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Expansion into the vacuum of stochastic gases with long-range interactions
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We study the evolution of a system of many point particles initially concentrated in a small region in d
dimensions. Particles undergo overdamped motion caused by pairwise interactions through the long-ranged
repulsive r−s potential; each particle is also subject to white Gaussian noise. When s < d , the expansion is
governed by nonlocal hydrodynamic equations. In the one-dimensional case, we deduce self-similar solutions
for all s ∈ (−2, 1). The expansion of Coulomb gases remains well-defined in the infinite-particle limit: The
density is spatially uniform and inversely proportional to time, independent of the spatial dimension.
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I. INTRODUCTION

Many-particle systems with long-range interactions [1,2]
display unusual collective behaviors and fluctuations. Probing
these behaviors requires an extension of the techniques (such
as hydrodynamic limits and large deviations) initially devel-
oped for studies of systems with short-range forces.

In the present work, we consider point particles in Rd un-
dergoing independent Brownian motions and an overdamped
motion caused by the repulsive Riesz potential

V (r) = g

srs
with g > 0. (1)

When the decay exponent s is smaller than the dimension of
space, s < d , the interaction is long-ranged, viz., it dominates
diffusion for a sufficiently long time, even forever, if s < 0. In
the present work, we consider long-ranged Riesz potentials.
Brownian particles interacting via power-law repulsive forces
appear in various physical systems in soft condensed matter,
such as Coulombic and dipolar fluids [3], liquid crystals,
defects in membranes, and Marangoni flows in interfacial
science [4–7]. Non-local hydrodynamic equations governing
the evolution of such systems sometimes indicates finite-time
blowups. Such equations provide toy models of blowup phe-
nomena [8,9].

In the s → 0 limit, the Riesz potential becomes logarith-
mic,

V (r) = −g ln r. (2)

In one dimension, a gas of Brownian particles interacting
via logarithmic potential was introduced by Dyson [10] in
the context of random matrices [10,11], where eigenvalues
played the role of particles. In two dimensions, a gas of
Brownian particles interacting via logarithmic potential was
introduced by Ginibre [12] also in the context of random
matrices, with complex eigenvalues playing the role of par-
ticles [11–13]. In the Dyson and Ginibre gases, the particles
undergo an overdamped motion caused by the logarithmic
potential and are subject to Brownian noise. The Dyson and
Ginibre gases suggest exploring stochastic Riesz gases with

an arbitrary long-ranged Riesz potential and in arbitrary di-
mensions. Deterministic Riesz gases with particles moving
deterministically and interacting through the Riesz potential
are a more explored subject [14,15], but in this paper, we
consider only stochastic Riesz gases.

Apart from logarithmic gases corresponding to s = 0, sev-
eral other values of the exponent s correspond to interesting
classical models. The r−2 potential is the Calogero gas, mostly
studied in one dimension [16,17], albeit it makes sense in
arbitrary dimension d; the Calogero gas is long-ranged when
d > 2. When s = d − 2, the Riesz potential reduces to the
Coulomb potential

V (r) = g

(d − 2)rd−2
. (3)

In two dimensions, the Coulomb potential is logarithmic.
The equation of motion for the position xi(t ) ∈ Rd of the

particle with label i is

dxi

dt
= g

∑
j �=i

xi − x j

|xi − x j |2+s
+ ηi(t ). (4)

We emphasize that the system is overdamped and thus differs
from Riesz gases of Newtonian particles [14,15]. Each particle
performs an overdamped motion caused by interactions with
other particles, leading to the deterministic contribution to the
velocity, the first term on the right-hand side of Eq. (4). There
is also a stochastic contribution caused by the white noise
ηi(t ). The noises have vanishing average, are independent and
would cause each particle to diffuse with diffusion coefficient
D if it were alone, i.e., 〈ηi(t )η j (t )〉 = 2Dδi jδ(t − t ′). The
noises represent the interactions with the background thermal
bath, and the diffusion constant D is finite, proportional to
the temperature. However, according to the context, the noise
terms can have different physical interpretations: for example,
in the astrophysical literature, external noise terms are intro-
duced to model collisional stellar dynamics [18–21], and the
noise strength D is typically proportional to 1/N .

2470-0045/2025/111(6)/064109(9) 064109-1 ©2025 American Physical Society

https://orcid.org/0000-0003-3470-5095
https://orcid.org/0009-0006-1469-1465
https://ror.org/05qwgg493
https://ror.org/01arysc35
https://ror.org/058rvd314
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.111.064109&domain=pdf&date_stamp=2025-06-05
https://doi.org/10.1103/PhysRevE.111.064109


P. L. KRAPIVSKY AND KIRONE MALLICK PHYSICAL REVIEW E 111, 064109 (2025)

We shall always assume that the number of particles is
large, N � 1. In this situation, the collective behavior of the
system is well described by a continuous (hydrodynamic)
framework. The chief difference with standard hydrodynamic
equations is that the governing equations are nonlocal. The
influence of noise is limited or negligible throughout the evo-
lution, as will become clear from our analysis.

For a logarithmic potential, the interaction strength g
and the diffusion coefficient D have the same dimension
[length]2/[time]. Their relative strength is quantified by the
(dimensionless) ratio

β = g

D
(5)

playing the role of an inverse temperature [14]. For the
one-dimensional Dyson gas [10] introduced in the con-
text of random matrices, the exceptional values β = 1, 2, 4
correspond to canonical ensembles (symmetric, Hermitian,
symplectic) of random matrices [10,11,22].

Our goal is to analyze the expansion into the vacuum of
a large number of particles initially concentrated in a small
spatial region. We rely on a continuous framework, namely, on
nonlocal hydrodynamic equations accounting for long-ranged
interactions and ignoring diffusion. In one dimension, the
expansion of a long-ranged Riesz gas with s ∈ (−2, 1) can
be solved exactly. In higher dimensions, d � 2, the Coulomb
gases are readily tractable thanks to the Newton-Gauss theo-
rem. For the non-Coulombic Riesz gases, s �= d − 2, in d � 2
dimensions, the functional form of the exact solution is the
straightforward generalization of the one-dimensional solu-
tion, but the derivation is much more challenging. Further
remarks about this case are given in Sec. IV.

We now present density profiles for a few Riesz gases
with long-range potential (s < d). The common feature is that
these profiles have compact support. For the one-dimensional
Riesz gas with s ∈ (−2, 1), the density

ρ(x, t ) = Bs

gt
(L2 − x2)

s+1
2 , Bs = cos(πs/2)

π (s + 1)(s + 2)
(6)

is nonvanishing on the interval [−L(t ), L(t )], with

L(t ) =
[√

π (2 + s)2 �
(
1 + s

2

)
cos

(
πs
2

)
�

(
1+s

2

) Ngt

] 1
s+2

. (7)

For the Dyson gas (s = 0), the density profile (6) is the cel-
ebrated Wigner semi-circle (expanding in the present case
without confining potential).

For Coulomb gases in arbitrary dimension, s = d − 2, the
radius of the expanding ball is

R = (dNgt )1/d . (8)

The density profiles are uniform inside the expanding ball of
radius R(t ) and vanish outside the ball. The density of stochas-
tic Coulomb gases inside the expanding ball is remarkably
universal, viz., independent of N and inversely proportional
to time in arbitrary spatial dimension:

ρ(r, t ) = (�d gt )−1, (9)

where �d is the volume of the unit sphere Sd−1.

Intriguingly, the expansion of Coulomb gases remains
well-defined when N = ∞. For non-Coulombic stochastic
Riesz gases with infinitely many particles, the problem is
ill-defined: the density vanishes when s < d − 2 and becomes
infinite when s ∈ (d − 2, d ).

The outline of this work is as follows. In Sec. II, we
solve the expansion problem for one-dimensional long-ranged
Riesz gases with s ∈ (−2, 1). In Sec. III, we analyze the
expansion problem for the Coulomb gases in arbitrary di-
mensions. We provide a detailed derivation in two spatial
dimensions, i.e., for the Ginibre gas (Sec. III A), and in three
dimensions, i.e., for the classical Coulomb gas (Sec. III B).
In Sec. IV, we discuss open problems and mention amusing
analogies between our results and formulas arising in Newto-
nian cosmology.

II. ONE DIMENSION

At the coarse-grained level, the behavior of the large num-
ber of particles evolving according to Eq. (4) is described by
continuum field theory for a single scalar field, the density
ρ(x, t ), satisfying the continuity equation, which in one di-
mension reads

∂tρ + ∂xJ = 0. (10)

The local current J (x, t ) depends on the density and the inter-
particle potential. The conservation equation (10) ensures that
the total number of particles remains constant throughout the
evolution: ∫ ∞

−∞
dx ρ(x, t ) = N (11)

at all t � 0.
To close the continuity equation (10), we must express J

through the density and the interaction potential. The current
contains the standard diffusion term −D∂xρ resulting from
the entropic contribution at the microscopic level. A general
long-range interaction potential V gives rise to a nonlocal
deterministic contribution

JV (x, t ) = ρ(x, t )
∫ ∞

−∞
dy ∇V (x − y)ρ(y, t ) (12)

to the current. There is also a stochastic component to the
current that can be written as

√
2ρ η, where the noise η(x, t )

is a Gaussian noise, white in space and time. The amplitude√
2ρ of this noise originates from the Brownian character of

the particles, see Ref. [23]. Thus, the total current J (x, t ) can
be written as

J = −D∂xρ + JV +
√

2ρ η. (13)

A formal derivation of (13) by taking the continuous limit of
the discrete set of equations can be obtained by following the
strategy developed by Kawasaki and Dean [24,25] (see Refs.
[26,27] for recent expositions).

We consider one-dimensional stochastic Riesz gases with
s ∈ (−2, 1). If s > 1, the interactions are effectively short-
ranged (see Refs. [28,29]), the governing hydrodynamic
equations are local, and the emerging behaviors are more
standard. The usual justification of the lower bound is that
the original appearance of the Dyson gas in the context of
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random matrices involves the harmonic confining r2 potential,
and one does not want the pairwise interactions to overwhelm
the confining potential. Even without confining potential, the
systems with repulsive r−s interactions are very peculiar when
s < −2. Already for two particles, the inter-particle separa-
tion 
(t ) satisfies d


dt = g
−s−1, so 
 diverges in finite time if
s < −2. (This happens in arbitrary spatial dimension; taking
diffusion into account does not prevent the finite-time blow-up
[30].) These arguments explain why we study Riesz gases
with exponents s ∈ (−2, 1), and generally s ∈ (−2, d ) in d
dimensions.

In the present work, we focus on the typical gas expansion.
We see that the influence of diffusion on the expansion of
Riesz gases with N � 1 particles depends on whether s < 0
or s > 0. When −2 < s < 0, the expansion is superdiffu-
sive, namely, L(t ) ∼ (Ngt )

1
s+2 , cf. Eq. (7), and diffusion is

effectively irrelevant. When 0 < s < 1, the expansion is subd-
iffusive. The diffusion length

√
Dt catches L(t ) at a crossover

time t∗ estimated from
√

Dt∗ ∼ (Ngt∗)
1

s+2 . Thus, the crossover
time and size L∗ = L(t∗) of the occupied region are

t∗ ∼ D−1

(
Ng

D

)2/s

, L∗ ∼
(

Ng

D

)1/s

. (14)

This crossover time diverges when N → ∞, as expected. For
t 
 t∗, the profile evolves as (6), whereas for t � t∗, the
ordinary diffusion prevails.

The hydrodynamic description predicts that the occupied
region is compact, [−L(t ), L(t )] if we ignore diffusion. For
Riesz gases with s ∈ (0, 1), diffusion cannot be ignored when
t � t∗. For Riesz gases with s ∈ (−2, 0), the continuum de-
scription is inapplicable outside the [−L(t ), L(t )] region.
The analogy with random matrices suggests the position of
the right-most (left-most) particle is close to L(t ) [−L(t )].
Studying the distributions of the positions of the right-most
and left-most particles requires different techniques, so we
shall merely present a few estimates but mostly rely on the
hydrodynamic description accounting only the nonlocal de-
terministic contribution JV to the current (13).

A. Dyson gas

The Dyson gas separates the s ∈ (−2, 0) range where dif-
fusion is irrelevant and s ∈ (0, 1) range where diffusion is
relevant when t � t∗. Let us keep the diffusive contribution
in the marginal case of the Dyson gas. Specializing (12) to
logarithmic interactions, we obtain the component of the cur-
rent in the Dyson gas caused by interactions. One gets (see
also Refs. [26,27])

JV (x, t ) = gρ(x, t )−
∫ ∞

−∞
dy

ρ(y, t )

x − y
, (15)

where −∫ denotes the Cauchy principal value,

−
∫ ∞

−∞
dy

ρ(y, t )

x − y
= lim

δ→0

∫
|x−y|>δ

dy
ρ(y, t )

x − y
.

Recalling the definition of the Hilbert transform

H[ρ](x, t ) = 1

π
−
∫ ∞

−∞
dy

ρ(y, t )

x − y
, (16)

and, adding the diffusion term, we arrive at

J = −D∂xρ + πgρH[ρ]. (17)

Combining this current with (10), we obtain

∂tρ + ∂x(πgρH[ρ]) − D∂xxρ = 0. (18)

The expansion of the Dyson gas into the vacuum begins
with particles concentrated in a tiny spatial region. We thus
postulate that all particles are initially at the origin:

ρ(x, 0) = Nδ(x). (19)

The initial-value problem (18) and (19) is invariant under
the one-parameter group of transformations

ρ → a−1ρ, x → ax, t → a2t . (20)

This implies that
√

tρ(x, t ) depends on the single variable
x/

√
t . A more carefully chosen self-similar form

ρ(x, t ) = N√
Ngt

F (X ) with X = x√
Ngt

(21)

has an advantage that both N and g disappear from the leading
terms in the governing equation for the scaled density F (X )
and from the conservation law. Indeed, the conservation law
(11) turns into the conservation law∫ ∞

−∞
dX F (X ) = 1. (22)

Substituting the scaling ansatz (21) into (18), we find that the
scaled density satisfies

d (XF )

dX
+ 2

βN

d2F

dX 2
= 2

d

dX

[
F (X )−

∫ ∞

−∞
dY

F (Y )

X − Y

]
,

which we integrate to find

XF + 2

βN

dF

dX
= 2F (X )−

∫ ∞

−∞
dY

F (Y )

X − Y
. (23)

The nonlocal Eq. (18) has been studied in the realm of
the fluid mechanical problem of Marangoni spreading, and
several exact solutions have been found [5,6]. One can extract
an exact solution of the nonlinear integro-differential equa-
tion (23) from Refs. [5,6]. This solution is very cumbersome,
so we do not present it. Since we are interested in the behavior
of a large number of particles, we first neglect the 1/N term
in Eq. (23), and then briefly outline an asymptotic analysis
applicable when N � 1. When N = ∞, i.e., neglecting the
diffusion term in the original problem, we arrive at

F (X )

[
X − 2−

∫ ∞

−∞
dY

F (Y )

X − Y

]
= 0. (24)

We seek a symmetric solution, F (X ) = F (−X ), vanishing in
the |X | → ∞ limits. Such a solution of Eq. (24) has a compact
support: F = 0 for |X | > R; when |X | < R, the scaled density
satisfies

X = 2−
∫ R

−R
dY

F (Y )

X − Y
. (25)

The solution of the linear integral equation (25) is well-
known: F = (2π )−1

√
R2 − X 2. [See Refs. [31–33] for the

descriptions of the methods of solving Eq. (25) and similar
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linear singular integral equations.] Using the conservation law
(22), we fix R = 2. Summarizing,

F =
{

1
2π

√
4 − X 2 |X | < 2

0 |X | > 2.
(26)

In the original variables, the density profile is the Wigner
semicircle

ρ(x, t ) = 1

2πgt

√
4Ngt − x2 (27)

as it is for the equilibrium Dyson gas in a harmonic confin-
ing potential. The difference is that the span now diffusively
expands with time: |x| � 2

√
Ngt .

One can employ asymptotic techniques [34] to obtain a
more precise solution of Eq. (23) inside the occupied |X | < 2
region. One seeks the solution as an expansion in a small
parameter (βN )−1 
 1:

F (X ) = 1

2π

√
4 − X 2 + 1

βN
F1(X ) + · · · . (28)

Substituting (28) into Eq. (23), we find that the leading cor-
rection satisfies

−
∫ 2

−2
dY

F1(Y )

X − Y
= − X

4 − X 2
. (29)

We solve the linear singular integral equation (29) using the
methods described in Refs. [31–33] and obtain

F1(X ) = − 1

π2
√

4 − X 2

[
4 + X ln

2 − X

2 + X

]
. (30)

The leading and the subleading terms in the expansion
(28) become comparable when 2 − |X | ∼ N−1. Therefore,
Eq. (28) gives an outer expansion, which should be matched
with inner expansions valid in the internal 2 − |X | ∼ N−1

layers. We do not perform such an analysis since, inside
the internal layers, the deterministic framework is no longer
justified. (Relying on the deterministic continuum framework
for |X | > 2 is even more erroneous.) Indeed, using (27), one
estimates the positions x±(t ) of the right-most and left-most
particles:

x±(t )

L(t )
= ±1 + N− 2

3 ξ±(β ), (31)

with L(t ) = 2
√

Ngt . The random variables ξ±(β ) are ex-
pected to be asymptotically stationary with Tracy-Widom-
type distributions dependent on β = g/D. (The Tracy-Widom
distributions appearing in the context of random matrices are
explicitly known for β = 1, 2, 4 characterizing ensembles of
random matrices [11,22,35]. In our case, β > 0 is arbitrary.)

B. General case

We now consider general one-dimensional Riesz gases
with long-ranged interactions, −2 < s < 1. We ignore dif-
fusion and comment below when this approximation is
justifiable. The contribution (12) to the current due to inter-
actions becomes (see also Ref. [29])

J (x, t ) = gρ(x, t )−
∫ ∞

−∞
dy

x − y

|x − y|s+2
ρ(y, t ). (32)

Combining the continuity equation (10) with (32) leads to the
following integro-differential equation

∂tρ + ∂x

[
gρ−

∫ ∞

−∞
dy

x − y

|x − y|s+2
ρ(y, t )

]
= 0 (33)

for the density profile. The governing equation (33) and the
conservation law (11) are invariant under the one-parameter
group of transformations

ρ → a− 1
s+2 ρ, x → a

1
s+2 x, t → at . (34)

Using the self-similar form

ρ(x, t ) = N

(Ngt )
1

s+2

F (X ) with X = x

(Ngt )
1

s+2

, (35)

we find that the scaled density satisfies

F + X dF
dX

s + 2
= d

dX

[
F−

∫ ∞

−∞
dY

X − Y

|X − Y |s+2
F (Y )

]
. (36)

Integrating Eq. (36), we arrive at the integral equation

X

s + 2
= −

∫ R

−R
dY

X − Y

|X − Y |s+2
F (Y ), (37)

inside the |X | < R interval where F (X ) > 0; the density van-
ishes outside that interval. Integral equations such as (37) arise
in many problems, see, e.g., Refs. [28,33]. The solution has
again a compact support and appears in textbooks [31,32]. For
|X | < R, we have

F = Bs(R
2 − X 2)

s+1
2 , Bs = cos(πs/2)

π (s + 1)(s + 2)
. (38)

The normalization condition is again given by (22), which we
combine with (38) to yield

R =
[√

π (2 + s)2 �
(
1 + s

2

)
cos

(
πs
2

)
�

(
1+s

2

)
] 1

s+2

. (39)

The density is nonvanishing when x ∈ [−L(t ), L(t )] with
L(t ) = R(Ngt )

1
s+2 as announced in Eq. (7). The density pro-

file (38) reduces to the announced result (6) in the original
variables. In Fig. 1, we show the density profiles for s =
−1, 0, 7/8.

We relied on Eq. (33), ignoring diffusion. If 0 < s < 1, the
diffusion is irrelevant when t 
 t∗ with the crossover time
given by (14). In the −2 < s < 0 range, the expansion is
superdiffusive, and diffusion is essentially irrelevant. Using
(6) and (7), one estimates the positions of the right-most and
left-most particles and arrives at a result similar to (31), with
N−2/3 replaced by N− 2

s+3 .

III. COULOMB GASES IN HIGHER DIMENSIONS

A. Two dimensions (Ginibre gas)

The expansion is isotropic. Hence ρ(r, t ) = ρ(r, t ) and the
continuity equation reduces to

∂tρ + r−1∂r (rJ ) = 0. (40)
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FIG. 1. The spatial dependence of the density rescaled to
be equal to unity at the origin: F/(BsRs+1), with F given by
Eq. (38), versus X/R. The density vanishes when |X | > R. The
shown curves (top to bottom) correspond to the Riesz exponent
s = −3/2, −1, 0, 7/8. The density is flat for the one-dimensional
Coulomb gas (s = −1). The semicircle represents the density of the
Dyson gas (s = 0).

A simple expression for the current,

J (r, t ) = gρ(r, t )r−1
∫ r

0
dr′ 2πr′ρ(r′, t ), (41)

reflects the rotational symmetry and the Coulomb nature of
the logarithmic potential in two dimensions: the force at r
is the same as if the entire charge of the disk of radius r was at
the origin (Gauss theorem). Introducing an auxiliary variable

F (r, t ) = 2πrρ(r, t ), (42)

we rewrite (40) and (41) as

∂t F (r, t ) + g∂r

[
r−1F (r, t )

∫ r

0
dr′ F (r′, t )

]
= 0. (43)

The conservation law
∫

dr ρ(r, t ) = N simplifies to∫ ∞

0
dr F (r, t ) = N. (44)

Equations (43) and (44) are invariant under the one-
parameter group of transformations

F → a−1F, r → ar, t → a2t, (45)

implying that the solution has a self-similar form

F (r, t ) =
√

N

gt
�(ξ ) with ξ = r√

Ngt
, (46)

chosen to ensure that both N and g disappear from the govern-
ing equation and the conservation law for �(ξ ). Substituting
the scaling ansatz (46) into (43) yields

� + ξ
d�

dξ
= 2

d

dξ

[
�


ξ

]
, (47)

where


(ξ ) =
∫ ξ

0
dξ ′ �(ξ ′). (48)

Integrating (47) gives

�

(
ξ − 2


ξ

)
= 0. (49)

The solution reads

� =
{
ξ ξ � ξ0

0 ξ > ξ0.
(50)

Substituting this solution into the conservation law∫ ∞

0
dξ �(ξ ) = 1, (51)

we fix ξ0 = √
2. Thus, at any time, the density is uniform

inside the growing disk,

ρ(r, t ) =
{

(2πgt )−1 r � √
2Ngt

0 r >
√

2Ngt .
(52)

The radius of the disk grows diffusively as for the one-
dimensional Dyson gas; the extra N factor ensures again that
diffusion plays a minor role. The diffusive growth of the ball
indicates that the scaling ansatz (46) remains applicable even
when we take diffusion into account. The auxiliary function
(48) satisfies a neat ordinary differential equation

1

2βN
η
 ′′ = 
 ′(
 − η), (53)

where η = ξ 2/2 and prime denotes a derivative with respect to
η. This equation is simpler than the integro-differential equa-
tion (23) describing the Dyson gas. Still, Eq. (53) is nonlinear
and analytically intractable.

B. Arbitrary dimension

We begin with the physically most relevant three-
dimensional case. The expansion is spherically symmetric,
and hence the continuity equation reads

∂tρ + r−2∂r (r2J ) = 0. (54)

For the Coulomb gas, we have V (r) = g/r, and the current is
given by

J (r, t ) = gρ(r, t )r−2
∫ r

0
dr′ 4πr′2ρ(r′, t ). (55)

This expression reflects rotational symmetry, and we have
used again the Coulomb nature of the potential: the force at
r is the same as if the entire mass of the ball of radius r was at
the origin. Using

F (r, t ) = 4πr2ρ(r, t ), (56)

we rewrite (54) and (55) as

∂t F (r, t ) + g∂r

[
r−2F (r, t )

∫ r

0
dr′ F (r′, t )

]
= 0. (57)

The conservation law has the same form (51) as in two di-
mensions. Equations (57) and (51) are invariant under the
one-parameter group of transformations

F → a−1F, r → ar, t → a3t, (58)
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implying that the solution has a self-similar form

F (r, t ) = N
3
√

Ngt
�(ξ ) with ξ = r

3
√

Ngt
. (59)

Substituting the scaling ansatz (59) into (57) yields

� + ξ
d�

dξ
= 3

d

dξ

[
�


ξ 2

]
, (60)

which is integrated to give

�

(
ξ − 3


ξ 2

)
= 0. (61)

The solution reads

� =
{
ξ 2 ξ � ξ0

0 ξ > ξ0.
(62)

Substituting this solution into the conservation law (51), we
fix ξ0 = 3

√
3. Thus, at any time, the density is uniform inside

the growing disk

ρ(r, t ) =
{

(4πgt )−1 r � 3
√

3Ngt
0 r > 3

√
3Ngt .

(63)

The radius of the ball grows subdiffusively, so the above
results are valid up to a crossover time t∗ ∼ (Ng)2/D3.

The above calculations bear some resemblance to the
well-studied problem of Coulomb explosion, an important
phenomenon in laser-matter interaction, in which a nanoscale
cluster, having all its electrons swept away by an intense
laser pulse, undergoes an explosive dynamics with some
self-similar profiles [36–38]. In recent work [39], stochas-
tic forces due to collisions of particles and random motion
are incorporated by adding a pressure term to the hydrody-
namic equations of motion. However, the model we study
here has some important differences with Coulomb explosion:
we consider repulsive particles with overdamped dynamics
(inertial effects are neglected); the initial state has no internal
structure (it is a pure Dirac function); the approach used is
based on stochastic density functional theory (Dean-Kawasaki
equation) rather than on hydrodynamics; and finally, in the
calculations above, diffusive effects have been neglected for
times t 
 t∗.

Extending to arbitrary spatial dimensions, we again obtain
a uniform density profile,

ρ(r, t ) =
{

(�d gt )−1 r � (dNgt )1/d

0 r > (dNgt )1/d ,
(64)

where �d = 2πd/2/�(d/2) is the volume of the unit sphere
Sd−1. Therefore, the universal t−1 decay occurs inside a
ball with radius growing as t1/d , and only the amplitude is
dimension-dependent.

Consider now the expansion into the vacuum of an infinite
free gas with infinitely many particles, N = ∞. Stunningly,
the Coulomb gas is the only Riesz gas with a well-defined
behavior in this limit. This claim is easy to prove for the
one-dimensional Riesz gas solved in Sec. II. For instance,
the density at the origin in the system with a large but finite
number of particles

ρ(0, t ) = (NCs)
s+1
s+2 [g(s + 2)t]−

1
s+2 (65)

diverges in the N → ∞ limit if s > −1 and vanishes if
s < −1. A well-defined finite answer emerges only when s =
−1, i.e., for the one-dimensional Coulomb potential. More
generally, for the Coulomb gas in arbitrary dimension, the
density is well-defined, uniform in the entire infinite space Rd ,
and decays inversely proportional to time when the number of
particles is infinite, ρ(r, t ) = (�d gt )−1.

IV. CONCLUDING REMARKS

We have analyzed the expansion of the stochastic Riesz
gases with long-ranged interactions in one dimension and
of the Coulomb gases in an arbitrary dimension. Stochastic
Coulomb gases remain well-defined in the infinite-particle
limit N = ∞. The emerging spatially uniform solution (9)
bears an amusing resemblance to the uniform decaying den-
sity in the expanding Universe. The gravitational (Newton)
potential is Coulombic yet attractive, but the motion is gov-
erned by Newton’s laws (not overdamped). In the Universe
filled with “dust” (zero pressure limit), the density decays as
t−2 in Newtonian cosmology and also in Einsteinian cosmol-
ogy in the flat Universe [40,41]. The t−2 decay is independent
of the spatial dimension and the t−1 decay (9) in our over-
damped “Universe” is also universal. The Hubble law for the
velocity, v = H (t )r with H = 2

d t−1, is replaced by a Hubble
law for the current: J = H (t )r with H = (d�d g)−1t−2. The
underlying reason for these striking similarities is the peculiar
nature of the Coulomb potential.

We have not been able to analyze the expansion of the
Riesz gas in d > 1 dimensions, and we now explain the tech-
nical challenge. The governing equation is given by

∂tρ + ∇ · J = 0, (66)

with

J(r, t ) = gρ(r, t )
∫

BR

dy
r − y

|r − y|s+2
ρ(y, t ). (67)

This equation can be interpreted as a nonlocal porous medium
equation. The existence of explicit self-similar solutions and
weak solutions in a more general class of nonlocal porous
medium equations has recently been investigated [42,43].

We expect that the density ρ(r, t ) vanishes outside the ball
BR of radius R, so we integrate over this ball, i.e., |y| < R,
in (67). The rotational symmetry implies ρ(r, t ) = ρ(r, t ) and
J(r, t ) = r

r J (r, t ), so Eq. (66) simplifies to

∂tρ + r−(d−1)∂r (rd−1J ) = 0. (68)

The functional J[ρ] involves a d-fold integral of ρ, which can
not be simplified further because for non-Coulombic gases,
where we cannot rely on the Newton-Gauss theorem. Note
that similar difficulties appear in studies of “gravitational”
collapse for attractive 1/rs potentials with arbitrary s [44–47]
(see also Refs. [48–50] for further discussions about one-
dimensional systems); in the investigation of the statistical
properties of the force field for a Poisson distribution of par-
ticles [51–53]; in developing a kinetic theory for long-range
interacting systems with an arbitrary potential of interaction
[54–57]; etc.
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The self-similar form (35) generalizes to

ρ(r, t ) = N

(Ngt )
d

s+2

F (ξ ) with ξ = r

(Ngt )
1

s+2

. (69)

The Riesz exponent varies in the s ∈ (−2, d ) range. The ex-
pected scaled density reducing to (38) in one dimension and
compatible with the uniform density for the Coulomb gas in
arbitrary dimensions is

F (ξ ) =
{

B
(
ξ 2

0 − ξ 2
) s+2−d

2 ξ < ξ0

0 ξ > ξ0.
(70)

Substituting the density (69)–(70) into the conservation law∫
drρ(r, t ) = N gives a relation between B and ξ0:

Bξ s+2
0 = �

(
2 + s

2

)
π

d
2 �

(
2 + s−d

2

) . (71)

The derivation of (69) and (70) and fixing the amplitude B and
the rescaled radius ξ0 is rather involved, so we refer to Refs.
[42,43] for the analysis of the fundamental solutions of a class
of nonlocal porous medium equations, [5] for the solution in
the two-dimensional Riesz gas with s = 1, and [58] for review.

Stepping away from the unconstrained hydrodynamic
behaviors, we mention fluctuations. For one-dimensional
Riesz gases in extremely shallow confining potential, the
fluctuations of the displacement of the tagged particle in
one-dimensional Riesz gases have been studied in Ref. [29]
both in the long-ranged regime 0 < s < 1 and the effectively
short-range regime s > 1. The fluctuations of the local current
in the Dyson gas (s = 0) have also been investigated [27]. One
anticipates that the tagged particle behaves diffusively when
s < −1; the self-diffusion coefficient is unknown.

An interesting challenge concerns large deviations parallel
to those investigated in equilibrium [59,60]. For instance, the
Dyson gas expands diffusively, |x| � 2

√
Ngt , and the density

profile is the Wigner semicircle (27). It would be interest-
ing to compute the probability of atypically slow expansion,
|x| � A

√
Ngt with some fixed A < 2 during the time interval

t ∈ (0, T ), and the density profile during such constrained ex-
pansion. Atypically fast expansions, |x| � A

√
Ngt with some

fixed A > 2 during the time interval t ∈ (0, T ), are equally
interesting. Alternatively, one can seek the probability that the
occupied region is atypically large or small, |x(T )| � A

√
NgT

with A �= 2, only at the final moment.
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APPENDIX: THE INFLUENCE OF THE HARMONIC TRAP

Systems with particles in a confining harmonic potential
are more popular (see, e.g., Refs. [11,15,61,62] and refer-
ences therein) than the free systems studied in this paper.
The harmonic potential naturally arises in the context of ran-
dom matrices. In Coulombic systems where particles carry
charges, the harmonic potential accounts for the neutralizing
background. In Coulombic and other many-particle systems
[14,63–65], an external constant background is often intro-
duced to compensate for the repulsion between the particles.

In this Appendix, we probe the influence of harmonic con-
fining potential on gases with long-ranged Riesz potential. In
one dimension, the density becomes stationary in the long-
time limit. The stationary density satisfies

g−
∫ ∞

−∞
dy

x − y

|x − y|s+2
ρ(y) = εx, (A1)

that is solved similarly to (37) to give

ρ = ε

g

cos(πs/2)

π (s + 1)
(r2 − x2)

s+1
2 , (A2)

from which we deduce that the span is given by

r =
[

Ng

ε

√
π (2 + s) �

(
1 + s

2

)
cos

(
πs
2

)
�

(
1+s

2

)
] 1

s+2

. (A3)

To determine the expansion of the one-dimensional
stochastic Ries gas in the presence of the harmonic confining
potential, one ought to solve

∂tρ + ∂x

[
gρ−

∫ ∞

−∞
dy

x − y

|x − y|s+2
ρ(y, t ) − ερx

]
= 0. (A4)

The similarity of the solution (35), (38) and the stationary
solution (6) in the harmonic confining potential suggests seek-
ing the solution of (A4) in the same functional form:

ρ(x, t ) = NCs

Rs+2
(R2 − x2)

s+1
2 , Cs = �

(
2 + s

2

)
√

π �
(

3+s
2

) , (A5)

with amplitude fixed by normalization. Substituting (A5) into
(A4), we find that (A5) provides a consistent solution if the
span satisfies

dR

dt
= gNCs

Rs+1
− εR. (A6)

Solving (A6) subject to R(0) = 0 gives

R =
{

gNCs

ε
[1 − e−ε(s+2)t ]

} 1
s+2

. (A7)

Thus, for the Riesz gas in the confining harmonic potential,
the evolving density profile describing the expansion into the
vacuum has the form (A5) throughout the evolution, with span
given by (A7). The evolving density profile does not ‘feel’
the confining potential when t 
 tc ∼ ε−1; the density profile
approaches the stationary density (A2) and (A3) t � tc.

In higher dimensions d > 1, we limit ourselves to
Coulomb gases. In two dimensions, taking into account the
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confining harmonic potential leads to

∂t F + ∂r

[
g

r
F

∫ r

0
dr′ F (r′, t ) − εrF

]
= 0, (A8)

generalizing Eq. (43). We anticipate that the density profile
is uniform inside an expanding disk and vanishes outside the
disk r > R(t ). Substituting F (r, t ) = r f (t ) into (A8), one ar-
rives at a closed, readily solvable equation for f (t ). Returning
to the original variables, one gets

ρ(r, t ) = ε

πg

1

1 − e−2εt
. (A9)

Thus, the density is again uniform inside the disk of radius
R(t ). The radius of the disk is fixed by mass conservation:

R(t ) =
√

gN

ε
(1 − e−2εt ). (A10)

Again, we observe an exponential convergence to the station-
ary case, with a crossover time of order 1/ε.

Similarly for the d-dimensional Coulomb gas in the har-
monic confining potential εr2/2, the radius of the occupied

ball increases according to

R(t ) =
[

gN

ε
(1 − e−dεt )

]1/d

, (A11)

and the density inside the ball is uniform and given by

ρ(r, t ) = εd

�d g

1

1 − e−dεt
. (A12)

For the free Coulomb gas (ε = 0), Eqs. (A11) and (A12)
reduce to Eqs. (8) and (9).

We emphasize that for the Coulomb gas in the harmonic
potential, the problem remains well-defined when the number
of particles is infinite, N = ∞. The density is again uniform
in the entire space Rd . In the earlier time regime, t 
 ε−1,
the density decays according to (9), then it saturates to a
finite value ρ → ρ∞ = εd

�d g , when t � ε−1. In the stochastic
Coulomb gas with infinitely many particles, adding the con-
fining harmonic potential is akin to adding the cosmological
constant. The signs are reversed: the interactions are repul-
sive (in contrast with the attractive gravitational interactions),
and the “cosmological constant” (−ε) is negative rather than
positive. In the deterministic framework, there is a similar
analogy of the Coulomb explosion with cosmic expansion in
the presence of the negative cosmological constant [66–69].
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