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Shadowing instability in three dimensions
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We study a nonequilibrium interface growth model that includes the nonlocal shadowing effect
in three spatial dimensions. The model is represented by a stochastic partial diAerential equation
for the local growth rate of an interface. The nonlocal eKect is modeled by a term in the growth
rate that is proportional to the local exposure angle. This leads to a shadowing instability, and the
interface develops into a mountain landscape which coarsens in time. The structure factor of the
interface shape shows a dynamic scaling form. The scaling exponents are computed.
PACS number(s): 05.70.Ln, 05.40+j, 64.60.Ht, 68.35.Fx

The physics associated with the formation and evo-
lution of dynamic structures has attracted considerable
interest in both experimental and theoretical studies [1].
In the simplest-pattern formation problems, there exists
a moving interface between two phases, a vapor and a
solid or a liquid, or two liquids, on which competing sta-
bilizing and destabilizing forces act. The stabilizing force
is usually provided by interfacial tension or stiffness, or
by surface diff'usion of particles. These tend to make the
interface smooth. The destabilizing force can be gener-
ated by, say, an incoming particle beam, or a latent heat
fIux. It is the interplay between these forces which con-
trols the dynamical evolution of the interfacial pattern.
Specific systems that have received much attention over
the last several years include viscous fingering in a Hele-
Shaw cell [2, 3], dendritic growth of a solid from a melt
[1,3, 4], and directional solidification [1]. Center to these
systems is the presence of the Mullins-Sekerka instabil-
ity that makes the advancing interface unstable against
long wavelength fluctuations [5], thus leading to the de-
velopment of interfacial patterns from the initially Bat
shape. The full dynamic evolution of an unstable inter-
face caused by Mullins-Sekerka instability in the case of
a linear Hele-Shaw flow has recently been studied [6, 7].

While interface instabilities in systems such as the
Hele-Shaw flow, dendritic growth, and directional solid-
ification have largely been understood, there are other
similar but different instabilities that happen in interface
systems far from equilibrium and have received less atten-
tion so far. Consider the following situation of particles
being randomly deposited onto a substrate for the growth
of a thin film. Since the particles arrive on the surface at
random positions, small undulations of the surface height
may occur. If the particles strike the substrate from ran-
dom angles, peaks of the surface undulation may receive
more incoming material, and thus grow faster than the
average growth rate. Meanwhile, valleys of the surface
undulation will be deprived from the material since they
are screened or shadowed by the peaks; therefore, they
grow slower than the average. This may lead to an in-
stability on the surface such that a mountain landscape
or columnar structure develops in time, and the film be-
comes extremely rough. In a recent article, Karunasiri,

Bruinsma, and Rudnick studied this shadowing instabil-
ity in the context of thin film growth by sputtering [8], in
1+ j. dimensions. In their model, the local growth rate
of the interface height h(r, t) is proportional to the expo-
sure angle A(r, (h)) (see below) that measures how much
"sky" that one can see at position r. Obviously 0 is non-
local since it is a functional of the interface shape h(r, t).
For the stabilizing effect they considered the mechanism
of surface diffusion. Finally a stochastic term is also
included which mimics all the fluctuating efFects. This
model indeed generated extremely rough surface struc-
tures which are grasslike [9].

The importance of shadowing effects in sputter deposi-
tion has previously been recognized. In a series of studies,
Krug and Meakin [10] investigated ballistic deposition
where particles move toward the growing substrate in a
direction difFerent from the normal. On the other hand,
some groups [11,12] have argued that growth in sputter
deposition proceeds according to the Huygens principle,
familiar from optics. This model is believed to be valid
for the peak region of the mountain landscape if noise is
negligible.

Recently we have extended the model of Karunasiri,
Bruinsma, and Rudnick to include the effects of desorp-
tion and lateral growth [13] and explored the possibil-
ity of studying the shadowing instability using micro-
scopic models [14]. In these studies, it was found that
the columnar structure coarsens while growing, and the
coarsening of the structure obeys a dynamic scaling in
which the power spectrum of the interface shape can be
written as

P(k, t)—:(~h(k, t)~ ) (t —t )sF(k(t —t )i'), (1)

where h(k, t) = Q, [h(r;, t) —h(t)] exp(ik r, )/L", () and
the overbar denote an ensemble average over the random
noise and space, respectively. to is some reference time
that equals zero in the studies of Ref. [13] in 1+ 1 di-
mensions. The exponent p measures the coarsening of
the structure, i.e. , the average radius of the cross section
of the columns ((t) grows as a power law ((t) ~ t". The
value of p is different for the two models studied in Ref.
[13],but is between zero and one in 1+1 dimensions. Ex-
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periments on silicon carbide films are consistent with an
exponent [15] p = 0.2 to 0.73 for high and low termper-
atures, respectively. Furthermore, if W(t) is the inter-
face width defined as W (t) = P,. [h(r, , t) —h(t')]2/L",
where d + 1 is the full spatial dimensions, the identity
W2(t) = IP(k, t)dk provides a scaling relationship be-
tween the two exponents 6 and p,

(2)

where we assumed a power law time dependence [16]
W(t) t~. This scaling relationship is indeed satisFied
by our model in 1 + 1 dimensions [13].

The purpose of this paper is to report further stud-
ies of the shadowing instability in 2+ 1 dimensions. We
are not aware of any (2+ 1)-dimensional studies in the
literature on this subject presumably due to computa-
tional difFiculties since the instability is caused by the
long-range screening effect. As we may see below the
computational effort is increased considerably compared
with that of the (1 + 1)-dimensional calculations. Our
model is represented by the following stochastic partial
differential equation for the interface height variable:

n = O.ll. From Eq. (3) we then obtain a dispersion
relation

~y = oBk —vk (5)

Thus the modes with k ( k, = nR/v are unstable
(wl, ) 0) and grow in time, whereas the modes with
k ) k, decay in time (ay ( 0) and are annealed away.
This instability results from the competition between the
desorption and shadowing effects. Away from the linear
regime, there is little hope to solve Eq. (3) analytically,
and we have thus integrated it numerically.

The numerical solution of Eq. (3) is quite tricky in 2+
1 dimensions. The difficulty comes from the evaluation
of the exposure angle A. To compute this quantity, we
have discretized Eq. (3) on an L x L grid. For each grid
point (x, y), the azimuthal angle P is also discretized into
M slices, and the polar angle e(P) is computed for each
of these slices using a method similar to that of 1+ 1
dimensions [13]. The inset of Fig. 2 is a sketch of the polar
angle 0(P, ) on the interface for a particular azimuthal
angle P, . Finally the exposure angle 0 is computed from

t
= vV' h + RA(r, (h}) + q, (3) sin I9'de',

where v and R are constants. The first term on the right-
hand side represents the evaporation dynamics that we
take as the dominant annealing mechanism for surface
relaxation. The last term is the combined eÃect of short
noise and thermal noise of the substrate, which we as-
sume satisfies a Gaussian statistics, (g(r, t)) = 0, and
(q(r, t)q(r', t')) = 2Db(r —r')6(t —t'), where D is a con-
stant. The nonlocal term RA(r, {h)) in (3) is the growth
rate at location r of the growing surface, where 0 is
the exposure angle at r (see below). For the (2+ 1)-
dimensional interface this is a solid angle. The motiva-
tion of this term is obvious: a higher location on the
interface should receive more incoming particles than a
lower location. In general, higher places correspond to
larger values of RO(r, (h)). Therefore, this term repre-
sents a simple way to mimic the shadowing effects [17].
To ensure that the total incoming particle flux is a con-
stant throughout the growth, the equation is subjected
to a constraint,

dry(r, (h)) = I" . (4)

We note that if the dominant annealing mechanism is
surface diffusion, the linear term of (3) will be —DV' h,
as discussed above and studied in Ref. [8]. Finally it
is important to note that (3) can only be used to study
interface dynamics of amorphous materials, since faceting
e8'ects are neglected completely.

To see that (3) has an intrinsic instability, a linear
stability analysis can be performed [8]. Take a ffat in-
terface which lies in the 2:-y plane and is perturbed by
a sine profile in, say the x direction, then h(r, t)
hp sin(k2:) exp(ui, t) where hp is small. For this profile
and small hp, the exposure angle A(r, (h)} can be com-
puted to be linear in hp as 0 —0 + nkhp sin(k2:), where

where 6P, = 2x/M. In our calculations, we have fixed
M to be 48. This algorithm demands a computation
of the order O(L ) for each time step of the iteration,
and this is a major limitation of the system sizes that
one can use. In particular, we have used L = 96. A
Euler scheme is used for the time integration of Eq. (3)
with a time step bt = 0.025 which we find to be small
enough for reasonable accuracy. For the data presented
below, a total of 10000 time steps were integrated with
initial interfaces being flat. For each set of parameters,
10 independent runs were averaged [18]. Finally, we note
the necessity of the constraint (4): without it the flux of
the incoming particle beam would change in time in an
unpredictable manner and is thus unphysical. In order to
let A(r, (h)) satisfy (4), we have scaled 0 by its average
value in each time step.

Figure 1 shows the interface profiles at 3500, 7000, and
10000 time steps for parameters v = 0.3, R = 1.0, and
D = 0.0005. %'ith these parameters and system size,
unstable modes are present in the system and the ini-
tially flat interface becomes unstable against small per-
turbations due to the noise term. As time increases, the
unstable modes grow and eventually dominate the noise
[13]. As a result, a mountain landscape develops with
many peaks and valleys. Due to the screening eKect
larger peaks grow faster than smaller peaks, while val-
leys grow extremely slowly since they are deprived from
the incoming particles. This process leads to a coarsening
of the structure.

The mountain landscape is exceedingly rough with
very large undulations on the interface. The roughness
can be monitored by the growth of the interface width
W(t). Similar to other unstable interfaces, such as in the
problem of viscous fingering [6, 7] or in our earlier study
on a (1+ 1)-dimensional system, here W(t) is a linear
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FIG. 3. Scaling plots of the power spec-
trum using 6 = 2.66 and p = 0,33. Data with
wave numbers n from 2 to 48 are used. The
wave vector q = (27r/L)n. Different symbols
represent different times as indicated. The
parameter v = 0.1 and tp = 47.2 for (a);
v = 0.3 and tp ——91.6 for (b). Other param-
eters are the same as those of Fig. 1. The in-
set in (b) shows the circularly averaged power
spectrum P(q, t) as a function of wave ~ector
q for different times. The peak moves to lower
values in q indicating coarsening.
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interface undulations grow faster in time. In Ref. [13]
we studied Eq. (3) with an extra term A(V'h)~ that ac-
counts for the lateral growth effects. With finite A the
coarsening exponent p = 1 in 1+ 1 dimension. We have
checked that this value drops to 0.7 with A = 0 in
the same dimension. In 2+ 1 dimensions, the linear size
of the coarsening columnar structure has a growth ex-
ponent p —0.33 + 0.02 as mentioned above, so that the
cross section of the structure grows, on average, with an
exponent 2p —0.66 + 0.04. This value being close to
that of the 1+ 1 dimension (within error) implies that
the weaker shadowing effects in 2 + 1 dimensions only
change the coarsening prefactor of the structure, not the
exponent. This is, indeed, rather surprising.

In conclusion, we have studied the consequences of long
range shadowing effects on the interfacial dynamics far
from equilibrium in 2+ 1 dimensions. Such effects are
important in determining the surface morphology in the
growth of thin films. The model we have studied is an

extension of the work of Karunasiri, Bruinsma, and Rud-
nick [8], but we have focused on the dynamic scaling be-
havior of the growing surface. We have also taken des-
orption as the dominating surface relaxation mechanism,
instead of surface diffusion. Shadowing leads to an insta-
bility on the interface such that a mountain landscape
or columnar structure develops, which coarsen in time
with a dynamic scaling. In particular, the length scale
associated with the coarsening grows with a power law in
time. This agrees qualitatively with some experimental
findings [15].
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