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The symbiotic relationship between the frameworks of classical game theory and evolutionary game theory is
well established. However, evolutionary game theorists have mostly tapped into the classical game of complete
information where players are completely informed of all other players’ payoffs. Of late, there is a surge of
interest in ecoevolutionary interactions where the environment’s state is changed by the players’ actions which,
in turn, are influenced by the changing environment. However, in real life, the information about the true
environmental state must pass through some noisy channel (like the usually imperfect sensory apparatus of the
players) before it is perceived by the players: The players naturally are prone to sometimes perceive the true state
erroneously. Given the uncertain perceived environment, the players may adopt bet-hedging kind of strategies
in which they play different actions in different perceptions. In a population of such ill-informed players, a
player would be confused about the information state of her opponent, and an incomplete information situation
akin to a Bayesian game surfaces. In short, we contemplate the possibility of the natural emergence of the
symbiotic relationship between the frameworks of Bayesian games and ecoevolutionary games when the players
are equipped with inefficient sensory apparatus. Herein, we illustrate this connection using a setup of infinitely
large, well-mixed population of players equipped with two actions for exploiting a resource (the environment)
at two different rates so that the resource state evolves accordingly. The state of the resource impacts every
player’s decision of playing particular action. We investigate the continuous state environment in the presence
of a Gaussian noisy channel. Employing the formalism of deterministic replicator dynamics, we find that noisy

information can be effective in preventing the resource from going extinct.
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I. INTRODUCTION

Concealment of information by design or by nature is ubiq-
uitous. Moreover, often gathering complete information is so
costly that an agent with an apparatus for sensory perception
would prefer to take decisions based on incomplete infor-
mation about the surrounding environment. Naturally, in a
population of strategically interacting agents (or players) who
interact with the environment for their payoffs, the correctness
of the perception about the environment plays a crucial role in
the long-term future of the populations’ strategies and the state
of the exploited environment. While this game-environment
feedback (when modeled using deterministic ecoevolutionary
dynamics) is already known to have interesting consequences
in the presence of complete information [1-3], the literature
on the effect of incomplete information on the dynamics is
rather small, if not absent. In this context, we recall that a
game (modeling the strategic interactions between the play-
ers) in the absence of complete information comes under the
purview of Bayesian game theory [4,5], which has fruitful
applications in the social sciences [6] and computer science
[7,8]. We find it interesting that Bayesian games are usually
not found in the literature of evolutionary game theory [9-11].
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However, in the context of ecoevolutionary games, we envis-
age the opportunity of tapping into the rich underpinning of
Bayesian games.

Ecoevolutionary game dynamics is a simple insightful way
of analyzing effectiveness of different ideas of mitigating the
tragedy of the commons (ToC) [12,13] (the overexploitation
of the environment by selfish players) in a mix of players
exploiting the environment at different rates; e.g., researchers
have explored the consequences of punishment, reward [14],
the carrying capacity of the population [15], generation-wise
nonoverlapping population [16], the finiteness of the pop-
ulation and self-renewing resource [17], and time delays
in making decisions [18]. Recently, ecoevolutionary game
dynamics has been studied in three interconnected species:
predator, prey, and parasite [19,20]. Moreover, evolutionary
games subject to environmental changes and noise have been
comprehensively reviewed for physics audiences [21,22] in
the literature. It is important to point out in the context of the
present work that noise, either chaotic [23] or stochastic [24],
may be useful in sustaining cooperation, which, one hopes,
may in turn help prevent ToC in the appropriate ecoevolution-
ary setup.

In the traditional framework of ecoevolutionary game dy-
namics, one effectively has a replicator equation [25-27]
(modeling the evolutionary dynamics of the frequencies of
different strategies) coupled with a logistic equation [28]
(modeling the resource under harvest by the players); the
coupling is bidirectional: the state of the resource directly
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affects the game matrix payoffs (the parameters in the repli-
cator equation) and the frequency of the strategies directly
affects the resource growth rate (the parameter in the logistic
equation). Needless to say, the resultant nonlinear, dynam-
ical, coupled equations show rich dynamical features, like
bistability [2], limit cycles [2,29], heteroclinic cycles [1], and
chaos [14].

We note that the aforementioned ecoevolutionary frame-
work overlooks many other aspects of the real world; e.g.,
the ones we are specifically interested in this paper are (i)
the state of the environment perceived by the players may be
erroneous [30-32] and (ii) the players may have bet-hedging-
like strategies [33,34] that are contingent on the state of the
environment. The bet-hedging strategies were extensively re-
searched upon in the context of evolutionary games. Among
some types of such strategies, the most common ones are the
following: conservative bet-hedging strategy [35,36] (which
is a risk-avoiding strategy employing the single optimal action
that ensures survival in the harsher environment), diversified
bet-hedging strategy [37] (which leads to employing multiple
actions, some are optimal in a favorable environment and
others are in a harsher one), and adaptive coin flipping bet
hedging [38] (which effectively leads to employing an action
based on the outcome of a coin flip). Clearly, changing the
uncertain environment motivates the adoption of bet-hedgeing
strategies.

Practically speaking, the environment of a player is almost
always uncertain: Knowing the exact state of the environment
is unfeasible because the sensory organ of the players may
perceive a signal or cue about the environmental state erro-
neously, owing to the noisy information channel [39] through
which signals or cues pass. Consequently, in a strategic inter-
action, a player’s harvesting rate (her strategy), if dependent
on the environmental state, is influenced by her perceived
environmental state, her opponent’s perceived environmental
state, and the opponent’s harvesting rate. Moreover, the error
in perception may either be independent of the state of the
environment or be a function of the state. It is not surprising
that players would use some kind of bet-hedging strategies in
such a complex and uncertain environment.

The perception of the environmental state of a player can
be taken as the fype of the player. Of course, what type a
player is is the private information of the player. The possible
harvesting rates serve as the set of actions of the players.
Once the possible payoffs of a player (given her type and
action profile) and a prior probability distribution over all
allowed types of profiles are specified, one completes the
requirements needed for creating a Bayesian game. Later in
this paper, we make use of the fact that a pure strategy in such
a Bayesian game is a bet-hedging-like strategy. We remark
that a player’s knowledge of the prior distribution owes to
the implicitly simplifying assumption that players know the
structure ofthe noisy information channel: The common prior
for the given system is the joint-probability distribution of
different players’ perceptions that is fixed by the channel’s
properties. While there are many textbooks covering this
topic, Appendix A succinctly elaborates on it in this paper’s
context.

The most interesting aspect of this paper is how an uncer-
tain environment’s noisy perception automatically gives rise
to a Bayesian game scenario, which is something not quite
common in the evolutionary game theory literature to the best
of our knowledge. The situation of incomplete information is
created because, owing to the potentially erroneous perception
of the environment, no player knows what her opponent’s
type is. Furthermore, what we find interesting in this direction
of research is that the ToC may be mitigated or even com-
pletely prevented by controlling the probability of erroneous
perception.

II. FRAMEWORK

In a simple ecoevolutionary setup there is a well-mixed
(unstructured) infinite population of strategically interacting
agents (or players) and a consumable resource (to be synony-
mously called the environment). In this section, with a view to
bringing forth an ecoevolutionary Bayesian game, we elevate
the setup to include a noisy information channel between the
players and their environment.

A. Bayesian game

Specifically, consider a well-mixed population of players
with two available actions: harvesting at a high rate (H) and
harvesting at a low rate (L). Let the true environmental state
be perceived as replete with a probability p, whose expression
depends on the precise nature of the information channel.
A player with replete perception is r-fype and the one with
depleted perception is d-type. Now, at present the entire pop-
ulation may be partitioned into two sets of players: one with
action L and other with action H. Next, we recall [1,2] that in
the narrative of prevention of ToC in the setting of strategic
symmetric one-shot game between two players, the dominant
strategy should be H if the environment is perceived as re-
plete and L if the environment is perceived as depleted. Thus,
mathematically, the payoff matrices of r-fype and d-type may,
respectively, be cast as

LH LH
M = L[RS] and My = L[TP:
H|TP H|RS

where imposing ordinal conditions (T > R and P > §) en-
sures that the required dominant strategy is realized. (For
completeness, let us exemplify the matrices by pointing out
that in replete perception state 7 is the payoff of the player
employing action H interacting against her opponent playing
action L; all other elements of the matrices are to be inter-
preted along similar lines.) In fact, the dominant strategies in
M, and My, respectively, are H and L.

Before proceeding further, we clarify the meaning of har-
vesting and payoffs. Indeed, harvesting at any rate degrades
the resource if the resource does not have any intrinsic growth
rate. The shared resource considered here has an intrinsic
growth rate. Harvesting at a high rate (H) means that the
harvesting rate is greater than the resource’s intrinsic growth
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FIG. 1. A two-players—two-type Bayesian game in which each
player is uncertain of the other player’s type. A frame labeled i : o
corresponds to the type o for player i; there are four such frames.
Also, written in the small boxes over each such frame next to the
payoff matrices are the probabilities that type o of player i assigns to
each state.

rate, causing degradation of the resource. In contrast, har-
vesting at a low rate (L) means that the harvesting rate is
lower than the resource’s intrinsic growth rate, resulting in the
growth of the resource. Next, the players set the preference for
harvesting rate profiles according to their perception, which
can be either replete or depleted; consequently, the payoff
matrices M, and My, respectively corresponding to r-type and
d-type, are constructed following the order of preferences in
their respective perceptions. Note that the payoffs denoted
by parameters R, S, T, and P in the payoff matrices do not
describe the acquired resource by harvesting. Instead, they
represent a player’s order of preferences between the action
profiles.

Since each player can be of two types, there are four
different strategic interactions in any true state of the en-
vironment: rr, rd, dr, and dd; the second one, e.g., says
that the player (say, player-1) is of r-type and the oppo-
nent (say, player-2) is of d-type. We reiterate that a player’s
type (r or d) is determined by her perception (replete or
depleted) of the environment, that is, the true environmental
state does not define a players’ type and the environment,
at any point of time, is exactly the same for all individu-
als. Incomplete information about the environment creates
an incomplete information scenario about what an oppo-
nent perceives as the environmental state. In short, a player
does not know the type of her opponent. Consequently, the
player does not know whether her opponent’s payoff matrix
is M; or My, and this uncertainty about the opponent’s pay-
off matrix plays a critical role in formulating the scenario
as a Bayesian game as depicted in Fig. 1. Obviously, the

player-1 with replete perception of the environment finds
herself in rr and rd interaction scenarios with probability
pr and (1 — p,), respectively, because she encounters an op-
ponent perceiving the same environmental state as replete
and deplete with probabilities p, and (1 — p,), respectively.
One can say equivalently that player-1 assigns belief p, and
(1 — p,) on the states rr and rd. Similarly, one can deduce
the other possible beliefs of both player-1 and player-2 are
under different information sets. The reader is referred to Ap-
pendix A for more detailed game-theoretic perspective in this
context.

B. Evolutionary Bayesian game dynamics

Given that the environmental state may change over time
and with it the perceptions of the players, it is more relevant
to partition the population into four sets corresponding to four
phenotypes, viz., LL, LH, HL, and HH . Here, in the notation
for each phenotype, the first letter denotes the action when
the environmental state is perceived to be depleted and the
second letter denotes the action when the state is perceived
to be replete. Three of these phenotypes are bet-hedging-like
strategies.

(1) LL: This phenotype harvests at a lower rate irre-
spective of whether the true environment is perceived as
depleted or replete. Thus, it appears as if they choose the
strategy conservatively, which is optimal for their survival
in the true depleted state. This is in line with conservative
bet-hedging: They are afraid that their perception might be
incorrectly replete when the true environmental state is de-
pleted, and therefore, they adopt the LL strategy, which is
a risk-avoiding strategy that is better suited to the compara-
tively harsher environment because such a strategy prevents
ToC and hence is profitable for the phenotype. Note that
the risk involved in a bet-hedging strategy is due to the un-
certainty of the true environmental state, which, in the case
under study, manifests as the uncertainty about the opponent’s
perception.

(2) LH: This phenotype adopts L action in a (perceived)
depleted state and H action in a (perceived) replete state.
This can be interpreted along the line of adaptive coin-flipping
bet-hedging strategy. In the presence of a temporally evolving
environment and its perception through an erroneous infor-
mation channel, the strategy selection by the player may be
thought of as if they tossed a biased coin (a decision making
apparatus they are endowed with) to decide the state of the
environment before choosing the corresponding action of L
or H.

(3) HL: This phenotype adopts H action in a (per-
ceived) depleted state and L action in a (perceived) replete
state. This has an interpretation similar to that for the LH
strategy.

Let four strategies of player, LL, LH, HL, and HH, occur
with frequencies xp., x.y, xgr, and xypg, respectively; of
course, xy; + Xy + xgr + xyp = 1. The payoff matrix Mg of
the normal-form symmetric game for these interactions can be
easily found using the two-type—two-action Bayesian games
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(Fig. 1). Specifically,

LL LH

HL HH

LL er + (1 - pr)T pr(PrR + (1 - pr)S) + (1 - pr)[prT + (1 - pr)P] pr[prS + (1 - pr)R] + (1 - pr)[prP + (1 - pr)T] prS + (1 - pr)P

LH R R+ (1—p,)S

Ms

HL T peT + (1= p)P

prS+(1 _pr)R N

prP+ (1 =p)T P

HH Lp, T+ (- p)R p:lp, T+ 1A = p)Pl+ (1 = p)lp-R+ (1 = pr)S] prlpP+ (1 — p)T1+ (1 = p)lprS + (1 = pr)R] p,P + (1 — p,)S

For illustration, let us explain one of the matrix elements,
say the one corresponding to the strategy profile (LH, HL),
i.e., the element at the second row and third column. This
strategy profile means that player-1 employs action L and
action H on perceiving the environment to be replete and
depleted, respectively, while player-2’s actions are just the
opposite. Player-1 has a belief that the player-2 considers
environment to be replete with probability p, and depleted
with probability 1 — p,. Therefore, the contribution to the
payoff of player-1 is p,.S 4+ (1 — p,)R. Note the matrices
in the top row of Fig. 1 and the fact that the payoff cor-
responding to action profile (x, H) is S and that the term
corresponding to action profile (x, L) is R, where x can be
either L or H for player-1. Since player-1 herself is r-type
and d-type with probabilities p, and 1 — p,, respectively,
her net payoff is p,[p,S + (1 — p))R] + (1 — p.)[p,S + (1 —
pr)R] = p.S+ (1 — p,)R. Likewise, all other matrix ele-
ments are obtained.

Given Ms, writing the replicator dynamics governing the
evolution frequencies in the population is straightforward.
(For a more detailed discussion of the replicator dynamics, see
Appendix B.) However, we find it convenient to work with
an alternative equivalent set of variables (x,y, D), defined
through the following coordinate transformation:

X =xpL + XLy, (2a)
Y = XL + XHL, (2b)

D = xpp, — (xpp + xpp)eir + xp1) = x0p — xy. (2¢)

These variables have very useful physical interpretations: x is
the frequency of low-harvesters, i.e., the players who adopt
action L, in a (perceived) replete state and y is the frequency
of low harvesters in a (perceived) depleted state. D measures
the difference between the frequency of players using the LL
strategy from which the same frequency would be in the case
where the frequency of the low harvester in a (perceived)
depleted state is independent of the frequency of the low
harvester in a (perceived) replete state.

Finally, the replicator dynamics in terms of the variable
given in Eq. (2) comes out to be

X = px(1 = x)(fr — fu) + (1 — p.)(gr — gu)D, (3a)
y=~0-=p (1 —y)gL —gu)+ p:(fr — fu)D, (3b)
D = Dlp,(1 —2x)(fp — fu) + (1 — p))(1 — 2y)(gr — gu)]-

30)

)

Here, f; and fy denote the fitness of an r-type low-
harvester and an r-type high-harvester, respectively, while g;,
and gy denotes the fitness of a d-type low harvester and a
d-type high harvester, respectively. These are given by

fu =8 = p/Rx+S(1 — )]+ (1 — p)[Ry + S(1 — y)],
(4a)

fu=g8L=pATx+P(1—-x)]+1—p)[Ty+ P —y)].
(4b)

C. Ecoevolutionary Bayesian game dynamics

Finally, we turn to the crucial aspect of the system: the evo-
lution of the environmental state which has remained implicit
in our discussion. In game-environment feedback systems,
harvesting rates of the individuals affect the resource, which,
in turn, affects the net harvesting rate. The exact nature of the
environmental states and how they are perceived influence two
ingredients of the system: (i) parameter p, of the information
channel and (ii) the evolution equation of the environmental
state.

We note that in the setup discussed till now, we allowed
only two types of perception by the individuals: r-type and
d-type. However, in general, an environment can have a con-
tinuous range of states (n, say, normalized to a range from 0
to 1), starting from a completely depleted state (n = 0) to a
completely replete state (n = 1). Hence there can be an un-
countably infinite number of true environmental states. Given
a true state n = n’ € [0, 1], the incorrectly perceived state by
a player can be any other n # r/, and hence, the possible
types of player will be uncountably infinite as well. This is
mathematically much harder to handle: not only will the repli-
cator equations become more complicated integrodifferential
equations [27], but also the setup of Bayesian games as in
Fig. 1 fails, as now an finite number of payoff matrices will
no longer be enough. For the sake of this paper’s goal—(is
to bring forth the natural connection between Bayesian games
and ecoevolutionary dynamics with incomplete information),
it is practical to confine ourselves to a scenario where, al-
though the environment remains realistically continuous, the
harvesters are allowed to have only two kinds of percep-
tion: replete (n = 1) and depleted (n = 0). This is achieved
by introducing a “replete perception threshold” n.. A player
interprets the true environmental state n as replete when it ex-
ceeds n, and as deplete otherwise. We remark that the replete
perception threshold does not transform a continuous resource
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FIG. 2. Schematic diagram illustrating the ecoevolutionary feed-
back mechanism in the presence of a noisy channel. The continuous
resource is illustrated as a color gradient indicating the resource’s
abundance state. The signal from the resource passes through a
Gaussian noisy channel, where an input » enters the channel and is
converted to n? at the output. The individuals then receive the output
n’ and determine the resource’s state as either replete or depleted
based on their replete perception threshold, n.. Subsequently, indi-
viduals engage in either low harvesting (L) or high harvesting (H),
resulting in a population consisting of individuals with variety of
perceptions and actions. Finally, the existence of feedback of players’
actions on the resource is represented by a green arrow.

into an equivalent binary resource. Instead, players use this
threshold only to interpret the output of the noisy channel
(i.e., the perceived abundance) as either replete or depleted,
while the resource remains continuous with its precise value
being decided by n which, through p,, fixes the expected
payoff or fitness. A given payoff matrix, however, remains
constant across all environmental states as it merely reflects
the order of preference corresponding to perception states of
the interacting players.

The continuous state environment perception is illustrated
through the schematic diagram, Fig. 2. The basic idea is as
follows. We consider a resource where the abundance changes
continuously. We normalize the abundance of the resource
by its carrying capacity and consider relative abundance n,
which can take values between O to 1: n = 0 and n = 1 corre-
spond to the true depleted and true replete states, respectively.
As a standard model of the noisy sensory apparatus of the

individuals, we contemplate a Gaussian noisy channel be-
tween the resource and the population. Now, when to call an
environment with continuous state values replete and depleted
is a matter of convention or perception of a player. To this
end, we define a parameter n. € (0, 1) (replete perception
level) such that an individual recognizes the resource as a
replete resource only if the perceived abundance surpasses n.;
otherwise the resource is deemed depleted.

Now if the true state is n then, due to the incomplete infor-
mation rendered by the noisy channel, a player can perceive
the input n as an output, say n°, that has a (truncated) Gaussian
distribution with mean n and a standard deviation o, which
characterizes the probability of the larger deviations of output
n? from the true state. Thus, the higher the o, the more the
chances of a higher incorrect perception. For a given true state
n, the probability that the output n° of the Gaussian noisy
channel is less than n, (i.e., the probability of a player having

0_m2
depleted perception) is proportional to fO" ‘ e_%dn”; the
proportionality constant is found by normalizing it. Thus, in
light of the replete perception level, the probability w(n) that
an individual is of d-type given the exact abundance is 7 is
n’—n?

fO”L e 22 dn° erf(ﬁj) —+ erf(':;;)

fol eim;%”zdn" - erf(ﬁi) + erf(;;J%) .

(&)

w(n) =

For the continuously changing resource, it is customary
to theoretically work with logistic growth. The only change
we incorporate here is that the growth rate y (x,y, n) should
depend on the frequencies of low-harvesters of both r-type
and d-type. We thus envisage an equation of the form

n=y(x,y nn(l —n). (6)

Note that the frequency of the low-harvesters in the population
is given by [1 — w(n)]x + w(n)y and the frequency of high-
harvesters naturally is 1 — {[1 — w(n)]x + w(n)y}. Therefore,
the growth rate of the resource being sustained by low-
harvesters and depleted by high-harvesters can be written as

y =601 —o)x +wy] =6[1 = (1 —w)x —wy], (7

using the proportionality positive constants 6; and 6. There-
fore, defining 6 = 6,;/6, and introducing € to tune the
timescale of the environmental state’s evolution with respect
to the replicator dynamics of harvesters, we substitute Eq. (7)
into Eq. (6) to arrive at

n=en(l —n)[—14+ 1 +O{(l —o)x+wyll. @®)

As the resource dynamics acts back on the evolutionary
Bayesian game dynamics [Eq. (3)], in the case under con-
sideration, p, should be replaced by 1 — w(n) to ultimately
arrive at

X =[(1 —w)x(1 —x) — wD]k(x,y, n), (9a)
vy =[—wy(l —y) 4+ (1 — w)DJk(x, y, n), (9b)
D= [(1 —w)(1 —2x) — w(l —2y)]k(x,y, n)D, (9¢)

where k(x,y,n)=(R—S—T + P){[1 — wo(n)]x + w(n)y}
+ (S — P). Equations (8) and (9) together describe the
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TABLE 1. The fixed points, (x*, y*, D*, n*), of the ecoevolution-
ary dynamics for continuous state environment; and the necessary
conditions for the fixed points to exist and to be stable. Here n,
and n%, satisfy w(nj,) = = and w(nl,) = %, respectively. Also,

— 1-0©) — w(llte e
Q() = 0 and Q] = e
Fixed point Existence Stability
(0,0,0,0) Always Unstable
(0,0,0,1) Always Unstable
(0,1,0,0) Collapsing Always Stable if Qo > 6
ToC
(0,1,0,1) Prevention Always Stable if Q] > o1
of ToC
(1,0,0,0) Always Unstable
(1,0,0,1) Always Unstable
(1,1,0,0) Always Unstable
(1,1,0,1) Always Unstable
(0,1,0, 1) IfQ <@and Qp <6! Stable
Component ToC
(1,0,0, njy) IfQ <6and Qo < 67! Unstable

ecoevolutionary Bayesian game dynamics in the continuous-
state environment. We note that while the entries in the payoff
matrices of the Bayesian game that describe the payoffs (see
Fig. 1) are independent of the environment, even when p, is
replaced by 1 — w(n), the expected payoffs or the fitness [see
Eqgs. (4a) and (4b)] depend on the true environmental state
through w(n).

III. ANALYZING ECOEVOLUTIONARY BAYESIAN
GAME DYNAMICS

We perform the linear stability analysis of Eqgs. (8) and (9)
and tabulate the fixed points (x*, y*, D*, n*), their existence,
and the nature of stability in Table I. There are three possible
stable fixed points: (0,1,0,0), (0, 1, 0, ng;; ), and (0,1,0,1). The
first two fixed points, viz. (0,1,0,0) and (0, 1, 0, nj;, ), corre-
spond to two different kinds of ToC [40]: collapsing ToC and
component ToC, respectively. It is obvious that the collapsing
ToC corresponds to the complete exhaustion of the resource,
and if it is partially prevented, then the resulting situation
corresponds to the component ToC where the resource is
sustained at a finite state less than its maximum possible state.
When the maximum possible state is maintained, the ToC may
be said to have been fully averted or prevented. The fixed point
(0,1,0,1) corresponds to this scenario. In this paper, when
there is no reason for ambiguity, ToC refers to collapsing ToC.

The existence and stability of these three fixed points
are determined by the parameters w(0), w(1), and 6, as ob-
served in Table I. The parameters w(0) and w(1) are the
probabilities of an individual perceiving the resource as de-
pleted when the states of the resource are truly depleted and
truly replete, respectively. In other words, 1 — w(0) and w(1)
represent the probabilities of incorrect perception in the (com-
pletely) depleted (n = 0) and (completely) replete (n = 1)
states, respectively. Therefore, the outcomes depend only on
the (completely) replete (n = 1) and (completely) depleted
(n =0) states. As a result, the continuous-state environ-
ment under consideration can be viewed as an effective

Resource Effective asymmetric binary channel Perception
B B L R —p Replete(r)
ffff {’f@)@
,,,,,,,,,,,,, T,
prietgii ”””” =00) l»Depleted (d)

FIG. 3. A representation of a continuous resource with a replete
perception threshold as a binary environment with an effective asym-
metric binary channel. The errors in the channel are 1 — w(0) and
(1) in the true replete and true depleted environments, respectively.
The dashed arrow represents the error in information transfer.

two-state system with an asymmetric binary channel between
the population and the environment (see Fig. 3). The error
probabilities in this asymmetric channel are 1 — w(0) and
w(1) for the true replete and true depleted states, respectively.
These error probabilities are influenced by noise parametrized
by o [recall Eq. (5)]. Since 1 — w(0) and w(1) are monoton-
ically increasing functions of o at a fixed value of ., the
relevant parameters characterizing the channel are o and n,.
Another parameter characterizing the ecoevolutionary dynam-
ics is 6. Hence, we present the outcomes in Fig. 4 in the 0—6
space for different values of n, and try to comprehend them
mathematically and physically.

Now to better understand the outcomes (collapsing ToC,
component ToC, and the prevention of ToC) and their depen-
dence on the parameters of interest, we define the ratios of
incorrect to correct perception probabilities as €2p and €24, re-
spectively, in the true depleted and the true replete states; i.e.,
Qq is given by 1;?2)(;)) and € is given by 12)2)1()1) . We also recall
Eq. (8), and note that, for every stable fixed point, the state of
the population is (x =0, y = 1, D = 0), the equation at the
asymptotic state of the population becomes

n=-en(l —n)[—1+ (1+0)om)]. (10)

The term inside the third bracket determines the growth or
the decay, as the multiplicative term en(l —n) is always
positive. (Equation (10) is analogous to the resource state
time-evolution equation in Weitz et al. [1], with the frequency
of the cooperators therein replaced by the frequency of the
low-harvesters w(n). The frequency of the low-harvesters is
w(n) because of assuming x = 0 and y = 1). Note that w(n)
is a monotonically decreasing function of n. Hence, w(0) <
ﬁ implies w(n) < ﬁ for all n € (0, 1], and consequently,
Qo > 0 implies Q) < o1 similarly, w(1) > ﬁ

ﬁ for all n € [0, 1), leading to the realization that

Q; > 67! implies Q) < . In summary, there are only three
independent cases: (i) Qo > 6, (ii) Q; > 67!, and (iii) Qo < 6
and Q; < 6~!. Now we are ready to discuss the various re-
gions in Fig. 4, keeping in mind these three cases.

implies
w(n) >

A. (Collapsing) ToC (2 > 6)

As is clear from Fig. 4, ToC (see the red region in the
figure) is affected in the population asymptotically when
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FIG. 4. The fate of the resource at asymptotic limit in the continuous resource system is shown in the parameter space o — 6. (a)—
(c) correspond to different replete perception thresholds: n. = 0.2, n. = 0.5 and n. = 0.8, respectively. The colors red and green, respectively,
illustrate the occurrence and prevention of ToC while the gradient transitioning from reddish to greenish represents component ToC. The

equations of the dashed and dash-dotted lines are 2y = 6 and Q; = 87!, respectively. These two lines meet at § =

pointed by the dotted vertical line.

individuals with depleted and replete perceptions become
low-harvesters and high-harvesters, respectively. The ToC
occurs regardless of the initial resource state, even when
the resource starts near a true replete state (n — 1). This
is because the growth rate —1 4 (1 + 68)w(n) [see Eq. (10)]
becomes negative since ¢ > 6 implies w(n) < 1%0 for all
n. Consequently, the resource gradually collapses. This argu-
ment goes beyond what could be concluded using the linear
stability analysis that predicted a linearly (hence, locally)
stable fixed point (0,1,0,0), see Table I, when 2y > 6. The
ToC is effectively a globally stable scenario because this is the
only stable fixed point under the condition and our numerical
investigation has not divulged the existence of any other kinds
of attractor like the limit cycle or chaotic attractor.

We observe that more noise in the Gaussian noisy channel,
characterized by high o -value, leads to ToC regardless of the
initial state of the resource and population, and there exists
a critical 6 (:ﬂ) below which it appears when 6 < o,
see Fig. 4. (How ‘the critical 6 is found will be discussed in
due course.) Since 2y and €2 are monotonically increasing
functions of o, and describe the ratios of incorrect percep-
tion in true depleted and true replete resource state, higher
noise increases the proportion of individuals with incorrect
perceptions: replete perceptions in a depleted resource and
depleted perceptions in a replete resource. Consequently, there
are relatively many high-harvesters in a nearly depleted re-
source, further depleting the resource. However, even though
the frequency of low-harvesters increases with noise in an
almost replete resource because the depleted-perception indi-
viduals increase with noise in the true replete resource state,
they are insufficient to outcompete the degradation caused by
high-harvesters if 6 is low. For this reason, the ToC occurs
at lower values of 0, see Fig. 4. Furthermore, a comparative
inspection of Figs. 4(a) to 4(c) shows that the ToC (red) region
shrinks as the replete perception level (n.) increases. After
all, higher perception increases individuals with depleted per-
ceptions (low-harvesters), which prevents further depletion,
making ToC less likely.

B. Prevention of ToC (2; > 0~1)

The understanding of complete prevention of ToC is along
similar lines. Thus, let us focus on the green region (in Fig. 4)

1—n,

and o — o0, as

that indicates the fixed point (0,1,0,1) being stable. It is in-
teresting that, as in the scenario of ToC, in this case also the
equilibrium population configuration exclusively consists of
low-harvesters with depleted perception and high-harvesters
with replete perception. It is the details of the channel that
causes a different outcome for the environment. Specifically,
we find that complete prevention of ToC is a stable scenario if
Q; > 071 In fact, the prevention of ToC is effected for almost
all possible initial resource states. This is because the growth
rate —1 4 (1 + 0)w(n) [see Eq. (10)] becomes positive as
Q; > 67! implies w(n) > ﬁ for all n. Ergo, the resource
grows unchecked till the resource achieves its maximum pos-
sible value, n = 1.

We observe that high noise (high values of o) prevents
the ToC when 0 satisfies 6 > 521_] regardless of the initial
state of the resource and population, in contrast to the earlier
outcomes of ToC. High noise increases the individuals with
incorrect perceptions in the population because €2y and €2,
are monotonically increasing functions of . When the re-
source is almost replete (n — 1), the increased noise gives
rise to more individuals having depleted perception, thereby,
more low-harvesters. This surge in low-harvesters becomes
advantageous for resources to grow. In contrast, when the
resource is nearly in a true depleted state (n — 0), high noise
increases the high-harvesters as replete-perception individuals
increase with it. Then, the growth rate by the low-harvesters
must be high enough to outcompete the degradation by high-
harvesters. It implies that 6 has to be large enough to realize
prevention of ToC, which is exactly what can be seen in Fig. 4.
The region of complete prevention enlarges as the replete
perception level (n.) rises, see Figs. 4(a) to 4(c), because
increasing the perception level increases the amount of low-
harvesters. That is why even with relatively lower values of
0 (at a higher value of n.), the increasing number of low-
harvesters prevents the ToC.

C. Component ToC (2 < 6 and 2; < §~1)

The final case corresponds to the fixed point (0, 1, 0, g, ),
which is stable for Q; < 67! and Q¢ < 6. The value of n,
lies between 0 and 1. It means that the resource is neither fully
exhausted nor fully abundant, and it is known as a component
ToC. In Fig. 4, the corresponding region of this component

044401-7



PATRA, DAS BAIRAGYA, AND CHAKRABORTY

PHYSICAL REVIEW E 111, 044401 (2025)

Resource Gaussian noisy channel

1.00 ]
0.75—

__ | Input
n 050 »

0.25 —

0.00 —

Feedback

r-type
Low-harvesters

d-type

Population

Erasure

r-type
High-harvesters

d-type
High-harvesters

Low-harvesters

Perception

Replete (1)
((\.0

Depleted (d)
Replete ()

9 Principle of
° insuffcient reason

Depleted (d)

FIG. 5. Schematic diagram illustrating a Gaussian noisy channel with erasure. The information is shown to be erased with probability
e, and erased information is depicted by a question mark. The output n° of the Gaussian noisy channel is passed through the erasure with
probability 1 — e. Afterwards, an individual perceives the resource based on their replete perception threshold 7. For the information erased,
the individual follows the principle of insufficient reason: They perceive the resource state as replete with probability 1 — n, and depleted with

probability 7.

ToC is shown by a gradient of colors depicting the numerical
solution of w(ng,) = ﬁ for different combinations of o and
6. Since the analytical expression of nj, is hard, rather than
arguing what happens in the neighborhood of the fixed point
physically, it is easier to point out that the condition of stabil-
ity implies that all other fixed points are unstable. Hence, it is
obvious that whether one starts near the replete environment
(ToC prevented) or depleted environment (ToC effected), the
state of the environment is pushed away towards the stable
component of the ToC scenario. The detailed mechanism,
which we omit to avoid repetition, can be understood along
the lines discussed in the preceding two subsections.

Here we point out an interesting observation. Note that
when the noise is at its maximum, i.e., 0 = 0o, the component
ToC disappears, and we have either ToC or complete preven-
tion of ToC. Observe how the region of component ToC is
squeezed about the vertical dotted line, 6 = 1;'“‘, in Fig. 4 as
o increases. This is because the curves Q¢ = 6 and Q=671
meet each other at § = 1= As is clear from the definitions
and Eq. (5), in the limit o= 00, ¢ becomes the inverse of
Q;, and Qo is 1;”“. Therefore, the condition for getting the

component ToC, | < 6~ and Q < @ is not achieved at

1—n,

o = o0. The threshold value of 0, i.e., —, after which the re-
gion of complete prevention is found, is inversely proportional
to the replete perception level (.) because the high perception
level increases the low-harvesters in the population; therefore,
low values of 6 are enough to prevent the ToC at a higher
perception level.

There is a natural way of realizing high values of o
in the noisy channel: the erasure of information as shown
schematically in Fig. 5. We ponder over the scenario where
the information of the output in the Gaussian noisy channel
is erased with a probability e and the players are unable
to determine the environmental state. If the information is
erased with a probability e, the state is perceived as depleted
with probability w(n)(1 —e) and replete with probability
[1 — w(n)](1 — e). What the player does with the erased in-
formation is arguable. However, a common solution to such
a situation is to assume that a player, in the absence of
any information about the environmental state, adheres to
the “principle of insufficient reason” [41]. The is, she as-
signs a uniform probability distribution upon the state n €
[0, 1] and perceives the resource as depleted with probability
n. and as replete with probability 1 — n.. This makes the
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Gaussian noisy channel with erasure effectively a Gaussian
noisy channel without erasure, such that the state is perceived
as depleted with probability w(n)(1 — e) + en. and replete
with probability [1 — w(n)](1 — e) + e(1 — n.) (which equals
1 — [w(n)(1 — e) + en.] as it should). We note that the former
and the latter probabilities go to n. and 1 — n,, respectively, as
e tends to 1. Consequently, effective €2 (the ratio of incorrect
to correct perception probabilities in a true replete state) is
equal to 1f£nr if e = 1, similar to the case of o = co. In con-
clusion, with increasing information erasure, the component
ToC is averted and the collapsing ToC is prevented as well for
higher values of 6.

D. Evolutionary stability

It is worth emphasizing yet again that all three stable sce-
narios listed in Table I lie on a manifold (D = 0) and the
population is composed exclusively of high-harvesters with
replete perception (x = 0) and low-harvesters with depleted
perception (y = 1). The same equilibrium population config-
uration leads to different states (n =0, n =ng;, and n = 1)
of the environment depending on how much error the noisy
information channel introduces.

On the manifold D = 0, the frequency of the players us-
ing the LL strategy is the same as the frequency of the
low-harvester in a perceived depleted state multiplied with
the frequency of the low-harvester in a perceived replete
state, i.e., the frequency of the low-harvester in a perceived
depleted state is independent of the frequency of the low-
harvester in a perceived replete state. This reminds one
of linkage disequilibrium [42—45] found in the context of
recombination-selection dynamics [46,47] in the two-locus
two-allele scenario [48-50]. D =0 is recognized as the
Wright manifold [51-55]: the trajectory which begins on
this manifold remains confined on this manifold. Also, in a
game-theoretic setting, particularly in extensive-form games
[55,56], the Wright manifold corresponds to the set of mixed
strategies where decisions made in one subgame do not alter
the strategy in other subgames. Coming back to the focus of
this section, on D = 0, the resulting game can be seen as the
one given in Fig. 1.

The equilibrium state of the population may, in fact, be
interpreted to be evolutionarily stable along the lines of the
concept of evolutionary stable strategy (ESS) [9,25], the cor-
nerstone of evolutionary game theory. Essentially, ESS in
the context of population is a population’s state that is ro-
bust against invasion by mutants. Since Bayesian evolutionary
games are not commonplace in the literature, we take this
opportunity to present an extension of ESS in the context of
this paper. We call the extension Bayesian evolutionary stable
strategy (BESS); furthermore, we establish that BESS is a
locally asymptotically stable fixed point of the corresponding
replicator dynamic.

To define BESS for the problem at hand, we introduce
the notation x = (x;,x)=(x,1 —x) and y = (y1, ) =
(v, 1 —y); here (x, y) represents the state of the entire pop-
ulation. Let the payoff matrices for the type-r player playing
against another type-r player and type-d player be A and B,
respectively. Also, the payoff matrices for the type-d player
playing against another type-r player and type-d player are F

and G, respectively. In our context as in Fig. I, A=B = M,
and F = G = M. Therefore, we give the following definition.

A state (X, §) is a BESS if, for every population state (x, y)
sufficiently close but not equal to (X, ¥),

p&{p,Ax + (1 — p,)By} + (1 — p)y{p.Fx + (1 — p,)Gy}

>
(11

The definition is motivated from the fact that fitness, i.e., the
expected payoff, of residents of the population at BESS should
be higher than that of the invading mutants (who perturb the
population’s resident state) so as to resist the invasion by the
latter. We note that p, = 0, 1 leads to the standard definition
[57] of ESS in games with complete information, as it should.

One can show (see Appendix C) that by relating BESS to
the Bayesian Nash equilibrium (BNE) [58] that a BESS is
a fixed point of the replicator equation corresponding to the
Bayesian game dynamics. A recast version of Eqgs. (B4a) and
(B4b) on D = 0 is as follows:

(12a)
(12b)

x; = prxi(e; — xX)[p,Ax + (1 — p,)By]l,
yi = (1 = p)yie; — y)lp-Fx + (1 — p,)Gyl,

where e;’s are unit vectors: e; = (1,0) and e, = (0, 1).
Finally, we now are ready to show that the fixed point cor-
responding to BESS is an asymptotically stable fixed point in
Bayesian game dynamics [Eq. (12)].

To this end, we consider the following function:

2 R 2 o
VX.y) = p, Y & log (;i) +(1—p) > ilog (i—)
i=1 ! i=1 {
13)
The function (being a convex combination of two relative en-
tropies [59]) must be positive-definite for all allowed values of
(x,y) # (X, §). In addition, if V is such that V < 0 V(x, y) #
(X, ) in the neighborhood of (X, ¥), then V qualifies as a Lya-
punov function [60], which implies that the BESS is a locally
asymptotically stable fixed point. To see that this indeed is the
case, we note that the time derivative of V is given by

V = —[p&{p,Ax + (1 — p,)By}

+ (1 — p)§{p,Fx + (1 — p,)Gy}

— px{p,Ax + (1 — p,)By}

— (1 = poyi{p-Fx+ (1 — p)Gy}l, (14)
where we use Eq. (12). Clearly, V <0V(x,y) # (X, §) in the
neighborhood of (X, §) when we use inequality (11).

We observe that (x, y) = (0, 1) is a BESS according to in-
equality (11) on substituting A = B = M;, F = G = My, and
pr = 1 — w(n). In conclusion, the fact seen in Table I that all
three stable scenarios lying on D = 0 renders the population

to be in a state such that x = 0 and y = 1 is due to this state’s
being a BESS.

IV. CONCLUSION

We established how the game-environment feedback
scenario in the presence of noisy perceptions about the
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environment naturally gives rise to Bayesian ecoevolution-
ary games. The players sometimes have incorrect perceptions
about the environmental state, leading to their incomplete
information about others’ perceptions. The uncertainty about
the perception of the environmental states can manifest itself
as the adoption of bet-hedging-like strategies, which may be
interpreted as pure strategies in the corresponding Bayesian
game. (In fact, it highlights the fact that strategic interaction
between players with any bet-hedging strategies can, in gen-
eral, be treated as Bayesian games.) We assume that such
strategies are genetically hardwired into the players of the
population, leading to the interpretation of the strategies as
phenotypes. Consequently, the paradigmatic replicator equa-
tion was used to model the evolution of the frequencies of
the phenotypes in the very large (mathematically infinite)
population.

Within the simplest nontrivial setup with binary perception
states (replete and depleted) we find that the long-term dynam-
ics is dependent on the relation between 6 and 2; (i = 0, 1),
measuring the efficiency of a low-harvester compared to a
high-harvester and the ratio of erroneous perception proba-
bility to correct perception probability, respectively. In the
environment with continuous states, the information channel
between the players and the environment turns out to be
an asymmetric binary channel. Controlling what information
about the environment reaches the players mathematically
means to modify the channel by tweaking €2;, and this can
result in mitigating the ToC. In this context, we showed an
interesting result that, with increasing information erasure, the
component ToC was fully averted and the collapsing ToC was
prevented for higher values of 6.

An important caveat is worth highlighting. In the frame-
work of the classical Bayesian game, the players are supposed
to be rational and to have conscious subjective beliefs about
the state of nature. However, in the Bayesian ecoevolutionary
game discussed here, since the frequency distribution of the
types of players in the population is determined by the noisy
information channel, it can be thought of as if beliefs are
imparted identically on every player by the channel. Conse-
quently, the framework of the Bayesian game was adapted
herein to a population of players who need not have inter-
nal conscious beliefs about the other players’ perceptions (or
types).

In the literature there exists a different way to tackle the
uncertainty about the states of the environment. One may
try infer the future environmental states using information
from the current perceived state and the players’ actions [61].
Players thereby form a belief about the future states of the
environment, which they update over time. Rational players
then estimate their future payoffs based on their current beliefs
and make strategic decisions accordingly. In comparison, our
framework presented herein involves a rational player making
decisions based on the uncertainty about others’ preferences.

The framework presented herein can transcend the back-
story of mere resource harvesting and the ToC. For example,
one could revisit the setup [62] where agents employ an
automatic process or controlled process such that the cog-
nitive processing alters the environment of the interacting
agents, and introduce the fact that the agents have incomplete
information about the environment. Also, in society, espe-

cially in politics [63], spreading misinformation to control the
behavior of people is very commonplace, and in turn, the be-
havioral feedback decides the state of the political situation, a
typical scenario amenable to Bayesian ecoevolutionary game-
theoretic modeling. We are hopeful that this paper will initiate
further exciting investigations into Bayesian ecoevolutionary
games while extending the framework to encompass a more
realistic case of a finite [64] and structured population [3,65]
where one could additionally consider that different individu-
als gather information through nonidentical noisy channels.
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APPENDIX A: NOISY-CHANNEL-INDUCED
BAYESIAN GAME

Here we want to succinctly present how the scenario pre-
sented in Sec. II A qualifies as a Bayesian game.

A rather unrealistic and stringent assumption in a game
is that of complete information, i.e., strategically interact-
ing rational agents have common knowledge about the basic
mathematical structure, viz., the utility function and the strate-
gies of each other. In reality, the information available to a
player is incomplete. Naturally, the players in such an in-
complete information game can only have some belief about
the payoff of the relevant data, also called the state of na-
ture. To solve such a game, it is apparent that a player’s
belief, the belief about an opponent’s belief, the belief about
an opponent’s belief about the player’s belief, and similar
higher-order beliefs need to be known. Dealing with such a
hierarchy of belief is very inconvenient.

This problem was circumvented by a pioneering idea of
Harsanyi [58,66,67]: the type-centered approach to modeling
the incomplete information game. Under this interpretation,
the players can be of different types, and the focal player
knows her representing type but does not know the repre-
senting type of her opponent. However, players are supposed
to know, as a common knowledge, the joint probability dis-
tribution of their type and their opponent’s type, which is
an underlying assumption of the type-centered interpretation,
more tersely known as the common prior assumption. Then,
the players try to assess the conditional probability of the
opponent’s types given his or her particular type by doing
probabilistic estimations using the Bayes’ updating. The game
is termed as a Bayesian game.

The ecoevolutionary game considered in this paper actually
qualifies as a Bayesian game because, owing to the property
of the noisy channel being known to every individual in the
population, the criterion of the existence of a common prior,
that is a common knowledge, is satisfied automatically. To un-
derstand it more conspicuously, let us now discuss Harsanyi’s
idea tuned to our purpose.
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FIG. 6. Schematic diagram shows the transformation from a
state-space structure to type-space structure of a scenario with two-
sided incomplete information. There are four states: rr, rd, dr, and
dd. The games My, My, My, and Mgy are played in the states
rr,rd,dr, and dd, respectively. For instance, Myq means that the
focal player has the payoff matrix, M, and the opponent has the
payoff matrix My. Player-1 has two information sets, {rr, rd} and
{dr, dd}, depicted by boxes. Similarly, player-2 has two information
sets {rr, dr} and {rd, dd}. The players are uncertain about the states
in the information set. The beliefs (p, or 1 — p,) of players on
the states in an information set are written below the states. Each
formation set of a player is identified as a type of the player.

Now we systematically introduce a knowledge-belief
structure involved in our model and the transformation from
that structure to the type-space approach to fit with the
Bayesian game.

In our context, we have four states, rr, rd, dr, and dd,
as far as binary interaction is concerned. In each state, the
first and the second letters correspond to the perception of
player-1 and player-2, respectively. In each state, there cor-
responds a payoff matrix. Let us assume that the individuals
perceive the replete and the depleted state, respectively, with
the probabilities p, and (1 — p,). Thus, player-1 has two in-
formation sets, {rr, rd} and {dr, dd}, while the opponent has
the information sets {rr, dr} and {rd, dd}. The players know a
particular information set, but they are uncertain between the
states in the information set. To quantify the uncertainty, each
player assigns a probability, i.e., a belief, on each of the states
inside an information set such that the sum of the probabilities
of these states must be unity; thereby, a knowledge-belief
structure is set up for the incomplete information strategic
interaction. For example, in an information set {rr, rd} of
player-1, she finds the states rr and rd with probability p,
and (1 — p,), respectively, because she finds her opponent’s
(player-2) perception replete and depleted with probability
pr and (1 — p,), while her perception remains replete in this
information set. (Note that this is so because she knows that
all the players have an identical information channel to deal
with.) One can say equivalently that as if player-1 assigns
the beliefs p, and (1 — p,) on the states rr and rd. Similarly,
one can calculate the beliefs for the other information set of
player-1 and also for the player-2, see Fig. 6.

The idea of transforming from state-space structure to a
type-space approach is the following: Each information set is
identified as a type of a player. Therefore, player-1 can be of
two types corresponding to the two information sets, {rr, rd}
or {dr,dd}. We label these types by #] and t{, respectively.

Likewise, player-2 have two types 75 and #§ corresponding
to the information sets {rr,dr} and {rd, dd}. As a player
knows her own type but not the interacting opponent’s type,
the uncertainty in a player’s mind changes from that of the
states to that of the types of opponent; therefore, the beliefs
of the individuals over the states gets converted to the beliefs
over the opponent’s types.

The belief of player-1’s ¢ type about player-2’s ¢; type is
pr because rr is a common state which belongs in both in-
formation sets {rr, rd} of player-1 and {rr, dr} of player-2. As
player-1 assigns the belief p, on the state rr in the information
set {rr, rd}, she finds the information set {rr, dr} of player-2
with probability p,. In a similar manner, the beliefs structure
over cases for all types of both players can be determined: the
belief of type tld on the opponent types f; and t2d is p, and
1 — p, and the beliefs of both 75 and ¢ types of player-2 are
prand 1 — p,, respectively, on the types #] and t{ of player-1.

Now, the most important aspect of the above knowledge-
belief structure is that these beliefs are (Harsanyi) consistent
beliefs, i.e., there exists a common prior which is a joint
probability distribution over all possible types of the play-
ers such that the beliefs associated with a given type can
be derived from the common prior using Bayes’ updating.
Here the common prior, P{(t{, t}), (t], tg), @2, ), @2, tf)} =
{p}. pr(1 = py), (1 = py)py, (1 — py)*} from which all types
of player can derive their beliefs about their opponent’s types.
For example, P(i{|t) = P(t].13)/P(t5) = p,(1 — p.)/pr =
1 — p,; therefore, as mentioned above, it shows that the be-
lief of a tf type of player-2 about the type #[ of player-1
is1 —p,.

Of course, the underlying assumption of the Bayesian
game that the common prior is common knowledge to ev-
eryone is also satisfied as the property of the unique noisy
channel is assumed to be known to everyone. Thus, the given
scenario fulfils the requirement of a Bayesian game. Finally,
we point out that in the main text of this paper, types ¢{ and 7]
are conveniently denoted as r, types t{’ and tf are denoted by
d, and p, is taken to be 1 — w(n).

APPENDIX B: REPLICATOR DYNAMICS

Here we provide the steps leading to Eq. (3). Having recast
the two-type—two-action Bayesian game (displayed in Fig. 1)
into a four-strategy normal-form game with symmetric payoff
matrix Mg, as given in Sec. II B, the replicator equation [25]
(in line with the Darwinian tenet being followed in an unstruc-
tured infinite population where the players randomly interact
with each other) is written as follows:

Xij = x;;(fij — ) (B1)
with i, j € {L, H} and ZiG{L’H} Zje{L_H} x;; = 1. Here we de-
note the fitness of the player using the ij strategy by f;;.
These individual fitness can be found from the payoff ma-
trix Ms. Specifically, f;; = ZkE{L’H} Zle{L,H}xklmij,kl’ where
m;ij denotes that element of Ms which the player using
the ijth strategy gets on interacting with a player using the
klth strategy. Thus, the average fitness f of a player in the
population is 3 ey 2 jeqr, my Xij fij-

Next, with the change of variable as given in Eq. (2),
we concentrate on the frequencies x and y of L, when the
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corresponding types are r and d, respectively. It is obvi-
ous through Fig. 1 that for the r type, the fitness of L and
H actions, respectively, denoted by f; and fy and for d
type, the fitness of L and H actions, respectively, denoted
by g, and gy, are given by Eq. (4). Consequently, it follows
that

fiir=pfi+ A = pog;, (B2)

where i, j € {L, H}. Now, usigg this equation, and Egs. (2a)
and (2b), in the definition of f written above, we arrive at an
equivalent expression of f:

f=pxfe+p (1 =x)fu+ 1 = pyer
+ {1 = p)d = y)gu. (B3)
Subsequently, to explicitly follow the time evolution of

the frequency of an action for a given type, we take the
time derivative of both sides of Egs. (2a) and (2b), and

use Egs. (B1), (B2), and (B3) to further simplify them to
arrive at

x = px(1 —=x)(fL — fu)
+ (1 — p ) gelxer — xy) + g (een — x(1 — )1},
(B4a)

y=~0-=p )yl —y)gL —gn)
+prAferr — xy) + fulxar — (1 —x)yl}.

Here the terms x;;, — xy, x;g — x(1 — y), and xg;, — (1 — x)y
are the covariance terms; let us, for brevity, denote them
as orr, oLy, and oy, respectively. One can easily show
that o7, = —oyr = —ory, implying that a single variable
D = oy can be used to describe these terms. Consequently,
Egs. (9a) and (9b) follow. Finally, we note that Eq. (B1) has
three independent variables; hence, we need one more vari-
able to completely describe the entire system. As per Eq. (2),
D is one such variable. Using the different expressions found
till now, the time derivative of Eq. (2¢) can be similarly simpli-
fied to arrive at Eq. (9c) after some straightforward algebraic
steps.

(B4b)

|
APPENDIX C: BESS IMPLIES BNE AND FIXED POINT

We remind ourselves that BNE [58] is a strategy profile (a set containing a strategy for each player type) such that no type
has any incentive to deviate from her strategy given her beliefs about the others.

To show that BESS implies BNE, we consider a neighborhood state (x,y) of BESS (X, §), where x = (1 — €)X + ex’ and
y=((—-e)y+ey Veand V(X',y') # (X, §), with O < € < €xy) if there exists an invasion barrier €y, > 0. If we put (x,y)
into Eq. (11) and the condition transforms as

p&{pAR + (1 = p)BY} + (1 — p)§{pF + (1 — p)GY} > pX'{p-AX + (1 — p,)BY} + (1 — p)y {p,F& + (1 — p,)GF},

up to first order in €. However, if

pr&{pAR + (1 = p)BY} + (1 — p)§{pF& + (1 — p)GY} = pxX'{p-AX + (1 — p,)BY} + (1 — p)y'{p,F& + (1 — p,)GF},
then one must consider the second order in € terms to arrive at
pr&{p,AX' + (1 — p)By'} + (1 — p)§{p,FX' + (1 — p)Gy'} > p,X'{p,AX' + (1 — p,)BY'} + (1 — p)y'{p,Fx' + (1 — p,)Gy'}.
We now relabel (x',y’) as (x,y). Thus, inequality (11) can be equivalently written as a combination of two conditions (i)
VX, y) # & 9),

prX{pAX + (1 — p)BY} + (1 — p)§{p,FX+ (1 — p,)GY} = px{p,AX + (1 — p,)BY} + (1 — p)y{p,FX + (1 — p)GF};

(CH

and (ii) Y(x, y) for which the equality in condition (i) holds,

pX{p-Ax + (1 — p)By} + (1 — p)§{p,Fx + (1 — p,)Gy} > px{p,Ax + (1 — p,)By} + (1 — p,)y{p,Fx + (1 — p,)Gy}.
(C2)

One notes that condition (i) is nothing but the definition of BNE. Thus, BESS implies BNE, by construction.
Next, to show BNE (and hence the corresponding BESS) is a fixed point of Eq. (12), we consider first a BESS that is a weak
BNE. A weak BNE, by definition, corresponds to the equality in condition (i). We recast the equality as

inpr(ei —%)[pAL+ (1 — p,)BY] + ZYi(l - pr)e; —PpFx+ (1 — p,)G§y] = 0.

Since x; and y; are the variables that can take arbitrary values and their coefficients do not depend on x; and y;, the coefficients
must individually vanish. Consequently, (¢; — x)[p,Ax + (1 — p,)By] = 0 and (e; — §)[p,F&X + (1 — p,)G§] = 0, rendering x;
and y; in Eq. (12) to be zero. In other words, the BESS (X, ¥) is a fixed point of Eq. (12). Finally, if BESS corresponds to a BNE
that is strict, then the inequality (without the equal sign) in Eq. (C1) should hold by definition and the BESS must be a pure state
which must be a vertex of the phase space (a simplotope, in this case). However, all vertices are trivially fixed points of Eq. (12).
Therefore, in conclusion, any BESS implies BNE, which in turn implies a fixed point.

044401-12
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