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The behavior of many critical phenomena at large distances is expected to be invariant under the full
conformal group, rather than only isometries and scale transformations. When studying critical phenomena,
approximations are often required, and the framework of the nonperturbative, or functional, renormalization
group is no exception. The derivative expansion is one of the most popular approximation schemes within this
framework, due to its great performance on multiple systems, as evidenced in the past few decades. Nevertheless,
it has the downside of breaking conformal symmetry at a finite order. This breaking is not observed at the leading
order of the expansion, denoted the local potential approximation, and it only appears once one considers, at least,
the next-to-leading order of the derivative expansion [O(∂2)] when including composite operators. In this work,
we study the constraints arising from conformal symmetry for the O(N ) models using the derivative expansion
at order O(∂2). We explore various values of N and minimize the breaking of conformal symmetry to fix the
nonphysical parameters of the approximation procedure. We compare our prediction for the critical exponents
with those coming from a more usual procedure, known as the principle of minimal sensitivity.

DOI: 10.1103/PhysRevE.111.054126

I. INTRODUCTION

Critical phenomena are hard to study theoretically. This is
due to the fact that strong correlations among the degrees of
freedom of the system emerge in this regime. This implies
that an approach based on sub-dividing the system into sev-
eral independent parts is problematic. Moreover, in general,
perturbative techniques (around a Gaussian or a mean-field
approximation) present problems related to the appearance
of strong couplings and require, at the very least, technical
sophistication to succeed. In this context, Wilson’s renormal-
ization group (RG) was specifically developed in the 1970s
[1,2] as a framework for tackling systems undergoing strong
correlations, such as those that exhibit critical phenomena. A
modern version of this framework, more suitable for the im-
plementation of approximation schemes beyond perturbation
theory, was developed in the 1990s, known as the functional
or nonperturbative renormalization group (FRG) [3–7].

At criticality, thermodynamic properties show power-law
behaviors, characterized by exponents which are common
to very different systems. This is a consequence of the ex-
hibited scale invariance from a mesoscopic scale onwards.
This also explained universality, as was shown by Wilson
[2]. In addition to systems presenting invariance under scale
transformations, Migdal and Polyakov first conjectured that
also full conformal invariance was to hold at many critical
phenomena [8,9].

Nowadays, it is known that under rather general con-
ditions, conformal symmetry does indeed take place for
two-dimensional (2D) critical phenomena [10,11], which has
allowed us to fully classify conformal theories and compute
exactly critical properties in that dimension. Although there is
no general proof of the realization of this symmetry in the very

relevant 3D case, this is expected to be the case for the vast
majority of physical systems. In particular, it was shown to be
the case for a few models such as the Ising or Z2 model [12]
and the O(2), O(3), and O(4) models [13] [and it is expected
to be valid also for all O(N ) models] once isometries, scale
invariance, and a few other mild assumptions are required.
This has a relevance that is not just purely academic as O(N )
models are in the same universality classes as many physi-
cally relevant systems, such as pure substances and uniaxial
antiferromagnets (N = 1), planar magnets and helium-4 fluid-
superfluid λ-transition (N = 2), isotropic magnets (N = 3),
among many other examples.

Considerable effort has been dedicated to the study of criti-
cal phenomena using very different techniques. These include
Monte Carlo simulations [14–16], as well as other standard
methods such as the ε-expansion, which are still being pushed
to higher and higher orders [17–21]. There are also some
other more recent ones, such as the conformal bootstrap,
which, assuming the realization of conformal symmetry at
criticality, have been able to reach a remarkable precision
in the computation of some universal quantities in the Ising
model universality class, and have also produced very good
results for some O(N ) models [22–27]. In the context of the
FRG, critical phenomena have been studied mainly (but not
exclusively) by means of an approximation technique known
as the derivative expansion [28] (DE, see below for some
detail), which yielded very precise and accurate results. In
some cases, it provides the most precise computations in the
reported literature at the moment [29–34].

The DE of the FRG is a controlled approximation tech-
nique that consists in considering a general ansatz for the
effective action (Gibbs free energy) including terms with a
finite number of derivatives of the field, which is equivalent
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to expanding vertices around zero momentum. When one
is interested in thermodynamic properties that are obtained
from the zero momentum regime, this approximation is a very
powerful tool. Moreover, the FRG procedure regulates the in-
frared physics, allowing the expansion around zero momenta
that turns out to be a controlled approximation with a small
parameter of order ∼1/4 [35]. This allows for the introduction
of error bars [29,30,34,36]. It is worth emphasizing that, in
order for the good properties of convergence to manifest and
for the approximation to be controlled, it is necessary to fix
properly the spurious dependence on the regularization pro-
cess, which appears due to the fact that approximations are
being implemented [37]. An appropriate and pragmatic cri-
terion, known as the principle of minimal sensitivity (PMS),
has been exploited to fix this dependence. It is based on the
fact that, since physical quantities should not be dependent on
auxiliary parameters, the best results are to be expected when
the dependence of observables on these auxiliary parameters
is as small as possible.

Despite the great success of the DE in computing critical
properties, it was not until recently that conformal symmetry
has been exploited as a source of information in this con-
text. As it turns out, the DE approximation breaks conformal
invariance at a given finite order. In recent works, this fact
was used to attempt to fix the spurious dependence on the
regularization procedure [38,39] by requiring conformal in-
variance to be fulfilled as much as possible. This led to another
criterion for fixing these parameters, called the principle of
maximal conformality (PMC). The main outcome of these
studies is that using either PMS or PMC for fixing the spuri-
ous dependence on nonphysical parameters yields compatible
results (i.e., within error bars). However, all the studies done
so far concerning the role of conformal invariance in the FRG
context analyze only the Ising model universality class.

As was stated earlier, these previous studies set the founda-
tion for a more physical justification of the PMS, as its seems
to coincide with the best realization of conformal symmetry.
The goals of this paper are twofold. The first purpose is to
extend the previous work reported in [39] to the O(N ) uni-
versality classes. The aim is to further test the conjectured
equivalence of the PMS and PMC. This requires considering
correlation functions including composite operators that re-
spect the O(N ) symmetry. These correlation functions enclose
the information of several perturbations around the fixed point
that include, among others, the most relevant one associated
with the critical exponent ν and the first correction associated
with the critical exponent ω.

Our second goal is to compare two slightly different im-
plementations of the DE, which we denote as the full ansatz
and strict version to test their equivalence within error bars.
These two implementations will be explained in more detail
below, but in a nutshell, they differ in the fact that the strict
version drops all higher-order terms while the full version
retains some of them.1 Given the fact that there is no rigorous

1The full version of the DE preserves some kinematic symmetry
properties of the various vertices that are not present in the strict
implementation.

proof of the convergence of the DE, this is a consistency check
of its good behavior.

The outline of this article is the following. We start with
a brief introduction to the FRG and its essential features in
the context of O(N ) models and in the presence of sources
for both the field and composite operators. In particular, we
describe the DE approximation in this framework. We then
discuss symmetries in this framework, focusing on dilatation
and special conformal transformations. Next, we consider the
DE at next-to-leading order to study the O(N ) models for
different values of N . Since we need to employ an approxi-
mation scheme, which breaks conformal symmetry, we find
that, in the presence of a source for composite operators, the
Ward identity for special conformal transformations is vio-
lated. The minimization of this breaking is then used as a way
of fixing the spurious dependence on nonphysical parameters,
giving rise to the PMC criterion. Next, we compare the results
coming from both the PMS and PMC criteria for the critical
exponents ν and ω. Finally, we draw our conclusions.

II. FUNCTIONAL RENORMALIZATION-GROUP
ESSENTIALS

A. Some elements of the functional renormalization group

The underlying idea of the FRG is to decouple long-
wavelength fluctuations with respect to an artificially intro-
duced running scale k. This allows for the short-wavelength
fluctuations to be incorporated gradually into the system’s
description in a controlled manner. One possible way to im-
plement this idea is to modify the action of the theory by
adding a term quadratic in the fields and dependent on an
auxiliary scale k [40] that effectively freezes long-wavelength
fluctuations while leaving the short-wavelength (or fast, in
momentum space) modes unchanged:

�Sk[�ϕ] = 1

2

∫
x,y

ϕa(x)Rk (|x − y|2)ϕa(y)

= 1

2

∫
q
ϕa(q)Rk (q2)ϕa(−q),

(1)

where the same notation is used for functions and their
Fourier-transformed versions. We have also introduced the no-
tations

∫
x ≡ ∫

dd x and
∫

q ≡ ∫ dd q
(2π )d for simplicity. In Eq. (1)

and henceforth, repeated indices are to be considered as being
summed over unless otherwise stated. To preserve translation,
rotational and O(N ) invariance along the flow Rk (q2) has to
present the following general profile:

Rk (q2) = αZkk2r(q2/k2), (2)

with the function r decaying faster than any power law for
large momentum and tending to 1 for vanishing momentum
q. In Eq. (2), Zk is a field renormalization factor and α plays
the role of an auxiliary parameter that sets the scale of the
regulator and is used to optimize computations.

With the addition of this regulator term to the action, one
arrives at a scale-dependent functional integral for the parti-
tion function of the form

eWk [J,K] =
∫

Dϕ1e−S[�ϕ]−�Sk [�ϕ]+∫
x Ja(x)ϕa (x)+∫

x K (x)O(x), (3)
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where we consider for the purpose of this work a source
for the fields, Ja(x), and a source K (x) for generic O(N )
invariant local operators, that we denote here as O(x),
following [4,7,41–44].

Starting from the functional integral (3), a Legendre trans-
formation of the Helmholtz free energy Wk[ �J, K] with respect
to Ja defines a scale-dependent effective action �k[φ, K]
given by

�k[ �φ, K] + �Sk[ �φ] = −Wk[ �J, K] +
∫

x
Ja(x)φa(x). (4)

Notice that in defining the scale-dependent effective action
�k[ �φ, K], we have extracted the regulator term. This is done
in order for �k[φ, K] to properly interpolate between the
microscopic action defined at an ultraviolet scale k = 
 and
the actual effective action, or Gibbs free energy, at k = 0. We
recall, therefore, that the order parameter φa(x) is defined as

δWk[ �J, K]

δJa(x)
= 〈ϕa(x)〉 �J,K ≡ φa(x). (5)

Following a standard procedure [6], a flow equation for the
FRG effective action with respect to the scale k can be derived,
and it is given by

∂t�k[ �φ, K] = 1

2

∫
x,y

∂t Rk (x, y)Gk,aa[x, y], (6)

where t ≡ ln(k/
), 
, and the full propagator Gk,ab[x, y] is
as usual

〈ϕa(x)ϕb(y)〉c = δ2Wk[ �J, K]

δJa(x)δJb(y)
=

(δ2�k[ �φ, K]

δφaδφb
+ δabRk

)−1

x,y
.

(7)
To study the critical properties of the system and to look for a
fixed point of the RG, it is important to introduce dimension-
less variables, which amounts to measuring all quantities in
units of the regulator scale k. We thus introduce the following
variables:

x̃ = kx,

φ̃a(x̃) = Z
1
2

k k
2−d

2 φa(x),

K̃ (x̃) = Z (O)
k k−d K (x), (8)

where we denote with a tilde dimensionless variables. The
renormalization factors Zk and Z (O)

k must be fixed with appro-
priate renormalization conditions to be made explicit below.

Implementing this change of variables leads to the dimen-
sionless version of Eq. (6):

∂t�k[φ̃a, K̃] =
∫

x̃

δ�k

δφ̃a(x̃)
(x̃ν ∂̃ν + Dϕ )φ̃a(x̃)

−
∫

x̃

δ�k

δK̃ (x̃)
(x̃ν ∂̃ν + DO)K̃ (x̃)

+ 1

2
α

∫
x̃,ỹ

[(d + 2 − ηk )r(|x̃ − ỹ|)

+ |x̃ − ỹ|r′(|x̃ − ỹ|)]G̃k,aa[x̃, ỹ]. (9)

We have introduced the running anomalous dimension ηk de-
fined as ∂t Zk = −ηkZk . Similarly, we introduced the running
dimensions of the field φ, Dϕ = (d − 2 + ηk )/2 and of the

operator O, DO = ∂t ln(Z (O)
k ). Notice that, typically, ηk , Dϕ ,

and DO depend on k. However, at a fixed point of the RG,
η∗

k = η becomes the anomalous dimension of the field, and
Dϕ and DO become, respectively, the scaling dimension of the
field φ and the operator O.

Up to now, the presentation has been general and describes
the full flow of the effective action. However, in the context
of this work, we will only be interested in the linearized flow
of the effective action around the fixed point for vanishing
source K̃ given by ∂t�k[φ̃a, K̃ = 0] = 0. As will be explained
below, this linearized flow can be obtained from the fixed-
point equation but including the source K at linear order.
As a consequence, we will only take into consideration the
linear dependence of the effective action with K . As shown
in Ref. [39], FRG flow equations in the presence of sources
for composite operators have a triangular property. The flow
of the effective action at zero sources does not depend on
the effective action at nonzero sources. In a similar way, the
flow of the effective action expanded at linear order in the
source K does not depend on terms corresponding to higher
powers of the source. As a consequence, one can limit the
effective action to linear order in K , and this does not imply
an additional approximation. Of course, a more general study
could be performed keeping higher powers of K , but this goes
beyond the scope of the present work.

B. The derivative expansion

Except for very few examples, such as the large-N limit
of the O(N ) models, approximation techniques are required
to analyze an equation such as Eq. (6). One of the most
frequently used approximations in the FRG context is the DE
that consists in considering an ansatz for the scale-dependent
effective action with all the possible terms including up to a
given number of derivatives and to consistently project onto
the space of solutions compatible with the considered ansatz.
A given order of the approximation with up to s derivatives is
referred to as the order O(∂s) of the DE.

It is now well established that the first orders
of this approximation scheme already yield very
precise results. Several examples of this can be found
in the literature [29,30,35,41,45,46], but we refer
the reader to a recent review of the FRG form-
alism [7] for further information.

To clarify the preceding ideas, we present an example of
the first order of this procedure, O(∂0), also known as the
local potential approximation (LPA), and the order O(∂2),
which is the one we consider in this article. We will consider
both approximations in the presence of a source for composite
operators. The LPA consists of the following ansatz:

�k[φa, K] =
∫

x

{
1

2
(∇φa)2 + U0(ρ) + K (x)U1(ρ)

}
, (10)

where we introduced the O(N ) invariant ρ ≡ φaφa/2, and
an unrenormalized kinetic term is taken into consideration to
account for interactions. Notice that, as previously stated, we
have only kept the linear dependence on the source K (x). In
principle, the source K could be coupled to very general local
operators. For simplicity, in Eq. (10) and below we consider
only operators that are scalars under isometries and that are
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O(N )-invariant. In the LPA case (that is, excluding derivative
terms), this reduces the ansatz to a function U1(ρ) of the
single O(N )-invariant scalar without derivatives, ρ. It is useful
to mention nevertheless that there is another very important
operator without derivatives that can be treated in an exact
way but is not O(N )-invariant: the operator O = φa(x). In
that case, all derivatives are zero except for taking a single
derivative with respect to φ and a single derivative with re-
spect to K . As a consequence, all loop terms are zero, and one
concludes only the expected and trivial result DO = Dϕ . That
is, as expected, the introduction of this linear operator does
not give further information with respect to treating only, as
usual, vertices obtained taking derivatives with respect to φ.

The next-to-leading order O(∂2) ansatz takes, then, the
following form:

�k[φ, K]

=
∫

x

{
U0(ρ) + Z0(ρ)

2
(∇φa)2 + Y0(ρ)

4
(∇ρ)2 + K (x)

×
(

U1(φ) + Z1(ρ)

2
(∇φa)2 + Y1(ρ)

4
(∇ρ)2

)

− ϒ(φ)∂2K (x)

}
. (11)

Notice that we omit the k dependence of the ansatz functions
U0, U1, etc. in order to ease the notation. Here, again, we
assumed the local operator to be scalar under isometries and
O(N )-invariant.

As was mentioned, the DE is known to produce results that
are consistent with other theoretical methods and that seem to
converge nicely as one considers higher orders. Partly due to
the relatively recent nature of the FRG, it was not until long
ago that an explanation for this was found, although a rigorous
proof is still not available. Succinctly, the infrared behavior of
the correlation functions is regularized by the presence of the
regulator, which ensures the smoothness of the vertices as a
function of momenta, which, in turn, allows for this expansion
around zero momentum to be controlled. Moreover, the FRG
has a one-loop structure with the particular characteristic that
the diagrams include the factor ∂t Rk (q) in the numerator that
further suppresses the large momentum contributions in view
of the properties that Rk (q) satisfies. This restriction of the
domain of momenta contributing to the integrals implies that
it is possible to expand vertices at small momenta, both for
internal and external momenta, and that the flow of vertices
with small momenta (with respect to the regulator scale k) is
insensitive to the high momenta behaviors.

Out of criticality, the radius of convergence of an expansion
around small momenta is related to the nearest pole in the
complex plane of p2. Since the regulator is a masslike term
which takes the system out of criticality, this expansion is
expected to be justified even if the original theory is at the
critical regime. For the O(N ) models, the radius of conver-
gence has been shown to be of the order q2/k2 
 4 [35].
This is consistent with the numerical observations for the
O(N ) models, at least up to order O(∂4) [29–31], which is the
highest order of the DE implemented in the literature for this
model to date. Likewise, for the Ising model universality class,
the DE has been implemented up to order O(∂6) [35] without

changes in the observed behavior. These studies allowed us to
understand why this approximation scheme, in the context of
the FRG and for O(N ) models, has rather good convergence
properties with a small parameter of order ∼ 1

4 or smaller.
To extract the flow of the various functions, one must

expand the flow equations for the various vertices in momenta.
For example, to determine the flow of Z0 at order O(∂2), one
calculates the vertices with the ansatz given in (11), with K
set to zero for simplicity. Then, one inserts these vertices into
the evolution equation for �

(2)
k,ab(p) obtained from a second

derivative with respect to φ:

∂t�
(2)
k,n1n2

(p) = Tr
[
Ṙk · G · H (2)

·n1n2·(p)G
]
, (12)

where we employed a matrix notation to avoid an even more
cumbersome expression, and we omitted writing the scale k in
the propagator for the same reason. In (12) we also introduced
the notation

H (2)
an1n2b(q, p, q′)

= − 1
2

[
�

(4,0)
an1bn2

(q, p, q′)

+ �(3,0)
an1c (q, p)Gcd (q + p)�(3,0)

dbn2
(q + p, q′)

+ �
(3,0)
bn1c (q′, p)Gcd (q′ + p)�(3,0)

dan2
(q′ + p, q)

]
, (13)

where, in general, the function H (m)
an1···nmb(q, p1, . . . , pm−1, q′)

stands for the different diagrammatic contributions that arise
when taking functional derivatives (and then performing a
Fourier-transform) in the FRG equation (6). The function
Gab(q) stands for the Fourier-transform of Gab(x, 0) evaluated
at a uniform field configuration, and �(m,0)

a1···am
(q1, . . . , qm−1)

denotes the Fourier-transform of �(m,0)
a1···am

(x1, . . . , xm−1, 0)
evaluated at a uniform field configuration, where we denote

�
(n,m)
k,a1···an

(x1, . . . , xn; y1, . . . , ym)

= δn+m�k

δφa1 (x1) · · · δφan (xn)δK (y1) · · · δK (ym)
. (14)

The left-hand side of Eq. (12) is

∂t�
(2,0)
k,a1a2

(p) = δa1a2

(
∂tU

(1)
0 (ρ) + p2∂t Z0(ρ)

)
+ φa1φa2

(
∂tU

(2)
0 (ρ) + p2

2
∂tY0(ρ)

)
. (15)

Hence, to extract the flow of Z0(ρ), one needs to isolate the
contribution proportional to δa1a2 p2 from the right-hand side
of Eq. (12).

As mentioned earlier, to find the fixed point, it is necessary
to set a renormalization condition. In this paper, we have used
the standard renormalization condition

Z0(ρ = ρ̂) ≡ 1, (16)

where ρ̂ was chosen at 1/4 of the box in ρ used for the
numerical treatment. It should be noted that this renormaliza-
tion condition was used exclusively for the purpose of finding
the fixed point. As detailed below, to study the perturbations
around the fixed point, we have employed a slightly different
condition that optimizes the study of the linear analysis around
the fixed point.

At this point, it becomes clear that one can simply plug-in
the ansatz for the vertices, expand the propagator Gab(q + p)
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around q, and obtain an expression in terms of powers of p2.
However, when doing so straightforwardly, one includes terms
that come from the product of vertices that are of order q4 or
p2q2. These types of contributions are, in fact, of the same
order as contributions coming from a ∂4 term in the ansatz,
which was already neglected and can be dropped accordingly
in a consistent way a priori. In the literature, there are at
least two different implementations of the DE technique. We
will refer to the approximation where these kinds of terms
are neglected as the strict implementation of the DE, and
the one where those terms are kept is the fullansatz one.
It is worth mentioning that the full ansatz implementation
preserves some kinematic symmetries (of the exact theory)
which are lost when using the strict implementation. For ex-
ample, in the full ansatz version, all approximated vertices are
fully symmetric on the permutation of legs. This property is
only satisfied in the strict version up to higher orders of the
approximation.

In the absence of approximations, physically observable
quantities such as critical exponents should not depend on the
specific implementation of the FRG. In particular, they should
not depend on the regulator profile Rk (q). As a consequence of
performing approximations such as the derivative expansion,
this property is lost and the quantities become dependent on
the scheme employed. This is similar to what happens, for
example, in perturbation theory where the results often depend
on the renormalization scheme. Previous results in the context
of FRG [35] show that, for reasonable forms of the function
Rk (q), no significant dependence on the regulator is observed
except for the prefactor that fixes its scale, α. The central idea
of this paper, which is detailed below, is to use conformal
symmetry to fix the value of α as a way of optimizing the
derivative expansion to a given order. This idea was imple-
mented previously in the Ising universality class [38,39].

C. Eigenperturbations of flow equations around the fixed point

The relationship between scaling operators and the eigen-
perturbations of the RG flow at the fixed point was discussed
previously in Ref. [39]. Here we recall this relation in order
to apply it to O(N )-invariant models. To this end, consider a
fixed-point solution of Eq. (9) at zero source for the composite
operators, say �∗[φ̃, K̃ = 0], and let us study the flow around
it. One can define

γk[φ̃a] = �k[φ̃a, K = 0] − �∗[φ̃a, K = 0], (17)

substitute it into Eq. (9), and evaluate its flow near the fixed-
point solution at linear order in γk[φ̃a]. To simplify notation,
we will drop the tilde on quantities since we will only be
interested in dimensionless variables from this point onwards.
This procedure yields2

∂tγk[ �φ] +
∫

x
γ

(1)
k,a [ �φ; x](Dϕ + xμ∂μ)φa(x)

= 1

2
Tr

[
ṘkGk · γ

(2)
k [ �φ] · Gk

]
, (18)

2It is worth emphasizing that in Eq. (18), the term Ṙk stands for the
dimensionless version of it, made explicit in Eq. (9).

where, once again, the latin letters indicate the O(N ) color
indexes, and the trace stands for a volume integral to simplify
notation. In Eq. (18), we introduced the scaling dimension of
the field ϕ, Dϕ = (d − 2 + η∗)/2. To avoid having to consider
linear perturbations on the running anomalous dimension ηk ,
we adopt here a renormalization scheme where ηk is kept at its
fixed-point value, ηk = η∗,∀k. Close to the fixed point, this is
a valid renormalization scheme; see [5,39].

Considering Eq. (18), one can look for eigenperturbations,
namely solutions of the form

γk[ �φ] = exp(λt )γ̂ [ �φ], (19)

where γ̂ [ �φ] is t-independent. This leads to the following
eigenvalue equation:

λγ̂ [ �φ] = 1

2
Tr[ṘkG · γ̂ (2)[ �φ] · G]

−
∫

x
γ̂ (1)

a [ �φ; x](Dϕ + xμ∂μ)φa. (20)

Let us now relate the linearized flow around the fixed point
of the RG to the flow in the presence of the source K (x).
Let us start from (9) and consider the evolution of the linear
perturbation around zero sources:

�̂[ �φ] =
∫

x
�

(0,1)
k

∣∣∣
K=0

= −
〈 ∫

x
O(x)

〉
J,K=0

. (21)

It has the following flow equation:

∂t �̂k[ �φ] + (DO − d )�̂k[ �φ] = −
∫

x
�̂(1)

a [ �φ; x](Dϕ + xμ∂μ)φa

+ 1

2
Tr[ṘkGk · �̂

(2)
k [ �φ] · Gk],

(22)

which, evaluated at the generalized fixed point including
sources, where ∂t �̂

∗[ �φ] = 0, reduces to

(DO − d )�̂∗[ �φ] = −
∫

x
�̂∗(1)

a [ �φ; x](Dϕ + xμ∂μ)φa

+ 1

2
Tr

[
ṘkGk · �̂

∗(2)
k [ �φ] · Gk

]
, (23)

where, at the fixed point, DO = D∗
O is the scaling dimension

of the operator O. It becomes evident now, by comparing
Eqs. (20) and (23), that at the fixed point of the full effective
action in the presence of sources point, 〈∫x O(x)〉J,K=0 is an
eigenperturbation around the fixed point of the effective action
without sources. Moreover, the stability matrix eigenvalue λ

given in Eq. (19) and the scaling dimension DO of the operator
O(x) are related by

λ = DO − d. (24)

In fact, any linear perturbations around the fixed point can be
written as a linear combination of eigenperturbations. Accord-
ingly, without loss of generality, we will consider the source
K as being coupled to one such local eigenperturbation of the
RG fixed point.
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One should observe that Eqs. (18) and (20) can be gen-
eralized straightforwardly for any small perturbation around
the fixed point, whether or not it is rotation- or translation-
invariant, or even invariant under the internal symmetries of
the fixed point.

III. CONFORMAL GROUP SYMMETRY WITHIN THE
FUNCTIONAL RENORMALIZATION GROUP

In this section, we discuss symmetries and their realization
in the formalism of the FRG for the O(N ) model and in the
presence of a source for both the field and local composite
primary eigenoperators.

A. Ward identities for dilatation and conformal invariance

We assume hereafter that the integration measure in the
functional integral is invariant under all the conformal trans-
formations, namely translations, rotations, dilatations, and
special conformal transformations. These last two transforma-
tions are infinitesimally realized by the following variations of
the fields:

δdil ϕa(x) = ε(xμ∂μ + Dϕ )ϕa(x),

δconf ϕa(x) = εμ(x2∂μ − 2xμxν∂ν − 2xμDϕ )ϕa(x).
(25)

In a similar manner, a primary operator O(x) is a composite
operator3 that transforms in the same way as the field but with
a different scaling dimension DO:

δdil O(x) = ε(xμ∂μ + DO)O(x),

δconf O(x) = εμ(x2∂μ − 2xμxν∂ν − 2xμDO)O(x). (26)

This implies, in particular, that the operator O is associ-
ated with an eigenperturbation around the fixed point, as
mentioned before, but the condition to be primary is more
restrictive.

Starting from these transformation laws, inserting them
into the functional integral (3), and performing the Legendre
transformation described previously, one arrives [12,38,47–
49] at the modified version of the Ward identities (in the

presence of the regulator) for dilatations:∫
x

{
�

(1,0)
k,a (x)(Dϕ+xμ∂μ)φa(x)−K (x)(DO + xμ∂μ)�(0,1)

k (; x)
}

= −1

2

∫
x,y

∂t Rk (x, y)Gk,aa[x, y], (27)

and for special conformal transformations:∫
x

{
�

(1,0)
k,a (x)(x2∂μ − 2xμxν∂ν − 2xμDϕ )φa(x)

− K (x)(x2∂μ − 2xμxν∂ν − 2xμDO)�(0,1)
k (; x)

}
= 1

2

∫
x,y

(xμ + yμ)∂t Rk (x, y)Gk,aa[x, y], (28)

where it was used that

(2d − 2Dϕ + 2x2∂x2 )Rk (x2) = ∂t Rk (x). (29)

It is interesting to note that the modified dilatation Ward
identity (27) is merely the fixed point equation obtained by
setting ∂t�k[φ, K] = 0 in Eq. (9). Similarly, Eq. (23) is related
to the modified dilatation Ward identity of �̂[φ], obtained by
differentiating Eq. (27) with respect to K (y), evaluating at
K = 0, and integrating over y.

Since we are only interested in the K-independent or linear
dependence with K , we will limit ourselves to consider just
the vertices �(n,0)|K=0 and �(n,1)|K=0.

One can consider the vertices �(n,0)|K=0 in momentum
space. To do so, we evaluate the vertices at uniform field
and perform a Fourier-transform with respect to all but one
of the coordinates, which is set as the origin by exploiting
translation invariance. One proceeds similarly with �(n,1)|K=0.
We employ in that case the convention that the coordinate
that is not transformed and kept as a reference point is the
one associated with the point x with respect to which the
δ/δK (x) derivative is taken. With this prescription, dilatation
and conformal Ward identities take the following forms for
the vertices �(n,0)|K=0:

[(
n−1∑
i=1

pν
i

∂

∂ pν
i

)
− d + nDϕ + Dϕφi

∂

∂φi

]
�(n,0)

a1···an
(p1, . . . , pn−1) = Tr

[
Ṙk (q)G · H (n,0)

·a1···an·(p1, . . . , pn−1) · G
]
, (30)

n−1∑
i=1

[
pμ

i

∂2

∂ pν
i ∂ pν

i

− 2pν
i

∂2

∂ pν
i ∂ pμ

i

− 2Dϕ

∂

∂ pμ
i

]
�(n,0)

a1···an
(p1, . . . , pn−1) − 2Dϕφi

∂

∂rμ
�

(n+1,0)
ia1···an

(r, p1, . . . )

∣∣∣∣
r=0

= −
∫

q
Ṙk (q)Gbc(q)

(
∂

∂qμ
+ ∂

∂q′μ

){
H (n,0)

ca1···and (q, p1, . . . , pn−1, q′)
}∣∣∣∣

q′=−q

Gdb(q). (31)

In a similar way, for the vertices �(n,1)|K=0, these identities take the form[(
n∑

i=1

pν
i

∂

∂ pν
i

)
− DO + nDϕ + Dϕφi

∂

∂φi

]
�(n,1)

a1···an
(p1, . . . , pn) = Tr

[
ṘkG · H (n,1)

·a1···an·(p1, . . . , pn) · G
]
, (32)

3As pointed out before, we only consider composite operators O(x) which are scalars under isometries and O(N )-invariant.
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n∑
i=1

[
pμ

i

∂2

∂ pν
i ∂ pν

i

− 2pν
i

∂2

∂ pν
i ∂ pμ

i

+ 2(DO − d )
∂

∂ pμ
i

]
�(n,1)

a1···an
(p1, . . . , pn) − 2Dϕφi

∂

∂rμ
�

(n+1,1)
ia1···an

(r, p1, . . . )
∣∣∣
r=0

= −
∫

q
Ṙk (q)Gbc(q)

(
∂

∂qμ
+ ∂

∂q′μ

){
H (n,1)

ca1···and (q, p1, . . . , pn, q′)
}∣∣∣∣

q′=−q

Gdb(q). (33)

We would like now to highlight the fact that the dilatation Ward identities (30) and (32) are enough to obtain the solution to
the fixed point of the FRG flow equations. As a consequence, conformal Ward identities constitute over-restrictive constraints
that must be automatically satisfied by the solutions of the dilatation equations.

B. Compatibility between dilation and conformal identities for the �
(2,0)
k

The dilatation and conformal Ward identities are, in principle, inequivalent. Since the fixed point of the FRG equation (9) is
equivalent to the dilatation Ward identity, and conformal symmetry is satisfied at criticality (or at least we assume this to be the
case), one expects that the conformal Ward identity could be verified once dilatation and isometries are imposed. However, this is
far from trivial, although there exist some sufficient conditions [12,50] under which, for certain models, it can indeed be proven
[12,13]. Even in those cases, the relation between the form of special conformal Ward identities and those of dilation symmetry
are far from trivial and, up to now, have not been elucidated. There is an exception where the form of special conformal and
dilation invariance is simple: we now recall that for O(N ) models, the conformal Ward identity for the vertex �

(2,0)
k,n1n2

(p) is not
independent of the dilatation Ward identity for the same vertex.

To show this, let us first examine the aspect of the identities whose dependence we want to demonstrate. The dilation Ward
identity for �

(2,0)
k,n1n2

(p) is given by[
pμ ∂

∂ pμ
− d + 2Dϕ + φiDϕ

∂

∂φi

]
�

(2)
k,ab(p) =

∫
q

Ṙ(q)Gi j (q)H (2)
jabk (q, p,−q)Gki(q), (34)

while the special conformal transformation identity reads[
pμ ∂2

∂ pν∂ pν
− 2pν ∂2

∂ pν∂ pμ
− 2Dϕ

∂

∂ pμ

]
�

(2)
k,ab(p) − 2Dϕφi

∂

∂rμ
�

(3)
iab(r, p)

∣∣∣∣
r=0

= −
∫

q
Ṙ(q)Gi j (q)

{(
∂

∂qμ
+ ∂

∂q′μ

)
H (2)

jabk (q, p, q′)

}∣∣∣∣∣
q′=−q

Gki(q). (35)

To begin with, consider the second term on the left-hand side (l.h.s.) of (35), the term including a derivative of �
(3,0)
k,iab. After a

somewhat straightforward manipulation:

φi
∂

∂rμ
�

(3)
k,iab(r, p)

∣∣∣∣
r=0

= φi
∂

∂rμ

[
�

(3)
iba(r,−p − r)

]∣∣∣∣
r=0

= φi
∂

∂rμ
�

(3)
k,iab(r,−p − r)

∣∣∣∣
r=0

= φi
∂

∂rμ

[
�

(3)
k,iab(−r, p + r)

]∣∣∣∣
r=0

= −φi
∂

∂rμ

[
�

(3)
k,iab(r, p)

]∣∣∣∣
r=0

+ φi
∂

∂ pμ
�

(3)
k,iab(0, p) = 1

2

∂

∂ pμ
φi

∂

∂φi
�

(2)
k,ab(p), (36)

which reduces to

−2Dϕφi
∂

∂rμ
�

(3,0)
k,iab(r, p)

∣∣∣∣
r=0

= −Dϕ

∂

∂ pμ
φi

∂

∂φi
�

(2)
k,ab(p). (37)

In (36), it was used first that, due to the O(N ) symmetry, any rank-2 tensor is proportional to either δab or φaφb—both structures
symmetric under the exchange of a and b—and secondly, in the third line, the invariance under parity transformation. A very
similar treatment can be given to the right-hand side (r.h.s.) of (35), and one finds[

Gi j (q)

{(
∂

∂qμ
+ ∂

∂q′μ

)
H (2)

jabk (q, p, q′)
}

Gki(q
′)
]∣∣∣∣

q′=−q

=
[

Gi j (q)

(
2

∂

∂ pμ
H (2)

jabk (q, p, q′) −
(

∂

∂qμ
+ ∂

∂q′μ

)
H (2)

jabk (q, p, q′)
)

Gki(q
′)
]∣∣∣∣

q′=−q

= Gi j (q)

(
∂

∂ pμ
H (2)

jabk (q, p,−q)

)
Gki(−q). (38)

To obtain the first equality, the same reasoning presented in (36) is followed. The second equality, in which the arguments q, q′
in H (2)

a jkb are exchanged, holds only due to the presence of the propagators.
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Let us now consider a derivative of Eq. (34) with respect to pμ:

∂

∂ pμ

[(
pν ∂

∂ pν
− d + 2Dϕ + φiDϕ

∂

∂φi

)
�

(2)
k,ab(p; φ)

]
=

(
pν ∂2

∂ pν∂ pμ
+ (2Dϕ − d + 1)

∂

∂ pμ
+ Dϕ

∂

∂ pμ
φi

∂

∂φi

)
�

(2)
k,ab(p; φ)

=
(

−pμ ∂2

∂ pν∂ pν
+ 2pν ∂2

∂ pν∂ pμ
+ 2Dϕ

∂

∂ pμ
+ Dϕ

∂

∂ pμ
φi

∂

∂φi

)
�

(2)
k,ab(p; φ)

+
(

pμ ∂2

∂ pν∂ pν
− pν ∂2

∂ pν∂ pμ
+ (1 − d )

∂2

∂ pμ

)
�

(2)
k,ab(p; φ). (39)

The last line in (39) is merely the derivative with respect
to pν of the Ward identity related to rotational invariance of
�

(2,0)
k,ab (p): (

pμ ∂

∂ pν
− pν ∂

∂ pμ

)
�

(2)
k,ab(p; φ) = 0. (40)

Therefore, the last line of Eq. (39) is identically zero. What is
left is merely the l.h.s. of Eq. (35), after one has incorporated
the observation (36). In the same way, it can be readily seen
that the derivative of the r.h.s. of Eq. (34) with respect to pμ

is simply the r.h.s. of Eq. (35), as seen in (38). Hence, the
special conformal Ward identity for the vertex �

(2,0)
k,ab (p) holds

true once translation, rotation, dilation, and parity symmetries
are enforced. It is worth noting that for �(n) vertices with
n > 2, a simple relation like the one just mentioned is not
known.

IV. CONFORMAL CONSTRAINTS DERIVATIVE
EXPANSION RESULTS

In this section, we study the conformal symmetry group
upon the implementation of the DE and present our results.
First, we establish the condition that must be satisfied if
special conformal transformation symmetry is to hold at crit-
icality, but that is ultimately violated for O(N ) models due
to the approximation being implemented, i.e., the truncation
in the effective action. We first consider the more physical
and interesting models O(1), O(2), O(3), and O(4). Then we
consider larger values of N , namely the O(10), O(20), and
O(100) models, and we compare with predictions coming
from the large-N expansion [51]. A qualitative change is then
shown in the behavior for the critical exponent ω with respect
to small values of N . We therefore consider a third study case
that consist in the O(5) model where a pathology is observed.
Finally, we consider the extension of the O(N ) models to
the nonpositive values of N which are related to nonunitary
models, and we study the cases of N = 0 and −2.

A. The derivative expansion in the presence of composite
operators and the special conformal constraint

In this section, we employ the derivative expansion to find
solutions to the dilatation Ward identity corresponding to the
critical fixed point of O(N ) models for finite values of N ,
and we analyze the behavior of the special conformal Ward
identity. For this purpose, we will generalize the strategy ini-
tially presented for the case N = 1 in Ref. [39]. In a succinct
manner, the procedure is as follows: we consider the ansatz for
the effective action given in Eq. (11) and insert it into the Ward

identity for dilatations, which, as seen in the previous sections,
amounts to finding a fixed-point solution to the FRG flow
equation (9). From this, we can extract a set of independent
equations that allows us to solve all functions of the ansatz.

Evaluating at K = 0 the equations corresponding to the
vertices �

(1,0)
k,a and �

(2,0)
k,ab yields the fixed-point functions

U0, Z0, and Y0 (which are denoted with a star, i.e., U ∗
0 , Z∗

0 ,
and Y ∗

0 ) following the procedure described in Appendix B.
The corresponding equations are given in the Supplemental
Material [52]. A remark is now necessary: the equations for
the functions U0, Z0, and Y0 obtained from a �

(n,0)
k vertex are

independent from those coming from the vertex �
(n,1)
k .4 This

implies that there is no feedback from functions U1, Z1, Y1,
and ϒ on U0, Z0, and Y0.

Once the fixed-point functions, in the absence of the source
for composite operators, are obtained, we switch on the source
K in order to simultaneously determine the fixed-point solu-
tion for the functions U1, Z1, and Y1 and find the value of DO.
It so happens that these are independent of the function ϒ for
structural reasons; see [39]. While the solutions for U ∗

0 , Z∗
0 ,

and Y ∗
0 are unique for each fixed point of the theory, there is an

infinite discrete set of solutions for U ∗
1 , Z∗

1 , and Y ∗
1 (and DO)

once the fixed point has been chosen: each corresponds to a
particular scaling operator O (or, in equivalent terms, to a par-
ticular eigenperturbation around a given fixed point). In this
work, we will concentrate on the scaling operators associated
with the critical exponent ν, which is the relevant one for the
critical point, and the one associated with the critical exponent
ω, corresponding to the first correction to scaling. It should be
noted that, because the modified conformal identity for �

(2,0)
k,ab

is automatically satisfied at the fixed point for O(N ) models as
shown in Sec. III B, it is not possible to use the present strategy
for the purpose of optimizing the exponent η at order O(∂2)
of the DE. It is possible to obtain an optimization criterion for
the exponent at the next order of this expansion [38].

The last step of the algorithm consists in determining the
function ϒ , using that its dilatation Ward identity is a lin-
ear differential equation and that all the other functions of
the ansatz have already been fixed. It is worth emphasizing
that the function ϒ does not affect the eigenperturbations
for uniform values of K , although it is part of the general
ansatz expression, because it expresses the behavior of the
scaling operator in the presence of inhomogeneous sources
K (x). As we discuss below, this function plays an important

4It is a general property that the equation for �
(n,m)
k is independent

of the vertices �
(n′,m′ )
k given that m′ > m; see [39].
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TABLE I. Results obtained, with their corresponding error bars,
for the Z2 model (corresponding to N = 1). We report the predicted
exponents through both the PMC and PMS criteria with the full ver-
sion of the DE at order O(∂2). We also include the results, for various
orders of the DE, obtained with the strict version from [29,35]. As a
comparison benchmark, we include as well the most precise available
results from the CB program ([27] for ν and η, and [53] for ω).

ν η ω

O(∂2)fPMC 0.6308(27) 0.849(49)
O(∂2)fPMS 0.6309(27) 0.0387(55) 0.848(49)
O(∂2)sPMS 0.6308(27) 0.0387(55) 0.870(55)
O(∂4)sPMS 0.62989(25) 0.0362(12) 0.832(14)
O(∂6)sPMS 0.63012(16) 0.0361(11)
CB 0.62997097(12) 0.03629761(5) 0.82968(23)

role in the conformal constraint precisely for this reason. The
equations that define functions U1, Z1, Y1, and ϒ can be found
in the Supplemental Material [52].

Before proceeding with the discussion of the conformal
constraint, it will prove useful to analyze the behavior of the
fixed-point equations for the perturbation functions for large
values of ρ. A property inherited directly from the one-loop
structure of the FRG evolution equation for �k [Eq. (38)]
and the subsequent change to dimensionless variables is that
fixed-point equations have a dimensional part and a loop con-
tribution. In the large-ρ region, the loop contribution to the
equations is negligible in comparison with the dimensional
part, as can be readily checked. This implies, as a direct
consequence, that the behavior of functions Z1, Y1, and ϒ at
large values of ρ is the following:

Z1(ρ) ∼
ρ�1

AZ1ρ
(DO−d−η)/(d−2+η),

Y1(ρ) ∼
ρ�1

AY1ρ
(DO−2d+2−2η)/(d−2+η),

ϒ(ρ) ∼
ρ�1

Aϒρ (DO−2)/(d−2+η),

(41)

where AY1 , AZ1 , and Aϒ are constants that are fixed up to a
normalization. These constant are, in fact, determined by the
behavior at smaller values of ρ, a regime in which the loop
term intervenes.

TABLE II. Results obtained, with their corresponding error bars,
for the O(2) model. We report the predicted exponents through both
the PMC and PMS criteria with the full version of the DE at order
O(∂2). We also include the results obtained with the strict version
from [29]. As a comparison benchmark, we include as well the most
precise available results from MC calculations [14] and conformal
bootstrap restrictions [25].

ν η ω

O(∂2)fPMC 0.6726(52) 0.786(29)
O(∂2)fPMS 0.6727(52) 0.0408(58) 0.787(30)
O(∂2)sPMS 0.6725(52) 0.0410(59) 0.798(34)
O(∂4)sPMS 0.6716(6) 0.0380(13) 0.791(8)
MC (2019) 0.67169(7) 0.03810(8) 0.789(4)
CB 0.6718(1) 0.03818(4) 0.794(8)

TABLE III. Results obtained, with their corresponding error
bars, for the O(3) model. We report the predicted exponents through
both the PMC and PMS criteria with the full version of the DE
at order O(∂2). We also include the results obtained with the strict
version from [29]. As a comparison benchmark, we include as well
the most precise available results from the ε-expansion to ε6 order
[18] for ω and combined MC calculations with high-temperature
expansion [54] for ω.

ν η ω

O(∂2)fPMC 0.7125(71) 0.744(26)
O(∂2)fPMS 0.7126(71) 0.0405(58) 0.746(26)
O(∂2)sPMS 0.7125(71) 0.0408(58) 0.754(34)
O(∂4)sPMS 0.7114(9) 0.0376(13) 0.769(11)
ε-exp, ε6 0.7059(20) 0.0378(5) 0.795(7)
MC + High T 0.7112(5) 0.0375(5)

Let us now consider special conformal symmetry. When
inserting the ansatz into the conformal Ward identity for the
vertex �

(1,1)
k,�a , one arrives at a relation that has the following

form:

CL(ρ) ≡ 2((d − 2)ϒ ′(ρ) + 4ρDϕϒ ′′(ρ)

− Dϕ (Z1(ρ) + ρY1(ρ))) = CR(ρ), (42)

where the term CR(ρ) corresponds to the loop contribution
that is given in the Supplemental Material [52]. As discussed
previously, all functions are already determined by means
of the modified dilatation Ward identities. This implies that
Eq. (42) is an overconstraint that will be, generically, vio-
lated once approximations are performed. In particular, this
applies also to the large field behavior for each function in
the ansatz which is given in (41). Now, at large fields, as was
the case when discussing the asymptotic behavior of Z1, Y1,
and ϒ , the constraint given in Eq. (42) is dominated only by
its left-hand side. However, when substituting the large field
behavior (41), the whole expression scales at large fields as
ρ (DO−d−η)/(d−2+η). Unless the following relationship holds:

Aϒ = 2D2
ϕ

AZ1 + AY1

(DO − 2)(d + 2DO − 4Dϕ − 6)
, (43)

the large-field behavior of the conformal constraint will be
suppressed for relevant perturbations and will grow as a power
law for irrelevant perturbations. These constant prefactors,
as previously explained, are determined by the small and

TABLE IV. Results obtained, with their corresponding error bars,
for the O(4) model. We report the predicted exponents through both
the PMC and PMS criteria with the full version of the DE at order
O(∂2). We also include the results obtained with the strict version
from [29]. As a comparison benchmark, we include as well the most
precise available results from MC calculations [55].

ν η ω

O(∂2)fPMC 0.749(8) 0.723(26)
O(∂2)fPMS 0.749(8) 0.0387(55) 0.723(26)
O(∂2)sPMS 0.749(8) 0.0389(56) 0.731(34)
O(∂4)sPMS 0.7478(9) 0.0360(12) 0.761(12)
MC 0.74817(20) 0.0360(4) 0.755(5)
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TABLE V. Results obtained, with their corresponding error bars,
for the O(10) model. We report the predicted exponents through both
the PMC and PMS criteria with the full version of the DE at order
O(∂2). We also include the results obtained with the strict version
from [29] and the results coming from the 1/N expansion to (1/N3)
order.

ν η ω

O(∂2)fPMC 0.879(10) 0.782(26)
O(∂2)fPMS 0.879(10) 0.0236(34) 0.783(26)
O(∂2)sPMS 0.877(11) 0.0240(34) 0.788(26)
O(∂4)sPMS 0.8776(10) 0.0231(6) 0.807(7)
Large N 0.87(2) 0.023(2) 0.77(1)

medium field regime of the modified dilatation Ward identi-
ties. In the exact theory, Eq. (43) would be satisfied, but it is
not in view of the approximations implemented, namely the
DE.5 To overcome this obstacle and to be able to evaluate
the conformal constraint (42) without the large field bias, we
normalize it in the following manner:

f (ρ; α) = [CL(ρ) − CR(ρ)]

(
1 + ρ

ρ0

) d+η−DO
d−2+η

, (44)

where we have also introduced an intermediate scale ρ0 in
order to avoid spoiling the small field behavior. In general,
we choose ρ0 as the minimum of the potential.6 We remark
that this value of ρ0 is an α-dependent parameter that also
levels the comparison of the conformal constraint for different
values of α.

One way of exploiting the normalized conformal constraint
(44) is to use it in order to fix spurious parameters of the
scheme by means of what we called the PMC criterion. The
idea is to evaluate the f function at the fixed point and search
for which values of the scheme parameter α, say αPMC, the
function is closer to zero with regard to some measure. Since
for each value of α there’s a whole function of ρ, there are
many possible implementations of the PMC idea. In this and
previous works [38,39], we chose to fix αPMC as the value of
α for which the function f (ρ = 0, α) is closer to zero. It is
worth emphasizing that different implementations of the PMC
criterion lead to results that are compatible (that is, within
error bars).

We comment here on one such possible alternative imple-
mentation of this PMC criterion. Given the fact that Eq. (43) is
a relation that should be satisfied in the exact theory, one could
try to implement a similar procedure to the one proposed be-
fore but using only this simple linear expression. That is, one
can optimize the conformal constraint at large fields instead of
at ρ = 0. For example, one can obtain the coefficients AZ1 , AY1 ,

5The large-field behavior grows as a power law for irrelevant per-
turbations that satisfy DO > d + η, which in practice is all irrelevant
perturbations for the O(N ) model.

6Given the fact that for the case N = −2 the minimum is located at
ρ = 0, we use a different criterion for ρ0 in (44) for this model. We
choose, for this case, the first local extremum of the Y0 function—
since Z0 does not have an extreme in the studied region.

TABLE VI. Results obtained, with their corresponding error
bars, for the O(20) model. We report the predicted exponents through
both the PMC and PMS criteria with the full version of the DE
at order O(∂2). We also include the results obtained with the strict
version from [29] and the results coming from the 1/N expansion to
(1/N3) order.

ν η ω

O(∂2)fPMC 0.9429(46) 0.886(14)
O(∂2)fPMS 0.9428(46) 0.0126(18) 0.886(14)
O(∂2)sPMS 0.9414(49) 0.0130(19) 0.887(14)
O(∂4)sPMS 0.9409(6) 0.0129(3) 0.887(2)
Large N 0.941(5) 0.0128(2) 0.888(3)

and Aϒ from the asymptotic behavior of the corresponding
functions and then consider the difference of the l.h.s. and
r.h.s. of Eq. (43) normalized by its l.h.s.:

g(α) ≡ 1 − 2D2
ϕ

(DO − 2)(d + 2DO − 4Dϕ − 6)

AZ1 + AY1

Aϒ

.

(45)
When studying the g(α) function defined in (45), two

different scenarios arise: if one considers irrelevant pertur-
bations, say, for example, the one associated with the first
correction to scaling given by the critical exponent ω, the
results obtained are almost identical to the ones (that we
present below) obtained by studying the function f (ρ; α) and
using the proposed PMC criterion at ρ = 0; however, if one
considers the (even) relevant perturbation associated with the
critical exponent ν, a PMC criterion employed on the g(α)
function no longer works. This is due to the fact that the l.h.s.
and r.h.s. of (43) are very similar and their difference is of two
orders of magnitude smaller, implying a compatibility (within
the expected uncertainties) with zero of the whole function
g(α) (at least in the considered range). This, in turn, makes it
impossible to use it as a reliable way of fixing the regulator
parameter α with the level of accuracy of the present order of
approximation, namely order O(∂2). That is, the conformal
constraint is very well satisfied (compared to the expected
uncertainties) at large fields for all values of α for the even
relevant perturbation. Accordingly one cannot employ the
large field regime for that particular perturbation in order to
optimize the DE.

All the analyzed values of N were studied previously in
detail, with regard to critical exponents and the DE, in the
study presented in [29]. However, even though it was per-
formed at order O(∂4) of the DE [or even at order O(∂6)
for N = 1 [35]], it was done using the strict version of the
DE expansion. In this work, as we already mentioned, we
will consider the full version of the scheme.7 This provides
us with the opportunity to compare both truncations at order
O(∂2) of the DE. As can be seen from Tables I–X, for all
exponents and for all values of N , the PMS criterion gives
almost identical results, with differences well below the error
bars for both implementations. This first comparison between

7The full version of the DE was considered at order O(∂4) in [31],
although a field expansion was considered on top of it.
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TABLE VII. Results obtained, with their corresponding error
bars, for the O(100) model. We report the predicted exponents
through both the PMC and PMS criteria with the full version of the
DE at order O(∂2). We also include the results obtained with the strict
version from [29] and the results coming from the 1/N expansion to
(1/N3) order.

ν η ω

O(∂2)fPMC 0.98939(82) 0.9771(29)
O(∂2)fPMS 0.98939(82) 0.00259(37) 0.9782(32)
O(∂2)sPMS 0.9892(11) 0.00257(37) 0.9782(26)
O(∂4)sPMS 0.9888(2) 0.00268(4) 0.9770(8)
Large N 0.9890(2) 0.002681(1) 0.9782(2)

the full and strict versions of the DE seems to demonstrate
their equivalence [at least up to the precision level of the order
O(∂2) of the DE] as one could a priori expect, since they
differ by higher-order terms. A similar comment applies when
using the PMC criterion, except for the critical exponent η,
where we do not have at our disposal a constraint because,
as explained before, there is no conformal constraint for the
leading odd operator. Consequently, we cannot use PMC to
fix a criterion at this order of the DE for that exponent.

In what follows, we restrict our analysis to two widely
utilized families of such regulating functions,

Ek (q2) = αZkk2e−q2/k2
,

Wk (q2) = αZkk2 q2/k2

eq2/k2 − 1
,

(46)

which we term, respectively, exponential and Wetterich [3]
regulators.

The procedure for calculating the error bars has been the
same as that previously used and detailed in Refs. [29,30].
For the interested reader, we recommend consulting these
references for a detailed explanation of the procedure. We will
limit ourselves here to saying that for the basic concept, i.e.,
having detected a small parameter for the DE behavior of the
order of ∼1/4, it is to be expected that the error made at a
given order of the expansion will be approximately one-fourth
of the difference between that order and the previous one.

TABLE VIII. Results obtained, with their corresponding error
bars, for the O(5) model. We report the predicted exponents through
both the PMC and PMS criteria with the full version of the DE at
order O(∂2) for exponent ν, and the PMS results for η and ω—in the
text it is explained why there is not PMC prediction for ω. We also
include the results obtained with the strict version from [29] and the
results from MC calculations for ν [59] and the 1/N expansion to
(1/N3) order.

ν η ω

O(∂2)fPMC 0.782(9)
O(∂2)fPMS 0.7823(79) 0.0361(52) 0.716(26)
O(∂2)sPMS 0.782(8) 0.0364(52) 0.724(34)
O(∂4)sPMS 0.7797(9) 0.0338(11) 0.760(18)
MC 0.728(18)
Large N 0.71(7) 0.031(15) 0.51(6)

TABLE IX. Results obtained, with their corresponding error
bars, for the O(0) model. We report the predicted exponents through
both the PMC and PMS criteria with the full version of the DE
at order O(∂2). We also include the results obtained with the strict
version from [29] as well as the most precise results in the literature,
coming from MC calculations [60,61].

ν η ω

O(∂2)fPMC 0.5879(11) 0.949(76)
O(∂2)fPMS 0.5879(11) 0.0330(47) 0.946(76)
O(∂2)sPMS 0.5879(13) 0.0326(47) 1.00(19)
O(∂4)sPMS 0.5876(2) 0.0312(9) 0.901(24)
MC 0.58759700(40) 0.0310434(30) 0.899(14)

Such an analysis can be slightly improved in cases in which
the physical canditates show an oscillation of values between
successive orders.

B. Results for N = 1, 2, 3, and 4

Let us begin by considering the physically interesting Z2

[equivalent to O(1)], O(2), O(3), and O(4) models. Since we
only seek here to explore the plausibility of implementing the
conjectured conformal symmetry to extract physical predic-
tions, we present a comparison with previous results within
DE and the most precise result available in the literature.

We now discuss the behavior of the f (ρ; α) function given
in Eq. (44) for small values of N . All models considered here
show a qualitatively similar behavior for both the relevant per-
turbation, ν, and the least irrelevant perturbation, ω [as can be
seen in Figs. 1–4 for the O(2) and O(4) models, for example].

FIG. 1. Function f (ρ, α) corresponding to the relevant perturba-
tion ν for the O(2) model. The continuous line indicates the αPMC

value, while the dashed one indicates the αPMS one. This figure cor-
responds to calculations performed with the exponential regulator
given in (46). The value of the function f is indicated by the color as
indicated by the bar to the right of the figure.

054126-11



CABRERA, DE POLSI, AND WSCHEBOR PHYSICAL REVIEW E 111, 054126 (2025)

FIG. 2. Function f (ρ, α) corresponding to the irrelevant pertur-
bation ω for the O(2) model. The continuous line indicates the αPMC

value, while the dashed one indicates the αPMS one. This figure cor-
responds to calculations performed with the exponential regulator
given in (46). The value of the function f is indicated by the color as
indicated by the bar to the right of the figure.

In all these cases, there was a region of the parameter α of the
regulator family in which the conformal constraint breaking
was minimized. As can be seen in the mentioned figures,
the corresponding αPMC differed only by a factor of order 1
from those coming from the PMS criterion. Considering the
weak dependence of the critical exponents in the α parameter

FIG. 3. Function f (ρ, α) corresponding to the relevant perturba-
tion ν for the O(4) model. The continuous line indicates the αPMC

value, while the dashed one indicates the αPMS one. This figure cor-
responds to calculations performed with the exponential regulator
given in (46). The value of the function f is indicated by the color as
indicated by the bar to the right of the figure.

FIG. 4. Function f (ρ, α) corresponding to the irrelevant pertur-
bation ω for the O(4) model. The continuous line indicates the αPMC

value, while the dashed one indicates the αPMS one. This figure cor-
responds to calculations performed with the exponential regulator
given in (46). The value of the function f is indicated by the color as
indicated by the bar to the right of the figure.

over such variations, our studies yield very similar results for
ν and ω by imposing either the PMC or PMS criteria. Our
results, compared to those from the strict version of the DE
and the most precise available estimation, are presented in
Tables I–IV. For all considered cases, and for both ν and ω, the
predictions using either PMS or PMC criteria coincide within
error bars, sometimes even having identical central values.

C. Results for larger values of N

Let us now turn our attention to large values of N—namely,
the O(10), O(20), and O(100) models. Even though they lack
physical realizations, they are of theoretical interest because
the exact solution for the large-N limit was calculated decades
ago, and thus they have been the leading corrections in a 1/N
expansion [56–58]. Therefore, our results can be compared to
the exact asymptotic critical exponents. These expressions for
η, ν, and ω read

η = 8

3π2

1

N
− 512

27π4

1

N2
− 8

27π6

1

N3

×
[

797

18
− ζ (2)

(
27 ln(2) − 61

4

)
+ ζ (3)

189

4

]

+ O

(
1

N4

)

ν = 1 − 32

3π2

1

N
− 32

27π4
(27π2 − 112)

1

N2
+ O

(
1

N3

)

ω = 1 − 64

3π2

1

N
+ 128

9π4

(
104

3
− 9π2

2

)
1

N2
+ O

(
1

N3

)
.

(47)
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FIG. 5. Function f (ρ, α) corresponding to the irrelevant pertur-
bation ω for the O(5) model. The dashed line indicates the αPMS

value. Notice that the function | f (ρ, α)| presents a maximum, rather
than a minimum, thus the absence of the αPMC value. This figure cor-
responds to calculations performed with the exponential regulator
given in (46).

In Tables V–VII we present our results compared to the
ones from the strict version and those of the large-N expan-
sion. For these, we employ (47) to estimate the central values
and the difference between the two last calculated orders in the
expansion to approximate their error bars. Although this may
be too pessimistic an estimation, we prefer to be conservative.

As can be readily seen, for these large values of N also the
PMC and PMS criteria lead again to equivalent predictions
with identical error bars and very similar central values for
both ν and ω. Furthermore, our results are in agreement with
the large-N expansion. This allows us to suppose that as N is
increased, the DE converges nicely to the exact solution.

D. The O(5) model: A pathology in the conformal constraint

Both for N � 4 and for large values of N , the comparison
of the PMS and PMC criteria works very well for the critical
exponent considered, ν or ω. However, a peculiar situation
arises for the N = 5 case, as we discuss now.

If one considers the leading scaling operator associated
with the critical exponent ν, one arrives, as before, at similar
curves and conclusions to those for other values of N . How-
ever, the situation changes drastically when considering the
first correction to scaling associated with critical exponent ω.

In Fig. 5, the conformal constraint (42) as a function of
ρ and α is shown. It is evident that something different
is happening and, moreover, the opposite conclusion should
be extracted, i.e., that the region where PMS is realized is
the worst case according to conformal symmetry. To under-
stand this, we notice that ignoring everything about conformal
symmetry, the behavior is the same as for any other value
of N , with one exception. This is, whether we look at the

FIG. 6. Behavior of the critical exponent ω, related to the first
correction to scaling, as a function of the regulator parameter α, for
the O(5) model. The represented curve corresponds to the exponen-
tial regulator given in (46).

usual ω(α) curve shown in Fig. 6 or at the fixed-point so-
lutions for the functions U1, Z1, and Y1, obtained from the
dilatation Ward identity, as a function of ρ and α (see, for
example, the function Z1 shown in Fig. 7), all functions are
regular. However, the function ϒ presents a singular behav-
ior, as shown in Fig. 8, where ϒ ′(ρ), as a function of the

FIG. 7. Evolution of the profile Z1(ρ ) as the N parameter is
varied from N = 4 to 5 for the least irrelevant perturbation. The
curves correspond to α = 1, using the exponential regulator given in
(46). As can be readily seen, the successive profiles evolve smoothly
through the (unphysical) noninteger N values.
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FIG. 8. Evolution of the ansatz function ϒ ′(ρ ) for a fixed value
of ρ and regulator parameter α = 1, while changing the N parameter
characterizing the O(N ) symmetry from N = 4 to 5. The value of ρ

was chosen to be the middle of the considered box. The qualitative
behavior is independent of this choice, and is exhibited for every
value of ρ taken into consideration.

value of the N parameter of the O(N ) symmetry, is rep-
resented for fixed values of ρ and α. As can be seen, the
function does not evolve smoothly between the two physi-
cal values N = 4 and 5, but instead shows a nonanalyticity
near N ≈ 4.5. The value of N where the divergent behavior
takes place depends on the regulator—for this plot, the ex-
ponential one was employed—and the α parameter, although
it seems to be independent of the ρ value. Further increas-
ing N leads to a smooth behavior for all considered values
of N .

It so happens that the dilatation equation that fixes ϒ has
the following structure:

[2 − DO + 2Dϕ + 2Dϕρ∂ρ − L1]ϒ ′(ρ) = L0, (48)

where the functions L0 and L1 are the loops contributions,
which are functions of ρ and depend on the fixed-point solu-
tions of U ∗

0 , U ∗
1 , Z∗

0 , Z∗
1 , Y ∗

0 , and Y ∗
1 . However, since all these

functions (and also DO) are independent of ϒ , one is able to
find ϒ by inverting the operator:

Dϒ ≡ 2 − DO + 2Dϕ + 2Dϕρ∂ρ − L1. (49)

However, when analyzing the operator Dϒ , one finds that it
has a zero eigenvalue and, consequently, it provokes a singular
behavior in ϒ , see Fig. 9, for a value of N ≈ 4.4, which
depends weakly on α, as can be seen in Fig. 9. Now, this
singular behavior, by its own, does not affect the extraction
of scaling dimensions from dilatation itself. This is because
ϒ does not feed back into the modified dilation equations that
fix the other functions along with the scaling dimension DO.
However, the function ϒ has a very important role in the
conformal constraint; see Eq. (42). In particular, it enters in
the left-hand side, nonloop term, which eventually ends up
spoiling the whole analysis of the conformal constraint. It is

FIG. 9. Smallest modulus eigenvalue of the operator defined in
Eq. (42) when the least irrelevant perturbation is considered, as N
is increased from 4 to 5. The curves for various values of α were
obtained employing the exponential regulator given in (46). For every
value of α considered in the range [0.5, 5], this eigenvalue presents a
zero crossing in which the operator (42) becomes noninvertible, thus
leading to an ill-defined ϒ function, which in turn prevents PMC
from being applied, as explained in the text.

worth mentioning that this phenomenon affects also the values
of N = 6 and 7 but to a lesser extent (in particular, there is a
PMC value for ω for N = 7), and somehow this does not seem
to affect the case N = 4. This is clearly an artifact of the DE
approximation.

How to overcome this issue remains a question to be in-
vestigated. In particular, it must be studied how the effect
of this problem evolves as one considers higher orders of
the DE. A first possibility is that this zero eigenvalue of
the operator in Eq. (49) disappears. A second possibility
may be that the degree of affectation of the singularity in
ϒ becomes narrower and does not affect integer values of
N . One final hypothesis that we can think of is that this
singularity moves to nonpositive values of N where the re-
alization of conformal symmetry is not known to hold and,
moreover, this remains as an indicator that this is indeed
the case.

TABLE X. Results obtained, with their corresponding error bars,
for the O(−2) model. We report the predicted exponents through
both the PMC and PMS criteria with the full version of the DE
at order O(∂2). We also include the results obtained with the strict
version from [29]. As a comparison benchmark, we include the exact
values for ν and η, and a perturbative estimation for ω [62,63].

ν η ω

O(∂2)fPMC 0.5000(11) 0.818(76)
O(∂2)fPMS 0.5000(11) 0.0000(47) 0.820(76)
O(∂2)sPMS 0.5000(12) 0.0000(47) 0.84(19)
O(∂4)sPMS 0.5001(1) 0.0004(9) 0.838(24)
exact/6-loop 1/2 0 0.83(1)
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TABLE XI. Raw data for the O(1) model. We present PMS
results for ν, η, and ω, and PMC values for ν and ω, corresponding
to the exponential and Wetterich regulators.

Regulator ν η ω

PMC E 0.62783 0.84889
W 0.62816 0.84820

PMS E 0.62796 0.04477 0.84828
W 0.62822 0.04426 0.84800

E. Nonunitary models: The analytical extension
to N = −2 and 0

As a final comment, we present our results for two inter-
esting cases which constitute an analytical continuation of the
O(N ) model equations: N = 0 and −2. The results obtained
in this work for these two nonunitary models are presented
in Tables IX and X. As was the case for all the preceding
values of N studied—with the exemption of N = 5 for ω—
we observe an excellent agreement between our PMS and
PMC results, with central values differing by no more than
3% and identical error bars. When compared with the strict
results, however, we obtain slightly more precise results for
the nontrivial exponent ω—our error bars are slightly below
one-half those of the corresponding strict version. As for the
central values, once again both implementations of the DE are
compatible well below the expected precision of the method at
the present order. As a final remark, we would like to highlight
that our results are compatible with discrepancies with the
exact result for ν and the most precise perturbative result
for ω.

Our results pose a very interesting question. While for
natural values of N there exist clear mappings from the Eu-
clidean classical O(N )-scalar models to unitary theories in
Minkowskian spacetime, this is not the case for the O(0) and
O(−2) models. For the former, as explained previously, there
are very good reasons to expect the emergence of conformal
symmetry in the critical regime, and this, as a matter of fact,
has indeed been proven for a few cases. Nevertheless, for the
latter, it remains an open question even whether satisfying
conformal symmetry has a physical interpretation, let alone
understanding how it could emerge in the critical regime.
In view of this, having reasonable results coming from im-
posing the minimal breaking of the (analytical extension to
non-natural values of N of the) SCT Ward identity suggests
that conformal symmetry, in some yet-to-be understood sense,
does take place in the critical regime and can be used to extract

TABLE XII. Raw data for the O(2) model. We present PMS
results for ν, η, and ω, and PMC values for ν and ω, corresponding
to the exponential E and Wetterich W regulators.

Regulator ν η ω

PMC E 0.66675 0.78480
W 0.66741 0.78651

PMS E 0.66695 0.04723 0.78597
W 0.66675 0.04667 0.78712

TABLE XIII. Raw data for the O(3) model. We present PMS
results for ν, η, and ω, and PMC values for ν and ω, corresponding
to the exponential E and Wetterich W regulators.

Regulator ν η ω

PMC E 0.70452 0.74290
W 0.70541 0.74630

PMS E 0.70473 0.04688 0.74463
W 0.70552 0.04632 0.74716

information about these nonunitary models. While for ν the α

dependence is almost negligible, that is not the case for the ω

exponent, and imposing the PMC for this exponent leads to
essentially the same result as PMS—in excellent agreement
with the six-loop calculation.

V. CONCLUSIONS

In this work, we considered the modified Ward identities
associated with conformal and dilatation symmetries in the
context of the FRG, and for the first time for the scalar O(N )
models, extending the work done previously for the Ising
universality class. We considered a source for a primary com-
posite operator and studied the equations obtained at order
O(∂2) of the DE. As was the case for the Ising model, confor-
mal invariance yields new information (with respect to scale
invariance) already at this order of the approximation scheme.
The equations that arise when considering the Ward identities
associated with conformal invariance are not fulfilled when
evaluated at the fixed point, as opposed to what is expected in
the exact theory. This implies a constraint for each (primary)
operator. We used the violation of these constraints, for the
relevant and first irrelevant O(N )-invariant operator, in order
to fix nonphysical scheme parameters, invoking the principle
of maximal conformality introduced in previous works.

We have shown that for generic values of N , the PMC crite-
rion is equivalent to using the PMS. Moreover, the results that
these criteria yield are in agreement (within error bars) with
each other and with other methods reported in the literature.
This also applies to the nonunitary cases such as N = 0 and
−2, where the realization of conformal symmetry remains an
open question. An exception to this generic behavior occurs
for values of N 
 5. As discussed, it so happens that the
derivative expansion affects the conformal constraint, but not
the PMS criterion for computing the ω critical exponent. This
points to a failure of compatibility of the DE and conformal
symmetry, which could be resolved with higher orders of the

TABLE XIV. Raw data for the O(4) model. We present PMS
results for ν, η, and ω, and PMC values for ν and ω, corresponding
to the exponential E and Wetterich W regulators.

Regulator ν η ω

PMC E 0.74037 0.72054
W 0.74133 0.72456

PMS E 0.74056 0.04480 0.72145
W 0.74143 0.04426 0.72511
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TABLE XV. Raw data for the O(5) model. We present PMS
results for ν, η, and ω, and PMC values for ν and ω, corresponding
to the exponential E and Wetterich W regulators. Recall that as
discussed in the main body, there is no prediction for ω from the
PMC criterion for this value of N .

Regulator ν η ω

PMC E 0.77322
W 0.77410

PMS E 0.77338 0.04182 0.71399
W 0.77419 0.04131 0.71831

approximation scheme, although how this may be resolved
remains an open question to be tackled in the future.

This study showed that even though the PMS does not
have such a solid first-principles argument as the PMC for
critical properties, it is nevertheless equivalent to it. Moreover,
given the fact that it is simpler and more robust, it makes it
preferable in a general scenario, at least at this order of the
DE approximation scheme. Finally, PMS can be applied to
noncritical or nonuniversal properties at odds with the PMC.

One final by-product of this work is that the two different
implementations of the DE, namely the strict and the full
version, agree within error bars, at least around the fixed point
in d = 3. This conclusion allows for an implementation of the
DE presenting equations that are much more compact, which
is a great simplification when considering higher orders of
the DE where the size and complexity of the equations grow
enormously.
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TABLE XVI. Raw data for the O(10) model. We present PMS
results for ν, η, and ω, and PMC values for ν and ω, corresponding
to the exponential E and Wetterich W regulators.

Regulator ν η ω

PMC E 0.87877 0.78058
W 0.87888 0.78368

PMS E 0.87906 0.02724 0.78110
W 0.87920 0.02697 0.78406

TABLE XVII. Raw data for the O(20) model. We present PMS
results for ν, η, and ω, and PMC values for ν and ω, corresponding
to the exponential E and Wetterich W regulators.

Regulator ν η ω

PMC E 0.94300 0.88541
W 0.94287 0.88624

PMS E 0.94289 0.01456 0.88549
W 0.94278 0.01445 0.88625

APPENDIX A: RAW DATA OBTAINED WITH THE
DERIVATIVE EXPANSION AT ORDER O(∂2 )

In this appendix, we present the data as extracted directly
from regulators and implementing the PMS and PMC criteria,
but without any further processing (Tables XI–XX).

APPENDIX B: NUMERICAL DETAILS

After deducing the expressions that were employed in this
study through a symbolical routine, the numerical procedure
consists in two stages. The first phase consists in solving the
FRG flow equations in order to obtain the fixed-point solution
that governs the critical regime of the system. The second and
final stage is that of performing a stability analysis around
the fixed point or, equivalently, solving the equations for the
eigenperturbations, and finally evaluating at this fixed point
the conformal constraints for these eigenperturbations.

1. Solving for the fixed point

The FRG equations obtained for the different functions
of the DE ansatz, in the presence of a generic regulator, are
partial integrodifferential equations. As such, we employ one
the most ubiquitous methods to address differential equations:
finite differences. To this end, we discretize the ρ field depen-
dence in a uniform grid, with a varying number of points and
maximum value, according to the value of N considered—
with step dρ approximately constant. We implemented a
five-point centered derivative in the grid for the ρ partial
derivatives. We modified our definition towards the edges to
maintain the number of points considered while remaining as
centered as possible. For the loop integrals over q momentum,
we employed adaptive Gauss-Kronrod quadrature integration.
We this setup, we started looking for a first estimation of the
fixed-point solution for U0, Z0, and Y0 by using a bipartition
method, starting from a microscopic initial condition and fine-
tuning a temperature-like parameter until reaching a starting

TABLE XVIII. Raw data for the O(100) model. We present PMS
results for ν, η, and ω, and PMC values for ν and ω, corresponding
to the exponential E and Wetterich W regulators.

Regulator ν η ω

PMC E 0.98941 0.97704
W 0.98937 0.97723

PMS E 0.98940 0.00297 0.97818
W 0.98937 0.00296 0.97821
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TABLE XIX. Raw data for the O(0) model. We present PMS
results for ν, η, and ω, and PMC values for ν and ω, corresponding
to the exponential E and Wetterich W regulators.

Regulator ν η ω

PMC E 0.58790 0.95063
W 0.58792 0.94640

PMS E 0.58789 0.03810 0.94743
W 0.58791 0.03768 0.94531

point whose flow remains constant for a considerable “renor-
malization time,” large enough so that reasonable proximity to
the FRG fixed point can be assumed. An alternative procedure,
which we did not employ in general (save for the N = 5 case),
consists of starting to work in a spatial dimension close to the
upper critical one, finding the solution through a root-finding
algorithm, and then proceeding to gradually reduce the dimen-
sion towards the final value d = 3. Both of these procedures
provide us with initial estimations for the fixed-point-only
dependent functions U0, Z0, and Y0.

The bipartition method employed in this work, although
conceptually clear, has a downside when precision is required.
As the cumulative error grows with the flow from the micro-
scopic scale k = 
 up to the Ginzburg scale kG, high levels
of accuracy cannot be reached through this method alone.
This means that a root-finding procedure to look for zeros of
the flow equations must be implemented on top of the initial
algorithm, the purpose of which then becomes to provide
an educated initial estimate for this second step. For this
work, the root-finding algorithm implemented consists of a
discretized Newton-Raphson (also known as secant) method.

TABLE XX. Raw data for the O(−2) model. We present PMS
results for ν, η, and ω, and PMC values for ν and ω, corresponding
to the exponential E and Wetterich W regulators.

Regulator ν η ω

PMC E 0.5 + 6.3 × 10−6 0.81898
W 0.5 + 2.1 × 10−6 0.81640

PMS E 0.5 + 6.3 × 10−6 1.067 × 10−5 0.81833
W 0.5 + 2.1 × 10−6 0.82087

Since we are working at linear order in K , the equations fix-
ing U1, Z1, and Y1 (and also DO) exhibit a linear dependence
in themselves and consequently can be fixed up to a nor-
malization constant (as is the case for an eigenvector). This
normalization constant allows for the fixing of the scaling
dimension of the considered composite operator.

2. Linear analysis at the fixed point

Once we are at the fixed point, up to a certain preci-
sion threshold, we need to solve the eigenvalue problem to
find the eigenperturbations (which correspond to the func-
tions U1, Z1, Y1, and ϒ). We do this by resorting again to a
Newton-Raphson procedure. For this purpose, a simple linear
stability analysis of the fixed point serves as a very good
starting point for the search of eigenvectors and eigenval-
ues. Once a desired threshold of convergence is achieved
for the method, we conclude the numerical study by eval-
uating the conformal constraint with the found eigenvalue
(DO), eigenvector [functions {U1(ρ), Z1(ρ),Y1(ρ)}, ϒ(ρ)]
and the Wilson-Fisher fixed-point solution [given by functions
{U0(ρ), Z0(ρ),Y0(ρ)}].
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