation
by means of numeric experiment. As far as we know, the
technical problems preclude obtaining B(r) by the first
way. The second method was used successfully for HS
fluid only [13]. It happened to be impossible to general-
ize this result for other potentials, because it would re-
quire time-consuming computations and accuracy of nu-
merical experiment data that could not be achieved. The
suggested method seems today the only one acceptable
for bridge function evaluation. Our preliminary results
[B (r) for Lennard-Jones systems] have shown that there
are no obstacles in principle. That is why we concentrat-
ed on the detailed study of HS Auid.

The improvement of accuracy depends on the basis
functions selection. In order to check the working ability
of our method we used a simple function taken from
well-known liquid-theory approximations. However, we
could take the complete basis of orthogonal polynomial
functions y; (r, p) in the interval [0.8;1.4], assuming
ip;(r, p) =0 and (dip, /dr) =0 for 1.4 & r The latter seems.
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to be promising due to its general form and the fact that
the HS fiuid distribution function g(r) is determined by
the values of a bridge function in the interval
a. ~ r ~ 1.4cr (for a Lennard-Jones fiuid it would be

0.8o ~ r ~ l. 3o ). The values of the bridge function for
lesser and greater distances do not inAuence the result.
Probably expanding the bridge function in this interval to
a Taylor series wi11 give better accuracy.
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