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Analysis of bifurcation and explosive amplitude death in a pair of oscillators
coupled via time-delay connection
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Delay-induced amplitude death (AD) has received considerable research interest. Most studies on delay-
induced AD investigated the local stability of equilibrium points. The present study examines the global
dynamics of delay-induced AD in a pair of identical Stuart-Landau oscillators. Bifurcation diagrams consisting
of synchronized periodic orbits and an equilibrium point are used to determine the mechanism of the emergence
of delay-induced AD. It is shown that explosive delay-induced AD can occur via a Hopf bifurcation at
the equilibrium point and a saddle-node bifurcation of synchronized periodic orbits when the delay time for
the connection is continuously varied. The Hopf and saddle-node bifurcation curves in the coupling parameter
space clarify the dependence of the coupling parameters on the global dynamics.
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I. INTRODUCTION

Quenching phenomena, collective behaviors induced by
mutual interactions in coupled oscillators [1,2], are classified
into oscillation death (OD) or amplitude death (AD) based
on their emergence mechanism [3–5]: OD is the emergence
of stable inhomogeneous equilibrium points and AD is the
stabilization of an equilibrium point embedded within isolated
oscillators. AD has been widely studied in the field of engi-
neering because its noninvasiveness is useful for suppressing
harmful oscillations and for maintaining such suppression
with a tiny amount of coupling energy in two or more man-
made systems that interact, such as thermoacoustic systems
[6–12] and DC microgrids [13]. However, the simplest and
easiest-to-implement noninvasive diffusive coupling never
induces AD in coupled identical oscillators [14,15]. Consider-
able attention has been paid to modified noninvasive diffusive
couplings, which can induce AD in coupled identical oscilla-
tors [4,5,16].

Among modified diffusive couplings, delay coupling
[17–19] has become important because it describes the situ-
ation where two or more systems mutually interact via signals
with finite propagation speed. AD induced by delay coupling
has thus been extensively studied [5,16] from viewpoints
such as suppression of harmful oscillations in thermoacoustic
systems [6–12], development of delay coupling [20–26], and
application to networks [27–36].

To broaden the range of applications of delay-induced AD,
the coupling parameters (i.e., coupling strength and delay
time) that induce death have to be appropriately chosen based
on the stability of death. However, such stability cannot be
easily analyzed, since the dynamics of delay-induced AD is
subject to both nonlinearity and time delay. The nonlinearity

*https://www.omu.ac.jp/eng/ees-ecs

prevents the use of linear stability analysis, which is well
established in control theory, and the time delay makes it
difficult to analyze the stability of the dynamics, which is
the same as the analysis of functional differential equations.
Nevertheless, for the local stability of equilibrium points in
coupled oscillators, linear stability analysis can be used with-
out regard to nonlinearity. Although time-delay linear systems
that describe the local stability of equilibrium points have
characteristic functions described by quasipolynomial equa-
tions with infinitely many roots, such systems can be analyzed
based on the behavior of the rightmost root with respect to
the delay time. Most stability analyses of delay-induced AD
have thus focused on the local stability of equilibrium points
[27–34]. In contrast, few attempts have been made to analyze
the global dynamics of delay-induced AD. This means that the
dynamics far from equilibrium points is still unclear and the
mechanism of the emergence of delay-induced AD is not fully
understood from the viewpoint of the bifurcation of periodic
orbits.

Growing attention has recently been given to explosive
AD/OD, a discontinuous and irreversible transition from the
oscillatory state to AD/OD, that occurs when a coupling
parameter is continuously varied. Bi et al. were the first to
report that explosive OD occurs in Stuart-Landau (SL) os-
cillators with a frequency distribution that are connected via
frequency-distributed coupling [37]. Verma et al. found that
explosive nontrivial AD, a stabilization of the homogeneous
equilibrium point that depends on coupling, occurs in iden-
tical oscillators coupled via mean-field diffusion [38]. It was
later reported that explosive AD/OD can be induced by sev-
eral types of coupling, including conjugate variable coupling
[39–41], common environment coupling [42–44], dynamical
agents coupling [45], mean-field coupling [46–48], nondiffu-
sive global coupling [49], mixed attractive-repulsive coupling
[50], and diffusive coupling with a low-pass filter [51,52].
Recently, Hui et al. experimentally demonstrated explosive
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death in real electrical circuits [52]. Although explosive death
has been extensively investigated for various types of cou-
pling, few studies have focused on delay coupling despite its
importance.

The present study examines the global dynamics of AD
in a pair of identical SL oscillators coupled via a time-delay
connection. Most studies on delay-induced AD considered a
simple SL oscillator whose frequency does not depend on
amplitude. In contrast, the present study employs the more
general SL oscillator [53,54] whose frequency depends on
amplitude. We derive periodic orbits synchronized in phase
and antiphase and examine their stability. Bifurcation dia-
grams consisting of the derived orbits are used to examine the
influence of the frequency dependency on the synchronized
periodic orbits and to determine the mechanism of the emer-
gence of AD. The bifurcation diagrams show that explosive
AD can occur via a Hopf bifurcation of the equilibrium point
and a saddle-node bifurcation of synchronized periodic orbits
when the delay time is continuously varied. Furthermore, we
obtain the Hopf and saddle-node bifurcation curves in the cou-
pling parameter space. These curves clarify the dependence of
the coupling parameters on the global dynamics.

II. DELAY-COUPLED OSCILLATORS

In this section, we briefly review a SL oscillator whose fre-
quency depends on amplitude and provide the stable range for
the delay time for the equilibrium point in the delay-coupled
SL oscillators. Some numerical examples show that even if
the equilibrium point is locally stable, there are cases where
AD fails to occur.

A. Stability analysis of equilibrium point

We review the dynamics of a single SL oscillator [53,54]
with two parameters, namely ω > 0 and b ∈ R:

Ż (t ) = F [Z (t ), b], (1a)

F [Z (t ), b] : = {1 + iω − (1 + ib)|Z (t )|2}Z (t ), (1b)

where Z (t ) ∈ C is the state variable and i := √−1 denotes
the imaginary unit. Oscillator (1) with Z (t ) = r(t ) exp (iθ (t ))
can be expressed in polar coordinates as

ṙ(t ) = {1 − r(t )2}r(t ), (2a)

θ̇ (t ) = ω − br(t )2, (2b)

where r(t ) � 0 and θ (t ) ∈ R are the amplitude and angle
variables for Z (t ), respectively. Oscillator (1) has an unstable
equilibrium point r(t ) = 0 [i.e., Z (t ) = 0] and a stable limit
cycle with amplitude r(t ) = 1 [i.e., |Z (t )| = 1]. The param-
eter ω is the rotation velocity of θ (t ) around the unstable
equilibrium point. The parameter b describes how the rotation
velocity depends on the amplitude r(t ). The rotation velocity
on the stable limit cycle r(t ) = 1 is given by θ̇ (t ) = ω − b.
Note that there are three cases, namely b = 0, b > 0, and
b < 0. For b = 0, we see that the velocity θ̇ (t ) = ω does not
depend on amplitude r(t ). In contrast, for b > 0 (b < 0), the
velocity θ̇ (t ) = ω − br(t )2 decreases (increases) with increas-
ing r(t ). In other words, for b > 0, the velocity θ̇ (t ) inside the
limit cycle [i.e., r(t ) < 1] is higher than that on the limit cycle

r(t ) = 1; on the other hand, the velocity outside the limit cycle
[i.e., r(t ) > 1] is lower than that on the limit cycle. For b < 0,
the velocity inside (outside) the limit cycle is lower (higher)
than that on the limit cycle.

Now, we consider a pair of SL oscillators coupled via
a time-delay connection with coupling strength K � 0 and
delay time τ � 0:

Ż1(t ) = F [Z1(t ), b] + K{Z2(t − τ ) − Z1(t )}, (3a)

Ż2(t ) = F [Z2(t ), b] + K{Z1(t − τ ) − Z2(t )}, (3b)

where Zj (t ) ∈ C is the state variable for oscillator j ∈ {1, 2}.
It should be emphasized that most studies on delay-induced
AD in coupled SL oscillators dealt with only the case of
b = 0 [29–35]. Coupled oscillators (3) have the following
equilibrium point:

Z1(t ) = Z2(t ) = 0, (4)

independently of b. The local dynamics of equilibrium point
(4) is equivalent to that of the linear system,

ż1(t ) = (1 + iω)z1(t ) + K{z2(t − τ ) − z1(t )}, (5a)

ż2(t ) = (1 + iω)z2(t ) + K{z1(t − τ ) − z2(t )}, (5b)

where z j (t ) ∈ C is a small perturbation of oscillator j ∈ {1, 2}
around point (4). The characteristic function,

g(s) :={s − 1 − iω + K (1 − e−sτ )}
· {s − 1 − iω + K (1 + e−sτ )}, (6)

governs the stability of a linear system (5). On the basis of
function (6), we can analytically obtain the Hopf bifurcation
points for τ as follows:

τ±(�) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

±ψ (K )/2 + �π

ω ± √
2K − 1

if 1/2 � K � 1

∓ψ (K )/2 + (� ± 1)π

ω ± √
2K − 1

if 1 � K

, (7)

where � is an integer and ψ (K ) ∈ [0, π ] is given by

ψ (K ) := cos−1 K2 − 4K + 2

K2
. (8)

The root of function (6) passes the imaginary axis from left
(right) to right (left) at τ = τ+(�) [τ = τ−(�)] with increasing
τ . We can easily obtain the stable ranges for τ based on
the direction of the root passing the imaginary axis and the
function (6) having one unstable root at τ = 0 for K � 1/2.
These analytical results were obtained in previous studies
(e.g., see Ref. [55]). It should be noted that linear system (5)
does not depend on parameter b; thus, a local stability analysis
of equilibrium point (4) for b = 0, which has been conducted
in previous studies [29–35], is valid even for b �= 0.

B. Numerical example

We now examine the stability of equilibrium point (4)
using numerical simulations. We set the parameters (ω = 10
and K = 5) and derive the stable range for τ ∈ (τ−(1), τ+(0))
with τ−(1) = 0.0919 and τ+(0) = 0.1922. The delay time
is fixed at τ = 0.15, which is within the stable range. Fig-
ures 1(a)–1(c) show time series data for Re[Z1,2(t )] for
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FIG. 1. Time series data for Re[Z1,2(t )] for coupled oscillator (3)
with ω = 10, K = 5, and τ = 0.15 for (a) b = 0, (b) b = +2.7π , and
(c) b = −4.0π .

coupled oscillator (3) for b values of 0, +2.7π , and −4.0π ,
respectively. The oscillators behave independently without
coupling (i.e., K = 0) for t ∈ [0, 5) and are coupled at t = 5.
After coupling, the behavior of the state variables changes as
follows: for b = 0, the state variables converge on equilibrium
point (4); for b = +2.7π , the state variables are synchro-
nized in phase with low frequency; for b = −4.0π , the state
variables are synchronized in antiphase with high frequency.
As can be seen, with locally stable equilibrium point (4),
AD occurs for b = 0 but fails to occur for b = +2.7π and
b = −4.0π . The main aim of the present study is to clarify the
global dynamics to understand the failure of AD induction.

III. BIFURCATION DIAGRAMS

This section explains the failure of the AD induction
described above using bifurcation diagrams consisting of peri-
odic orbits in coupled oscillators (3), their stability, and τ±(�)
in Eq. (7).

A. Synchronized periodic orbits and their stability

We now derive the synchronized periodic orbits for
coupled oscillators (3) and provide a procedure for clas-
sifying their stability based on previous studies [35,56].
Coupled oscillators (3) in polar coordinates with Z1,2(t ) =
r1,2(t ) exp (iθ1,2(t )) can be expressed as

ṙ1,2(t ) = {1 − K − r1,2(t )2}r1,2(t )

+Kr2,1(t − τ ) cos {θ2,1(t − τ ) − θ1,2(t )}, (9a)

θ̇1,2(t ) = ω − br1,2(t )2

+ K
r2,1(t − τ )

r1,2(t )
sin {θ2,1(t − τ ) − θ1,2(t )}. (9b)

We focus on the situation where the two oscillators are syn-
chronized in phase (m = 0) or antiphase (m = 1) as follows:

r1,2(t ) = R, θ1(t ) = �t, θ2(t ) = �t + mπ, (10)

where R > 0 and � > 0 are, respectively, the common ampli-
tude and frequency. Substituting synchronized state (10) into
coupled oscillators (9) yields

R2 = 1 − K (1 − cos �τ cos mπ ) > 0, (11a)

� = ω − bR2 − K sin �τ cos mπ. (11b)

If (τ, K ) satisfies Eq. (11) for m = 0 (m = 1), then the in-
phase (antiphase) synchronized state (10) exists.

To check the stability of synchronized state (10), cou-
pled oscillators (9) are linearized around state (10) satisfying
Eq. (11) as follows:

Ẋ (t ) =
[

A 0
0 A

]
X (t ) +

[
0 B
B 0

]
X (t − τ ), (12)

where

X (t ) := [	r1(t ) 	θ1(t ) 	r2(t ) 	θ2(t )]�,

A :=
[ −RK − 2R2 R�R

−�R/R − 2bR −RK

]
,

B :=
[

RK −R�R

�R/R RK

]
,

	r1(t ) := r1(t ) − R, 	r2(t ) := r2(t ) − R,

	θ1(t ) := θ1(t ) − �t, 	θ2(t ) := θ2(t ) − �t − mπ,

RK := R2 − 1 + K, �R := � − ω + bR2.

The characteristic function for linear system (12),

F (s) := det

[
sI2 − A −Be−sτ

−Be−sτ sI2 − A

]
, (13)

always has one zero root s = 0 [i.e., F (0) = 0], which corre-
sponds to the synchronization manifold. Synchronized state
(10) is locally stable if and only if function (13) does not
have roots with a positive real part except the zero root. The
stability of retarded-type linear time-delay systems, such as
system (12), can be analyzed using the software tool eigAM
[57].

B. Bifurcation diagrams for τ

Let us consider the bifurcation diagram consisting of equi-
librium point (4), the common amplitude R and frequency
� versus τ on the basis of the Hopf bifurcation point τ±(�)
given by Eq. (7), synchronized state (10) satisfying Eq. (11),
and their stability obtained by analyzing function (13). The
procedure for plotting R2 and � in the diagram with fixed
ω, b, and K is as follows: for a given τ � 0, R2 and �

that satisfy Eq. (11) are obtained; for the obtained R2 and
�, the stability of the synchronized orbits is classified using
function (13); R2 and � (with information on their stabil-
ity) are plotted; the above procedure is repeated for various
values of τ . In addition, equilibrium point (4) is plotted
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with consideration of the stable ranges for τ obtained in
Sec. II A.

The bifurcation diagrams for b = 0, b = +2.7π , and b =
−4.0π obtained using the above procedure are shown in
Figs. 2(a)–2(c), respectively. The bold (thin) black line rep-
resents stable (unstable) point (4). The white filled squares
(circles) are the Hopf bifurcation points τ+(�) with � ∈ {0, 1}
[τ−(�) with � = 1]. The bifurcation diagram for point (4) does
not depend on b. The blue (red) lines denote R2 and � for
in-phase (antiphase) synchronized periodic orbits; the bold
(thin) lines define stable (unstable) periodic orbits.

For b = 0 [see Fig. 2(a)], the in-phase (antiphase) stable
synchronized periodic orbit is connected to the supercritical
Hopf bifurcation point τ−(1) [τ+(0)] which is an edge of the
stable range for τ . The behavior of the time series data in
Fig. 1(a) before coupling t ∈ [0, 5) corresponds to the black
filled circle at R2 = 1 with symbol (A). The behavior after
coupling t � 5 corresponds to the dotted line. The state vari-
ables then converge on point (4), represented by the black
filled square.

For b = +2.7π (b = −4.0π ), as shown in Fig. 2(b)
[Fig. 2(c)], the in-phase (antiphase) unstable synchronized
periodic orbit is connected to the subcritical Hopf bifurca-
tion point τ−(1) [τ+(0)], which is an edge of the stable
range for τ . The in-phase (antiphase) unstable orbit is also
connected to the in-phase (antiphase) stable orbit with the
common frequency �, which is much lower (higher) than
the natural frequency ω = 10, via the saddle-node bifurca-
tion indicated by the orange (green) cross. The behavior
in Fig. 1(b) [Fig. 1(c)] after coupling t � 5 corresponds
to the black filled circle at R2 = 0.8873 (R2 = 0.9709) on
the in-phase (antiphase) stable orbit. As can be seen, the
reason AD fails to occur for b = +2.7π (b = −4.0π ) in
Fig. 1(b) [Fig. 1(c)] is that the state variables converge on
the in-phase (antiphase) stable synchronized periodic orbit
with a low (high) common frequency.1 Furthermore, the
shape of the bifurcation diagram shows that no synchro-
nized periodic orbits exist that prevent AD from occurring
if τ is chosen from the range between the saddle-node
bifurcation point and the supercritical Hopf bifurcation
point τ+(0) [τ−(1)].

IV. EXPLOSIVE AMPLITUDE DEATH

This section shows that explosive AD, a discontinuous
and irreversible transition from the oscillatory state to AD,
can occur in coupled oscillators (3) when the delay time τ

is continuously varied. Let us define the average amplitude
ZR of |Z1(t )|2 and |Z2(t )|2 at t = 500 after transient behavior
disappears:

ZR := 1

2
{|Z1(500)|2 + |Z2(500)|2}. (14)

Figures 3(a)–3(c) show ZR versus the delay time τ ∈ [0, 0.5]
for b values of 0, +2.7π , and −4.0π , respectively. The black

1It should be noted that depending on the phase difference at t =
5, the state variables may not converge on the stable synchronized
periodic orbit.

FIG. 2. Bifurcation diagrams for common amplitude R and fre-
quency � for synchronized periodic orbits and equilibrium point
(4) with ω = 10 and K = 5 versus delay time τ ∈ [0, 0.5] for
(a) b = 0, (b) b = +2.7π , and (c) b = −4.0π . The black lines repre-
sent point (4). The blue (red) lines denote R2 and � for in-phase (an-
tiphase) synchronized periodic orbits. The bold (thin) lines represent
a stable (unstable) state. The orange (green) cross defines the saddle-
node bifurcation point for in-phase (antiphase) synchronized periodic
orbits.

circles (red crosses) represent ZR as τ increases from 0 to
0.5 (decreases from 0.5 to 0). The initial condition for cou-
pled oscillators (3) at a certain value of τ for black circles
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FIG. 3. Average amplitude ZR with ω = 10 and K = 5 plotted
versus delay time τ ∈ [0, 0.5] for (a) b = 0, (b) b = +2.7π , and
(c) b = −4.0π . The black circles (red crosses) represent forward
(backward) continuation of ZR with variation of τ .

(red crosses) is set to the trajectory2 for t ∈ [500 − τ, 500] at
τ − 	τ (at τ + 	τ ), where 	τ = 0.005 is the step size for τ .

For b = 0 [see Fig. 3(a)], we focus on the stable range
for τ between τ−(1) and τ+(0). The transitions from oscil-
latory states with ZR > 0 to AD with ZR = 0 are continuous
and reversible. This means that explosive AD does not oc-
cur for b = 0. This is analytically proved in Sec. V and
Appendix. In contrast, as shown in Fig. 3(b) [Fig. 3(c)], for
b = +2.7π (b = −4.0π ), the transition is continuous and
reversible around τ+(0) [τ−(1)], but discontinuous and irre-
versible around τ−(1) [τ+(0)], where hysteresis occurs. We
see that explosive AD occurs for b = +2.7π and −4.0π .

The mechanism of the emergence of explosive AD is il-
lustrated in Fig. 2. For b = 0, the bifurcation diagram in
Fig. 2(a) shows that the stable synchronized periodic orbits are
connected to the supercritical Hopf bifurcation points τ−(1)
and τ+(0), the edges of the stable range for τ . In contrast, for
b = +2.7π (b = −4.0π ), as shown in Fig. 2(b) [Fig. 2(c)], the
unstable synchronized periodic orbit, which is connected to
the saddle-node bifurcation point, is also connected to the sub-
critical Hopf bifurcation point τ−(1) [τ+(0)], an edge of the

2In order to slightly perturb the coupled oscillators, Gaussian noise
with a variance of 10−4 and zero mean is added to Eq. (3).

FIG. 4. Time series data for Re[Z1,2(t )] and delay time τ for
b = +2.7π [see Figs. 2(b) and 3(b)]. The delay time τ slowly
increases (decreases) stepwise with time from τ = 0.08 < τ−(1)
to τ = 0.20 > τ+(0) [τ = 0.20 > τ+(0) to τ = 0.08 < τ−(1)]. For
increasing (decreasing) τ , the state variables and delay time are
respectively plotted by the black (red) line in (a) and (c) [(b) and
(c)].

stable range for τ . The bifurcation diagram in Fig. 2 clearly
explains why explosive AD emerges for b = +2.7π and b =
−4.0π , but not for b = 0. Based on the results, explosive AD
occurs because the saddle-node bifurcation point τ = τSN is
within the stable range for τ ; that is, τ−(1) < τSN < τ+(0).

In order to confirm the mechanism from the viewpoint of
the time series data, Re[Z1,2(t )] is plotted against time t in
Figs. 4(a) and 4(b). Let us focus on the case of b = +2.7π as
an example [see Figs. 2(b) and 3(b)]. We consider two situa-
tions: the delay time τ slowly increases (decreases) stepwise
with time from τ = 0.08 < τ−(1) to τ = 0.20 > τ+(0) [τ =
0.20 > τ+(0) to τ = 0.08 < τ−(1)]. For increasing τ [black
lines in Figs. 4(a) and 4(c)], the following observations can
be made: the state variables behave in an oscillatory manner
until τ = τSN; the state variables suddenly stop oscillating and
converge on equilibrium point (4) [i.e., Z1(t ) = Z2(t ) = 0] at
around τ = τSN; the state variables remain at the equilibrium
point until τ = τ+(0) and then gradually start to oscillate at
around τ = τ+(0). For decreasing τ [red lines in Figs. 4(b)
and 4(c)], the following observations can be made: the state
variables gradually stop oscillating and converge on the equi-
librium point at around τ = τ+(0); the state variables remain
at the equilibrium point until τ = τ−(1) and then suddenly
start to oscillate at around τ = τ−(1); the state variables
continue to oscillate after τ = τ−(1). These observations are
consistent with the mechanism based on the bifurcation dia-
gram in Fig. 2(b) and the average amplitude ZR in Fig. 3(b).

V. BIFURCATION CURVES IN τ-K SPACE

This section extends the discussion on bifurcation dia-
grams with fixed K in Secs. III and IV to bifurcation curves
in τ -K space. The curves for Hopf bifurcation were obtained
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using Eq. (7). The curves for the saddle-node bifurcation of
the periodic orbits, which play an important role in inducing
explosive AD, are derived below based on a procedure for
delayed feedback control systems [58].

Now, we focus on the synchronized state (10) (in phase
or antiphase), which satisfies Eq. (11). Eliminating R2 in
Eq. (11), we have � = f (�), where

f (�) := ω − b + K{b(1 − cos �τ cos mπ )

− sin �τ cos mπ}. (15)

The saddle-node bifurcation for periodic orbits occurs when
two periodic orbits merge and disappear; thus, bifurcation
occurs when � touches f (�) [i.e., d f (�)/d� = 1] under
inequality (11a).3 This allows us to obtain τ and � at the
saddle-node bifurcation point, which satisfy

0 = τ (ω − � − b)(b sin �τ − cos �τ ) cos mπ

− b(cos �τ cos mπ − 1) − sin �τ cos mπ. (16)

In addition, K is given by

K = 1

τ (b sin �τ − cos �τ ) cos mπ
. (17)

As a consequence, τ , K , and � at the saddle-node bifurcation
can be obtained from Eqs. (16) and (17) under inequality (11a)
and K � 0. Note that for b = 0, it is easy to guarantee that
the saddle-node bifurcation does not occur if K > τ − 1 holds
(see Appendix). This shows that the saddle-node bifurcation
never occurs for any τ ∈ [0, 1) under K � 0.

Figures 5(a)–5(c) show the bifurcation curves and the sta-
ble region for equilibrium point (4) in coupling parameter
space (τ, K ) with ω = 10 for b values of 0, +2.7π , and
−4.0π , respectively. The bold (thin) black lines represent the
Hopf bifurcation curves τ−(�) [τ+(�)] analytically obtained
using Eq. (7). The gray area is the stable region for equilib-
rium point (4). These Hopf bifurcation curves and the stable
region do not depend on b. The orange (green) lines represent
the saddle-node (denoted SN) bifurcation curves for in-phase
(antiphase) synchronized periodic orbits, which were derived
using the procedure described above. The bifurcation dia-
grams in Figs. 2(a)–2(c) correspond to the horizontal dotted
lines at K = 5 in Figs. 5(a)–5(c), respectively. The behavior
of the time series data in Fig. 1 corresponds to the black filled
circle labeled (A) in Fig. 5.

For b = 0 [see Fig. 5(a)], we see that saddle-node bifur-
cation curves do not exist. This shows that explosive AD
does not occur for any τ ∈ [0, 0.5] and K ∈ [0, 8], which
agrees with the analytical result in Appendix. For b = +2.7π

[see Fig. 5(b)], hysteresis occurs in the range between τ−(1)
and the saddle-node bifurcation curve for in-phase synchro-
nized periodic orbits for K values other than K = 5 used in
Figs. 2(b) and 3(b). For b = −4.0π [see Fig. 5(c)], hysteresis

3A previous study [58] derived the bifurcation curves for a delayed
feedback control system consisting of a single SL oscillator (1) and a
delayed feedback controller. The present study extends the results of
that study to a pair of oscillators in consideration of the synchronized
state (in phase or antiphase).

FIG. 5. Bifurcation curves and stable region for equilibrium
point (4) in coupling parameter space (τ, K ) with ω = 10 for
(a) b = 0, (b) b = +2.7π , and (c) b = −4.0π . The bold (thin) black
lines represent the Hopf bifurcation curves τ−(�) [τ+(�)] analyti-
cally obtained using Eq. (7). The orange (green) lines represent the
saddle-node (denoted SN) bifurcation curves for in-phase (antiphase)
synchronized periodic orbits, which were derived using the proce-
dure described in Sec. V. The gray area is the stable region for
equilibrium point (4).

occurs in the range between τ+(0) and the saddle-node bifur-
cation curve for antiphase synchronized periodic orbits.

Note that the bifurcation curves and stable region obtained
above provide information for selecting coupling parameters
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FIG. 6. Saddle-node bifurcation curves for in-phase (i.e., orange
lines) and antiphase (i.e., green lines) synchronized periodic orbits
in coupling parameter space (τ, K ) with the fixed nominal value ω =
10 for (a) b ∈ {+1.9π,+2.5π, +2.8π,+2.9π, +3.0π} (thin orange
lines) around the nominal value b = +2.7π (bold orange line) and
(b) b ∈ {−8.0π,−6.0π, −2.5π,−1.5π} (thin green lines) around
the nominal value b = −4.0π (bold green line). The bold and thin
black lines and the gray area are the same as in Fig. 5.

(τ, K ) that avoid synchronized periodic orbits, which prevent
AD from occurring, as shown in Fig. 1. To induce AD without
fail, (τ, K ) have to be chosen from the stable range for τ

except the hysteresis range.
The bifurcations curves investigated above are based on

only the specific values ω = 10, b = +2.7π , and b = −4.0π .
We now consider the dependency of these curves on ω and b:
the specific values are used as the nominal values. First, for the
fixed nominal value ω = 10, the parameter b is set to values
around the nominal values of b = +2.7π and b = −4.0π .
Figure 6(a) shows the saddle-node bifurcation curves for in-
phase orbits for b ∈ {+1.9π,+2.5π,+2.8π,+2.9π,+3.0π}
(thin orange lines) around the nominal value b = +2.7π (bold
orange line). Figure 6(b) shows the curves for antiphase orbits
for b ∈ {−8.0π,−6.0π,−2.5π,−1.5π} (thin green lines)
around the nominal value b = −4.0π (bold green line). As
can be seen, in both Figs. 6(a) and 6(b), increasing b causes
the curves to shift to the right. Next, for fixed nominal values
of b = +2.7π and b = −4.0π , the parameter ω is set to values
around the nominal value ω = 10.0. The Hopf bifurcation

= 9.0

= 9.5

= 9.0

 9.0

 9.0

A

 9.5

 9.5

FIG. 7. Bifurcation curves in coupling parameter space (τ, K )
for ω ∈ {9.0, 9.5, 12.0, 15.0} around the nominal value ω = 10.0.
(a) Hopf bifurcation curves for ω ∈ {9.0, 9.5, 12.0, 15.0} (gray lines)
around ω = 10.0 (black line). Saddle-node bifurcation curves for
in-phase (orange lines) and antiphase (green lines) synchronized
periodic orbits for (b) ω ∈ {9.0, 9.5, 12.0, 15.0} (thin orange lines)
around ω = 10.0 (bold orange line) with b = +2.7π and (c) ω ∈
{9.0, 12.0, 15.0} (thin green lines) around ω = 10.0 (bold green line)
with b = −4.0π . The bold and thin black lines and the gray area are
the same as in Fig. 5.

curves for equilibrium point (4) for ω ∈ {9.0, 9.5, 12.0, 15.0}
(gray lines) around ω = 10.0 (black line) are plotted in
Fig. 7(a). It can be seen that the Hopf bifurcation curves
shift to the left with increasing ω, which is reasonable based
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on Eq. (7). Figure 7(b) shows the saddle-node bifurcation
curves for in-phase orbits for ω ∈ {9.0, 9.5, 12.0, 15.0} (thin
orange lines) around ω = 10.0 (bold orange line) with the
fixed nominal value b = +2.7π . Figure 7(c) shows the curves
for antiphase orbits for ω ∈ {9.0, 12.0, 15.0} (thin green lines)
around ω = 10.0 (bold green line) with the fixed nominal
value b = −4.0π . In both Figs. 7(b) and 7(c), it can be seen
that increasing ω causes the saddle-node bifurcation curves to
shift to the left.

VI. DISCUSSION

This section briefly compares the present study with a
previous study [59] that dealt with not only the local stability
of delay-induced AD but also the behavior of periodic orbits.
Furthermore, we discuss the open questions that remain.

The previous study [59] considered the situation where os-
cillators with a stable equilibrium point, an unstable periodic
orbit, and a stable periodic orbit are coupled via a time-delay
connection. It was shown that the delay coupling can induce
the disappearance of these periodic orbits via saddle-node
bifurcation by increasing the coupling strength. In contrast,
the present study focuses on the situation where oscillators
with an unstable equilibrium point and only a stable periodic
orbit are coupled via a time-delay connection. The bifurcation
diagrams and the bifurcation curves demonstrated that the
delay coupling can induce the coexistence of a stable equi-
librium point, an unstable periodic orbit, and a stable periodic
orbit.

To gain initial insight into the global dynamics of delay-
induced AD, the present study focused on only the simplest
case where two identical SL oscillators are coupled via a sim-
ple delay connection. The obtained results are thus insufficient
for practical situations. More complicated cases, such as those
involving networks consisting of three or more oscillators and
frequency mismatch, should be considered in future work.

VII. CONCLUSIONS

This study investigated the global dynamics of AD in
delay-coupled identical SL oscillators whose frequency de-
pends on amplitude. Bifurcation diagrams, which plotted
the synchronized periodic orbits and the equilibrium point
(with information on their stability), clarified the mechanism
of the emergence of delay-induced AD from the viewpoint
of global dynamics. This mechanism indicates that for the
situation where the delay time for connections is continu-
ously varied, explosive AD emerges via a Hopf bifurcation
of the equilibrium point and a saddle-node bifurcation of
in-phase or antiphase synchronized periodic orbits. The Hopf
and saddle-node bifurcation curves in the coupling parameter
space revealed the relation between the coupling parameters
and the global dynamics of AD.
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APPENDIX: CASE OF b = 0 AND τ ∈ [0, 1)

For b = 0, to eliminate cos �τ cos mπ , substituting
Eq. (17) into Eq. (11a) yields

R2 = 1 − K − 1

τ
. (A1)

We note that R2 is negative if K > τ − 1 holds; therefore,
saddle-node bifurcation does not occur for K > τ − 1. This
guarantees that this bifurcation (i.e., explosive AD) never oc-
curs (i.e., R2 < 0) for any τ ∈ [0, 1) under b = 0 and K � 0,
which agrees with the bifurcation diagram in Fig. 2(a) and the
bifurcation curves in Fig. 5(a).
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