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Decomposition of metric tensor in thermodynamic geometry in terms of relaxation timescales
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Geometrical methods are extensively applied to thermodynamics, including stochastic thermodynamics. In the
case of a slow-driving linear response regime, a geometrical framework, known as thermodynamic geometry, is
established. The key to this framework is the thermodynamic length characterized by a metric tensor defined
in the space of controlling variables. As the metric tensor is given in terms of the equilibrium time-correlation
functions of the thermodynamic forces, it contains the information on timescales, which may be useful for
analyzing the performance of heat engines. In this paper, we show that the metric tensor for underdamped
Langevin dynamics can be decomposed in terms of the relaxation times of a system itself, which govern the
timescales of the equilibrium time-correlation functions of the thermodynamic forces. As an application of the
decomposition of the metric tensor, we demonstrate that it is possible to achieve Carnot efficiency at finite power
by taking the vanishing limit of relaxation times without breaking trade-off relations between efficiency and
power of heat engines in terms of thermodynamic geometry.
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I. INTRODUCTION

Geometrical methods have been widely introduced into
thermodynamics [1–8]. They include stochastic thermo-
dynamics, which has developed as thermodynamics for
fluctuating systems [9–12]. As one of the most important
findings, entropy production, or dissipation availability as the
irreversible energy loss for finite-time thermodynamic pro-
cesses, is known to be bounded by geometric quantities [7,8].
Among others, for the slow-driving linear response regime in
which the system’s relaxation time is much shorter than the
duration of the driving process, the thermodynamic length in
thermodynamic geometry serves as such a geometrical quan-
tity, and describes the distance between points in the space
of control parameters [5–8,11,13]. Thermodynamic length is
characterized by a metric tensor defined by the equilibrium
time-correlation functions of the thermodynamic forces [13]
and also works as the coefficients of the linear response
relations between the control variables and their conjugate
thermodynamic forces [14,15]. Thermodynamic geometry has
been successfully applied to the optimization of various ther-
modynamic processes [14–25].

Another closely related geometric approach is based on
optimal transport theory [26]. In this approach, entropy pro-
duction is bounded by Wasserstein distance defined in terms
of the optimal cost for transporting a probability distribution
from an initial distribution to a final one [27–32]. See, for
example, Refs. [33–37] for other interesting applications. Re-
markably, for overdamped Langevin dynamics, it is shown
that optimal transport geometry has a close relationship with
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thermodynamic geometry even beyond the linear response
regime [38,39], sharing identical geodesics and distances [39].

Though some theories connected to optimal transport are
applied in optimizations [33,34,40], such theories in under-
damped dynamics may not be as simple as in overdamped
cases [41,42]. Thus, the thermodynamic length in thermo-
dynamic geometry serves as an efficient tool in optimizing
thermodynamic systems, including heat engines as an impor-
tant example [14,15,21–24].

The achievement of Carnot efficiency is usually unrealistic
due to the infinitely long operation time to make all the pro-
cesses quasistatic [43–45], and the infinitely long operation
time obviously leads to vanishing power, making the heat
engine impractical. The amount of performance decrease we
should tolerate was a key question in finite-time thermody-
namics [45], and was recently quantified as trade-off relations
between efficiency and power of heat engines [14,35,46–49].
In particular, in the slow-driving linear response regime, the
thermodynamic length, with the metric tensor, plays an im-
portant role in the trade-off relation [14].

Meanwhile, it was pointed out recently that the vanish-
ing limit of relaxation times of a system could lead to the
compatibility of Carnot efficiency and finite power without
breaking the trade-off relation [50–52]. Because the metric
tensor includes the relaxation timescales of the equilibrium
time-correlation functions [13,24,53], it may be useful for the
analysis of the performance of heat engines as the relaxation
times significantly affect their efficiency and power. Further-
more, it is expected that the compatibility of Carnot efficiency
and finite power may be explained in terms of the property of
the metric tensor in the slow-driving linear response regime.

In this paper, we explore the detailed structure of the metric
tensor in the framework of stochastic thermodynamics and
apply it to the problem of compatibility of Carnot efficiency
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and finite power in stochastic heat engines. As the relax-
ation dynamics of the correlation between thermodynamic
forces fundamentally reflect the dynamics of a system obeying
Langevin equations, it is natural that the metric tensor is
decomposed in terms of the relaxation times of the system,
such as those of position and momentum. We demonstrate
this decomposition analytically for a harmonic potential and
numerically for scale-invariant potentials using Langevin dy-
namics. As an application of the decomposition of the metric
tensor, we show that the compatibility of Carnot efficiency and
finite power is achieved in the vanishing limit of relaxation
times, by analyzing the dissipated availability with the aid of
the decomposition of the metric tensor. Furthermore, it will be
shown that the compatibility is consistent with the trade-off
relations between efficiency and power.

The organization of the paper is as follows. We first give an
introduction to the metric tensor in thermodynamic geometry
in Sec. II. Then, we demonstrate the decomposition of the
metric tensor according to different relaxation timescales in
Sec. III. As an application of the decomposition of the metric
tensor, we show the compatibility of Carnot efficiency and
finite power and its consistency with the trade-off relation
between efficiency and power in Sec. IV. Finally, we give
concluding remarks in Sec. V.

II. METRIC TENSOR IN THERMODYNAMIC GEOMETRY

Let us consider the dynamics of a Brownian particle de-
scribed by the following underdamped Langevin equations for
position x and momentum p:

ẋ = p

m
, (1)

ṗ = −∂V

∂x
− ξ

m
p + ζ (t ). (2)

Here, the dot denotes the time derivative. m, ξ , and V =
V (x,�i ) denote the mass of the particle, friction coefficient,
and a potential function with �i (i = 1, 2, · · · , M) being M
time-dependent parameters as “mechanical” control variables,
respectively. ζ (t ) is the Gaussian white noise satisfying the
fluctuation-dissipation relation [54–56]:

〈ζ (t )〉 = 0, 〈ζ (t )ζ (t ′)〉 = 2ξkBT (t )δ(t − t ′), (3)

where the bracket 〈· · · 〉 denotes the ensemble average, T (t )
is the time-dependent temperature of the heat reservoir as a
“thermal” control variable, and kB is the Boltzmann constant.
We collectively write all control variables as �μ ≡ (T,�i ).
The Brownian particle may be regarded as the working sub-
stance of a heat engine if temperature T and parameters �i in
the potential V are changed periodically.

Following the framework in Refs. [13,14,24], we can de-
rive the linear response relations between the conjugated
thermodynamic forces Xμ and the changing rates of control
variables �μ:

〈δXμ〉≡〈Xμ〉 − Xμ = −gμν�̇
ν, (4)

where Xμ ≡ 〈Xμ〉eq is the quasistatic value of Xμ with 〈· · · 〉eq

denoting the ensemble average at equilibrium, and δXμ ≡
Xμ − Xμ is the fluctuation of Xμ. The thermodynamic force

Xi conjugated to �i is given by

Xi ≡ − ∂H

∂�i
(5)

as a generalized force, where H ≡ p2/(2m) + V is the
system’s Hamiltonian. Meanwhile, XT conjugated to T is
given by

XT ≡ −kB ln ρ (6)

as a stochastic entropy, where ρ = ρ(x, p) is the distribution
of the system. The linear response coefficients gμν are given
by the equilibrium time-correlation functions of the thermo-
dynamic forces [13]:

gμν ≡ 1

kBT

∫ +∞

0
ds〈δXμ(s)δXν (0)〉eq. (7)

An operator solution for the time evolution of a function
φ(s) can be given as [24]:

φ(s) = eL
†
FPsφ(0), (8)

where

L†
FP ≡ p

m

∂

∂x
− ∂V

∂x

∂

∂ p
− ξ

m
p

∂

∂ p
+ ξkBT

∂2

∂ p2
(9)

is the adjoint Fokker-Planck operator corresponding to the
Langevin equations (1) and (2) [54,55]. With this operator
solution, we can find another expression for δXT (s):

δXT (s) = eL
†
FPsδXT (0)

= eL
†
FPs

( − kB ln ρeq + kB
〈
ln ρeq

〉
eq

)

= eL
†
FPs

(
H (0)

T
− F

T
− S

)

= eL
†
FPs

(
H (0)

T
− U

T

)

= H (s)

T
− U

T
, (10)

if the system is initialized with the equilibrium distribution:

ρeq ≡ exp

{
− 1

kBT
(H − F )

}
, (11)

where F ≡ U − TS is the Helmholtz free energy with U ≡
〈H〉eq and S ≡ −kB〈ln ρeq〉eq being the equilibrium internal
energy and the equilibrium entropy, respectively.

It is also worth noting that the fluctuations of thermody-
namic forces are given by

δXμ(0) = kBT
∂ ln ρeq

∂�μ
, (12)

if we initialize the system as the equilibrium state [24].
In the slow-driving linear response regime, the dissipated

availability A for a process starting at time t = ti and ending
at time t = t f is given in a geometrical way in terms of gμν :

A ≡
∫ t f

ti

gμν�̇
μ�̇νdt . (13)

As a result of the second law of thermodynamics, we have
A � 0, requiring the positive semidefiniteness of gμν .
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There is a relation between dissipated availability A and
entropy production rate σ̇ :

A =
∫ t f

ti

T σ̇dt, (14)

where σ̇ ≡ Ṡ − J/T with S = 〈XT 〉 and J being the entropy
and the heat flux, respectively. To derive Eq. (14), we start
from the first law of thermodynamics:

d

dt
〈H〉 = J − 〈Xi〉�̇i, (15)

where the changing rate of internal energy d〈H〉/dt is equated
with the heat flux J minus the instantaneous power 〈Xi〉�̇i.
Based on Eq. (15), we have [14]

−〈Xμ〉�̇μ = T σ̇ + d

dt
(〈H〉 − T S). (16)

Combined with Eq. (10), Eq. (16) becomes

−Xμ�̇μ + gμν�̇
μ�̇ν = T σ̇ + d

dt
(U − TS ), (17)

by applying the linear response relation [Eq. (4)]. Due to the
fact that dF = d (U − TS ) = −Xμd�μ, we finally have

T σ̇ = gμν�̇
μ�̇ν, (18)

and Eq. (14) combined with the definition of dissipated avail-
ability in Eq. (13).

By applying the Cauchy-Schwarz inequality to Eq. (13),
we can find the lower bound of A for a given process as

A � L2

ti − t f
, (19)

where

L ≡
∫ t f

ti

√
gμν�̇μ�̇νdt (20)

is the thermodynamic length of the trajectory corresponding
to the process in �μ space with gμν serving as a metric tensor.

For later use, we also introduce the overdamped Langevin
equation as

ẋ = −1

ξ

∂V

∂x
+ 1

ξ
ζ (t ), (21)

which can be derived from the underdamped Langevin equa-
tions (1) and (2) by assuming timescale separation τp/τx � 1
with τp and τx being the relaxation times of momentum and
position of the particle, respectively. While the definition of
gμν in this overdamped description is essentially the same as
the underdamped one in Eq. (7), the Hamiltonian is replaced
by H = V and the equilibrium distribution ρeq in Eq. (11)
accordingly. Moreover, the adjoint Fokker-Planck operator in
Eq. (9) should also be replaced as

L†
FP → G†

FP ≡ −1

ξ

∂V

∂x

∂

∂x
+ kBT

ξ

∂2

∂x2
. (22)

III. DECOMPOSITION OF METRIC TENSOR

The metric tensor [Eq. (7)] can be decomposed into the
Hadamard product of the relaxation time matrix τμν and the
Fisher information matrix Iμν [13,24]:

gμν = kBT τμν 	 Iμν, (23)

Iμν ≡
〈(

∂ ln ρeq

∂�μ

)(
∂ ln ρeq

∂�ν

)〉
eq

. (24)

The Hadamard product results in a matrix where each element
is the product of the corresponding element in the original
matrices, and there is no dependence on timescales for Iμν .
Here, each element of τμν gives the correlation time between
thermodynamic forces δXμ and δXν [13]. This decomposition
naturally comes from the definition [Eq. (7)] with δXμ(s) =
eL

†
FPsδXμ(0), where the relaxation time of the correlation ap-

pears from the integration of the time-correlation function,
and the time-correlation functions at s = 0 take the form of
the Fisher information when considering Eq. (12). As mul-
tiple timescales, the relaxation times of momentum τp and
position τx, appear in the Langevin system [Eqs. (1) and (2)],
it is natural to consider that each component of τμν may be
decomposed in terms of τp and τx, which is demonstrated in
the following subsections.

A. Case of harmonic potential

Due to the linearity of Langevin equations (1) and (2)
[16,21], and as the distribution remains Gaussian when
initialized as the equilibrium one [21], it is relatively
easy to calculate the metric tensor gμν for a harmonic
potential V (x, k) = kx2/2. The position and momentum re-
laxation times τx and τp in this case read

τx≡ξ

k
, (25)

τp≡m

ξ
. (26)

For the control variables �μ = (T, k), gμν is given by
[15,16,21]

gμν =
⎛
⎝gT T gT k

gkT gkk

⎞
⎠

μν

=

⎛
⎜⎝

mkB
ξT + ξkB

4kT −mkB
2ξk − ξkB

4k2

−mkB
2ξk − ξkB

4k2
mkBT
4ξk2 + ξkBT

4k3

⎞
⎟⎠

μν

.

(27)

Because the Fisher information in Eq. (24) is given by

Iμν =
⎛
⎝

1
T 2 − 1

2T k

− 1
2T k

1
2k2

⎞
⎠, (28)

the relaxation time matrix τμν is written as

τμν =

⎛
⎜⎝

m
ξ

+ ξ

4k
m
ξ

+ ξ

2k

m
ξ

+ ξ

2k
m
2ξ

+ ξ

2k

⎞
⎟⎠ =

⎛
⎝τp + 1

4τx τp + 1
2τx

τp + 1
2τx

1
2τp + 1

2τx

⎞
⎠
(29)

in terms of the linear combination of τx and τp. The metric ten-
sor gμν in Eq. (27) is positive definite, which can be checked
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from the positivity of its principal submatrices (gT T > 0 and
det(gμν ) = mk2

B/(16k3) > 0). It is easy to find that the posi-
tive definite gμν is decomposed into two positive semidefinite
parts:

gμν = gp
μν + gx

μν, (30)

where

gp
μν = τp

⎛
⎝

kB
T − kB

2k

− kB
2k

kBT
4k2

⎞
⎠

μν

(31)

is proportional to the momentum relaxation time τp, and

gx
μν = τx

⎛
⎝

kB
4T − kB

4k

− kB
4k

kBT
4k2

⎞
⎠

μν

(32)

is proportional to the position relaxation time τx.
Here, we find that gp

μν and gx
μν , respectively, are degenerate

and have zero-eigenvalue. The eigenvector (T, 2k) subject to
the zero-eigenvalue of gp

μν defines the direction of the under-
damped adiabatic process of the Langevin system [Eqs. (1)
and (2)] [15]; we obtain the adiabatic curve T 2/k = const. by
solving Ṫ /k̇ = dT/dk = T/(2k). Meanwhile, the eigenvector
(T, k) for gx

μν defines the direction of the adiabatic process of
the overdamped Langevin system [Eq. (21)] [24]; we obtain
the adiabatic curve T/k = const. by solving Ṫ /k̇ = dT/dk =
T/k. Here, the term “adiabatic” means dS = 0 for the qua-
sistatic entropy S .

Furthermore, gx
μν in Eq. (32) is equal to the metric tensor

god
μν for the overdamped dynamics [Eq. (21)] for the harmonic

potential [24]. This is consistent with the fact that Eq. (21)
is obtained in the overdamped limit τp/τx � 1 and from the
explicit form of Eqs. (30)–(32). In fact, two properties, gμν →
god

μν in the sufficiently large ξ limit and god
μν ∝ τx, can be shown

apart from the harmonic potential case (see Appendixes A and
B, respectively).

B. Case of scale-invariant potentials

Inspired by the case of the harmonic potential, we conjec-
ture that the metric tensor for other potential functions is also
decomposed in the same form in terms of the relaxation times
τp and τx as

gμν = gp
μν + gx

μν, (33)

where

gp
μν ∝ τp, (34)

gx
μν ∝ τx. (35)

However, due to the nonlinear term ∂V/∂x in Eq. (2), it is hard
to directly calculate the metric tensor and decompose it. Here,
we provide simulation results to show numerical evidence to
support our conjecture.

We consider the metric tensor for the following scale-
invariant potentials:

V = kx2n

2n
(n � 1), (36)

and control variables �μ = (T, k) as examples. By di-
mensional analysis, we can identify the position relaxation
timescale τx as

τx = ξk− 1
n (kBT )−

n−1
n , (37)

while τp is the same as the case of the harmonic potential
in Eq. (26). It should be noted that the mass m should not
appear in the position relaxation timescale, which is related
to the mass-independent overdamped Langevin dynamics
[Eq. (21)].

We nondimensionalize the equations for the numerical
simulations. T and k can be nondimensionalized by setting
a unit T as Te and a unit k as ke:

T̃ ≡ T −1
e T, (38)

k̃ ≡ k−1
e k. (39)

Then, we nondimensionalize other quantities as

x̃ ≡ (kBTe)−
1

2n k
1

2n
e x, (40)

p̃ ≡ (mkBTe)−
1
2 p, (41)

t̃ ≡ m− 1
2 k

1
2n
e (kBTe)

n−1
2n t, (42)

ξ̃ ≡ m− 1
2 k

− 1
2n

e (kBTe)−
n−1
2n ξ, (43)

Ṽ ≡ (kBTe)−1V, (44)

ζ̃ (t̃ ) ≡ k
− 1

2n
e (kBTe)−

2n−1
2n ζ (t ), (45)

where 〈ζ̃ (t )〉 = 0 and 〈ζ̃ (t̃ )ζ̃ (t̃ ′)〉 = 2ξ̃ T̃ δ(t̃ − t̃ ′). The dimen-
sionless underdamped Langevin equations read

dx̃

dt̃
= p̃, (46)

d p̃

dt̃
= −∂Ṽ

∂ x̃
− ξ̃ p̃ + ζ̃ (t̃ ). (47)

Also, the dimensionless overdamped Langevin equation reads

dx̃

dt̃
= −1

ξ̃

∂Ṽ

∂ x̃
+ 1

ξ̃
ζ̃ (t̃ ). (48)

The dimensionless metric tensor is also given by

g̃T T ≡ m− 1
2 k

1
2n
e k

− n+1
2n

B T
3n−1

2n
e gT T , (49)

g̃T k ≡ m− 1
2 k

2n+1
2n

e k
− n+1

2n
B T

n−1
2n

e gT k, (50)

g̃kT ≡ m− 1
2 k

2n+1
2n

e k
− n+1

2n
B T

n−1
2n

e gkT , (51)

g̃kk ≡ m− 1
2 k

4n+1
2n

e k
− n+1

2n
B T

− n+1
2n

e gkk . (52)

With this, the expected form of the metric tensor is

g̃μν = g̃p
μν + g̃x

μν = aμν

ξ̃
+ bμνξ̃ , (53)

if the decomposition in Eqs. (33)–(35) is feasible. Meanwhile,
for the metric tensor god

μν in the overdamped dynamics, the
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FIG. 1. ξ̃ dependence of the dimensionless metric tensor g̃μν at (T̃ , k̃) = (1, 1) for the scale-invariant potential V = kx4/4. Simulation
results (dots) were fitted by the functions φμν = aμν/ξ̃ + bμν ξ̃ (solid curves) by using the least square method.

expected form should be

g̃od
μν = cμνξ̃ (54)

in the dimensionless version.
We performed the numerical simulation in the following

way. For a given set of (T̃ , k̃), we first prepared a large
number of samples (x̃, p̃) from the equilibrium distribu-
tion by using the accept-reject sampling method [57]. Then,
we simulated each (x̃, p̃) according to the Langevin equa-
tions (46) and (47) or Eq. (48) with a long enough simulation
time t̃s and small enough time step dt̃ . With these (x̃, p̃),
we calculated the fluctuations of thermodynamic forces and
the time-correlation functions at each time by taking ensemble
averages. Finally, we obtained g̃μν by numerical integration
of the time-correlation functions. We used 4 × 105 samples
for the initial equilibrium distribution, and performed the nu-
merical simulations using the Euler-Maruyama method with
t̃s = 100 and dt̃ = 0.01. Figure 1 shows the simulation results
of g̃μν as a function of ξ̃ for the scale-invariant potential
V = kx4/4 (n = 2) with (T̃ , k̃) = (1, 1). We find that g̃μν is
well fitted by φμν = aμν/ξ̃ + bμνξ̃ with aμν and bμν being
the coefficients, where aμν � aνμ and bμν � bνμ [58]. Thus,
we have confirmed Eq. (53). We also find the degenerating
behavior of aμν , which suggests the degeneracy of g̃p

μν as
similar to the case of the harmonic potential.

Meanwhile, Fig. 2 shows g̃od
μν calculated using the over-

damped Langevin dynamics in Eq. (48), which is well fitted
by φod

μν = cμνξ̃ with cμν being the coefficients with cμν � cνμ.
We also find the degenerating behavior of cμν , which was

shown in Ref. [24] for the scale-invariant potentials. In the
sufficiently large ξ̃ regime, we can also find bμν � cμν , imply-
ing g̃μν � g̃x

μν � g̃od
μν in the overdamped limit as expected (see

also Appendix A). We also checked that the same behaviors
appear for the case of V = kx6/6 (n = 3) (data not shown).

Together with the timescales identified in Eqs. (26) and
(37), these findings give numerical evidence that the decom-
position in Eqs. (33)–(35) is feasible for the scale-invariant
potentials.

IV. COMPATIBILITY OF CARNOT EFFICIENCY
AND FINITE POWER

As an application of the decomposition of the metric tensor
in Sec. III, we consider the compatibility between Carnot
efficiency and finite power [50–52], where the efficiency η of
a heat engine is defined by

η ≡ W

Qin
(55)

with Qin and W being heat intake and work output, respec-
tively.

Such compatibility may usually be forbidden by the trade-
off relations between efficiency and power [14,35,46–49].
However, it is pointed out that compatibility can be achieved
under the vanishing limit of relaxation timescales [50–52].
The decomposition of the metric tensor in Sec. III implies that
the thermodynamic length, as well as the dissipated availabil-
ity, may be vanishing under such limit, leading to zero energy
loss with finite power.

FIG. 2. ξ̃ dependence of the dimensionless overdamped g̃od
μν at (T̃ , k̃) = (1, 1) for the scale-invariant potential V = kx4/4. Simulation

results (dots) were fitted by the functions φod
μν = cμν ξ̃ (solid curves) by using the least square method.
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In particular, in the slow-driving linear response regime
[Eq. (4)], the trade-off relation between effective efficiency ε

and power W/tcyc for a heat engine operating with cycle time
tcyc holds [14,49]. Here, the effective efficiency

ε ≡ W

U
(56)

characterizes the ratio between the work output of the heat
engine

W ≡
∫ tcyc

0
〈Xi〉�̇idt (57)

and the net heat intake [14,15,21,49]

U ≡ −
∫ tcyc

0
〈XT 〉Ṫ dt . (58)

By defining the quasistatic work

W ≡
∮

Xid�i, (59)

and noting

ε � 1 − A
W (60)

in the slow-driving linear response regime, we obtain the
following trade-off relation between effective efficiency ε and
power W/tcyc [14,49]:

W
tcyc

� (1 − ε)

(W
L

)2

. (61)

Because of η/ηC � ε, Eq. (61) can also be considered the
trade-off relation between efficiency η and power W/tcyc [14].

The trade-off relation [Eq. (61)] forbids the compatibility
of Carnot efficiency and finite power in usual cases. However,
cases with L → 0 are exceptions. This is easy to under-
stand, as the vanishment of the thermodynamic length implies
the vanishment of dissipated availability from Eq. (13).
By considering the decomposition of the metric tensor in
Eqs. (33)–(35), it is expected that the vanishing limit of re-
laxation times realizes such cases.

We demonstrate this consideration by constructing a
Carnot cycle of a Brownian particle in a harmonic potential
V = kx2/2, of which the metric tensor is given by Eq. (27)
[15,16,21]. We construct the Carnot cycle as follows (Fig. 3):

(1) Isothermal process from A(T0, k0) to B(T0, c1k0):

T (t ) = T0,

k(t ) = (c1 − 1)k0t/t1 + k0. (62)

A B

CD

(1)

(2)

(3)

(4)

FIG. 3. The Carnot cycle with (1) isothermal process; (2) adia-
batic process; (3) isothermal process; and (4) adiabatic process in T -k
space, where a Brownian particle in a controllable harmonic potential
V = kx2/2 is used as a working substance.

(2) Adiabatic expansion process from B(T0, c1k0) to
C(c2T0, c1c2

2k0):

T (t ) = (c2 − 1)T0t/t2 + T0,

k(t ) = c1k0[T (t )/T0]2. (63)

(3) Isothermal process from C(c2T0, c1c2
2k0) to

D(c2T0, c2
2k0):

T (t ) = c2T0,

k(t ) = c2
2(1 − c1)k0t/t3 + c1c2

2k0. (64)

(4) Adiabatic compression process from D(c2T0, c2
2k0) to

A(T0, k0):

T (t ) = (1 − c2)T0t/t4 + c2T0,

k(t ) = k0[T (t )/T0]2. (65)

Here, c1 > 1 and c2 > 1 are two constants and ti (i =
1, 2, 3, 4) is the duration of each process. It is obvious
that tcyc = t1 + t2 + t3 + t4, Tc = T0, Th = c2T0, and the cor-
responding Carnot efficiency is given by

ηC = c2 − 1

c2
. (66)

It should be noted that the aforementioned conditions c1 > 1
and c2 > 1 imply that the points A, B, C, and D in the T -k
space in Fig. 3 are distinguishable.

Now, we turn to the dissipated availability. Due to
Eq. (13) and the proposed decomposition of the metric tensor
[Eqs. (33)–(35)], it is possible to achieve the vanishment of
the dissipated availability with finite operation time by taking
the vanishing limit of relaxation times. In fact, the dissipated
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availability A for the cycle in Eqs. (62)–(65) is given by

A =
4∑

i=1

∫ ti

0
gμν�̇

μ�̇νdt = Ap + Ax, (67)

Ap ≡ τp

[
kBT0(c1 − 1)2

4t1c1
+ kBT0(c1 − 1)2c2

4t3c1

]
, (68)

Ax ≡ τx

[
kBT0(c1 − 1)2(c1 + 1)

4t1c1
+ kBT0(c2 − 1)2(c2 + 1)

8t2c1c2
2

+ kBT0(c1 − 1)2(c1 + 1)c2

4t3c2
1

+ kBT0(c2 − 1)2(c2 + 1)

8t4c2
2

]
,

(69)

which is decomposed according to the momentum relaxation
time τp and position relaxation time τx:

τp = m

ξ
, τx = ξ

k0
. (70)

The decomposition of the dissipated availability according to
the relaxation times in Eq. (67) results from the decomposition
in Eqs. (33)–(35) for the metric tensor. If we take an appropri-
ate vanishing limit τp → 0 and τx → 0, we have A → 0, thus
achieving η → ηC with finite operation time tcyc.

To realize this scenario, we need to specify the way of
taking the simultaneous vanishing relaxation times τp → 0
and τx → 0, as it may significantly affect the underlying dy-
namics. Here, we adopt the following vanishing limit of the
relaxation times:

τp = m

ξ
= θp

ε
→ 0 (ε → +∞), (71)

τx = ξ

k0
= θx

ε
→ 0 (ε → +∞), (72)

respectively, where θp and θx are two positive finite constants
and ε is a dimensionless parameter. This vanishing limit im-
plies m ∼ ε−1 and k0 ∼ ε with the ratio being kept finite as
τp/τx = θp/θx.

The efficiency η and power W/tcyc for the cycle [Eqs. (62)–
(65)] under the vanishing limit [Eqs. (71) and (72)] are given
by (see Appendix C for the derivation)

η = ηC − γ

ε
, (73)

W

tcyc
= W

tcyc
− αγ

ε
, (74)

where the quasistatic work W in Eq. (59) is given by [15,21]

W = −
∮

kBT

2k
dk = kBT0(c2 − 1) ln c1

2
, (75)

and α and γ are positive finite constants as

α ≡ kBT0c2 ln c1

2tcyc
, (76)

γ ≡ θx

2c2 ln c1

(
1 − 1

c2
2

)(
1

c1t2
+ 1

t4

)

+ θx

4t1c2 ln c1

(
c1 − 1

c1

)2(
c1 + 1 + 2c1

θp

θx

)

+ θx

4t3c2
2 ln c1

(
c1 − 1

c1

)2(
c1 + 1 + 2c1c2

2
θp

θx

)
. (77)

In the vanishing limit of the relaxation times τp and τx

(ε → ∞), we find that the efficiency approaches the Carnot
efficiency ηC [Eq. (73)], while the power remains the finite
value W/tcyc [Eq. (74)]. Thus, the compatibility of Carnot
efficiency and finite power under the vanishing limit of the
relaxation times [Eqs. (71) and (72)] has been achieved.

We show that this compatibility is consistent with the trade-
off relation [Eq. (61)] by estimating the ratio between the left-
and right-hand sides of Eq. (61) in the vanishing limit of the
relaxation times. Combined with the definition of effective
efficiency [Eq. (60)], the trade-off relation [Eq. (61)] becomes

W
tcyc

� AW
L2

, (78)

of which both the left- and right-hand sides are constants.
For the protocol we adopted in Eqs. (62)–(65), we choose
c1 = c2 = 10 and t1 = t2 = t3 = t4, and θp = θx = θ . Then,
we can numerically evaluate the thermodynamic length L in
Eq. (20) as

L =
4∑

i=1

∫ ti

0

√
gμν�̇μ�̇νdt ≈ 5.900

√
kBT0

√
θ

ε
. (79)

The numerical result of the dissipated availability [Eq. (13)]
in this protocol is also estimated as

A ≈ 272.201

tcyc
kBT0

θ

ε
. (80)

Thus, the ratio between the left- and right-hand sides of
Eq. (78) is given by

Atcyc

L2
≈ 7.820, (81)

using Eqs. (79) and (80). Note that this is not such a tight
bound, as the protocol we chose for the Carnot cycle is not the
geodesic in T − k space.

Finally, we support the compatibility of Carnot efficiency
and finite power by showing its consistency with the trade-off
relation between efficiency and power that applies to gen-
eral Markov heat engines beyond the linear response regime
[12,46]:

W

tcyc
� χTcη(ηC − η). (82)
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Here, χ is a positive factor depending on the system. Again,
it may still be possible for the power to remain finite even
η → ηC, if χ diverges with a proper rate at the same time. In
fact, it was pointed out that the vanishing limit of relaxation
times of a system can lead to the divergence of χ , realizing the
compatibility of Carnot efficiency and finite power [50–52].

The χ factor in the present case is given by (see
Appendix C for the derivation)

χ = ωε − ϑ, (83)

where ω and ϑ are positive finite constants:

ω ≡ c2
2kB(t2 + 3t3 + t4)

3tcycθp
, (84)

ϑ ≡ c2
2kB ln c1

2tcyc
. (85)

It is obvious that χ diverges in the limit of ε → ∞ [Eqs. (71)
and (72)]. Due to this divergence, even when η approaches
ηC, χT0η(ηC − η), which corresponds to the right-hand side
of the trade-off relation [Eq. (82)], remains finite as

χT0η(ηC − η) = ωγηCT0 − (ωγ + ϑηC)
γ T0

ε
+ ϑγ 2

ε2

→ ωγηCT0, (86)

showing that the compatibility of Carnot efficiency and finite
power is possible without breaking the trade-off relation. It
is also worth noting that the right-hand side χT0η(ηC − η) in
Eq. (82) may give a loose bound for the power. In fact, we
find that Eq. (86) is about 30 times larger than W/tcyc for the
same parameters we chose to estimate the ratio between the
left- and right-hand sides of the trade-off relation [Eq. (78)].

V. CONCLUDING REMARKS

In this work, we showed the decomposition of the met-
ric tensor, which is a key element to quantify the dissipated
availability in the geometrical framework of thermodynamics
[13,14,24,49], in terms of the relaxation times characterizing
underdamped Langevin dynamics. This decomposition was
demonstrated by the analytically tractable harmonic potential
and the scale-invariant potentials by numerical simulations.
Moreover, we applied the decomposition of the metric tensor
to show the compatibility of Carnot efficiency and finite power
[50–52]. We took the Carnot cycle using the Brownian parti-
cle in the harmonic potential as an example. We found that
the dissipated availability in one cycle can be decomposed

according to the relaxation times due to the decomposition
of the metric tensor. The vanishing limit of the relaxation
times resulted in the vanishment of the dissipated availability
with finite cycle time and thus the compatibility of Carnot
efficiency and finite power. We also showed that this com-
patibility is consistent with the trade-off relations between
efficiency and power.

There remain some future tasks. A fully theoretical anal-
ysis of the dependence of the metric tensor on relaxation
times is necessary to support the decomposition for general
potentials. As the different relaxation timescales are shown
to be proportional to different orders of friction coefficient
by dimensional analysis, the decomposition is expected to be
confirmed if the dependence on friction coefficient is theoret-
ically obtained for the metric tensor.

As we noted in Sec. I, a close relationship between ther-
modynamic geometry and optimal transport geometry exists
for overdamped dynamics [38,39]. A relationship between
the two geometries for underdamped dynamics needs further
research. Related to this, it is noteworthy that a trade-off rela-
tion between efficiency and power using Wasserstein distance
and dynamical activity has recently been formulated [35],
where the reciprocal of the dynamical activity gives the typical
timescale of a system.

Last, though we have theoretically shown that the vanish-
ing limit of the relaxation times leads to the compatibility of
Carnot efficiency and finite power, we expect that actual ex-
periments such as in Refs. [59,60] to verify the compatibility,
in which the relaxation times of a system are systematically
controlled, will be conducted in the near future.
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APPENDIX A: METRIC TENSOR IN OVERDAMPED LIMIT

Here, we formally show gμν → god
μν in the overdamped

limit from the definition in Eq. (7) of the metric tensor using
the equilibrium time-correlation function. For the sufficiently
large ξ limit assuring τp/τx � 1, the Langevin system [Eqs.
(1) and (2)] naturally becomes the overdamped one [Eq. (21)]
as the inertia ṗ is negligible [54,55,61]. Meanwhile, the metric
tensor will approach the overdamped one. For example, for
μ = ν = T , we have

gT T = 1

kBT

∫ +∞

0
ds〈δXT (s)δXT (0)〉eq

= 1

kBT

∫ +∞

0

1

T 2

〈[
p2(s)

2m
+ V (x(s)) − 〈p2〉eq

2m
− 〈V 〉eq

][
p2(0)

2m
+ V (x(0)) − 〈p2〉eq

2m
− 〈V 〉eq

]〉
eq

ds

= 1

kBT

∫ +∞

0

1

T 2

〈[
p2(s)

2m
− 〈p2〉eq

2m

][
p2(0)

2m
+ V (x(0)) − 〈p2〉eq

2m
− 〈V 〉eq

]〉
eq

ds

+ 1

kBT

∫ +∞

0

1

T 2

〈
[V (x(s)) − 〈V 〉eq]

[
p2(0)

2m
+ V (x(0)) − 〈p2〉eq

2m
− 〈V 〉eq

]〉
eq

ds
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� 1

kBT

∫ +∞

0

1

T 2

〈[
p2(0)

2m
− 〈p2〉eq

2m

][
p2(0)

2m
+ V (x(0)) − 〈p2〉eq

2m
− 〈V 〉eq

]〉
eq

exp

(
−2ξ

m
s

)
ds

+ 1

kBT

∫ +∞

0

1

T 2
〈[V (x(s)) − 〈V 〉eq][V (x(0)) − 〈V 〉eq]〉eqds

= m

2ξ

1

T 2

〈[
p2(0)

2m
− 〈p2〉eq

2m

][
p2(0)

2m
+ V (x(0)) − 〈p2〉eq

2m
− 〈V 〉eq

]〉
eq

+ 1

kBT

∫ +∞

0

1

T 2
〈[V (x(s)) − 〈V 〉eq][V (x(0)) − 〈V 〉eq]〉eqds

� 1

kBT

∫ +∞

0

1

T 2
〈[V (x(s)) − 〈V 〉eq][V (x(0)) − 〈V 〉eq]〉eqds = god

T T , (A1)

where we used Eq. (10) in the second line. In this approxima-
tion, rapid damping of p2(s) in the overdamped dynamics is
the key [54,55,61]. This damping can be characterized by

p2(s)

2m
− 〈p2〉eq

2m
�

(
p2(0)

2m
− 〈p2〉eq

2m

)
exp

(
−2ξ

m
s

)
, (A2)

which is applied in the fifth line of Eq. (A1). To derive
Eq. (A2), we start from Eq. (8). By substituting φ(s) as
(p2(s) − p2(0))/(2m) and taking the partial derivative of s in
both sides, we have

∂

∂s

[
p2(s)

2m
− 〈p2〉eq

2m

]
= L†

FP

[
p2(s)

2m
− 〈p2〉eq

2m

]
. (A3)

We can decompose L†
FP

L†
FP = L†

re + L†
irr, (A4)

in terms of a reversible part L†
re

L†
re ≡ p

m

∂

∂x
− ∂V

∂x

∂

∂ p
, (A5)

and an irreversible part

L†
irr ≡ − ξ

m
p

∂

∂ p
+ ξkBT

∂2

∂ p2
. (A6)

In the sufficiently large ξ regime, we have

L†
FP � L†

irr. (A7)

Combined with

L†
irr

[
p2(s)

2m
− 〈p2〉eq

2m

]
= −2ξ

m

[
p2(s)

2m
− 〈p2〉eq

2m

]
, (A8)

where 〈p2〉eq = mkBT , Eq. (A3) becomes

∂

∂s

[
p2(s)

2m
− 〈p2〉eq

2m

]
� −2ξ

m

[
p2(s)

2m
− 〈p2〉eq

2m

]
. (A9)

Equation (A2) can be obtained by solving Eq. (A9).
Moreover, we also apply〈

[V (x(s)) − 〈V 〉eq]

[
p2(0)

2m
− 〈p2〉eq

2m

]〉
eq

= 0, (A10)

in the sixth line of Eq. (A1), as V (x(s)) does not depend on
p(0) in overdamped dynamics.

Such analysis can also be applied for other components,
which shows that the metric tensor approaches the over-
damped one in the sufficiently large ξ limit.

APPENDIX B: PROPORTIONALITY OF RELAXATION
TIME IN METRIC TENSOR FOR OVERDAMPED

DYNAMICS

We show god
μν ∝ τx for general potentials. To this end, we

consider its dependence on ξ as

∂god
μν

∂ξ
= 1

kBT

∫ +∞

0
ds

∂

∂ξ
〈δXμ(s)δXν (0)〉eq

= 1

kBT

∫ +∞

0
ds

〈[
∂

∂ξ
eG

†
FPsδXμ(0)

]
δXν (0)

〉
eq

= − 1

kBT ξ

∫ +∞

0
ds〈[sG†

FPeG
†
FPsδXμ(0)]δXν (0)〉eq

= − 1

kBT ξ

∫ +∞

0
s

d

ds
〈δXμ(s)δXν (0)〉eqds

= 1

kBT ξ

∫ +∞

0
ds〈δXμ(s)δXν (0)〉eq

= god
μν

ξ
, (B1)

where we applied Eq. (8) and the adjoint Fokker-Planck op-
erator G†

FP for the overdamped dynamics in Eq. (22) to obtain
δXμ(s). Following derivatives,

∂

∂ξ
eG

†
FPs = −1

ξ
sG†

FPeG
†
FPs, (B2)

d

ds
eG

†
FPs = G†

FPeG
†
FPs, (B3)

are also applied in the third and fourth lines, respectively.
Integration by parts and the following relation

lim
s→+∞ s〈δXμ(s)δXν (0)〉eq = 0, (B4)

which ensures the convergence of the integration in Eq. (7),
are used in the fifth line. By solving Eq. (B1), we obtain god

μν =
Kμνξ with Kμν being a matrix independent of ξ .
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If the potential V can be described in a series form,

V =
∞∑

n=1

kn

n
xn, (B5)

we can obtain a set of timescales τn without mass m for all
kn �= 0 by dimensional analysis:

τn ∼ ξk
− 2

n
n (kBT )−

n−2
n . (B6)

All these timescales and their combinations τα
i τ 1−α

j are pro-
portional to ξ , which implies that the position relaxation
timescale is proportional to ξ :

τx ∝ ξ . (B7)

Thus, the metric tensor for overdamped dynamics should be
proportional to τx as god

μν is proportional to ξ .

APPENDIX C: DERIVATION OF EQS. (73), (74), AND (83)

We show the derivation of the efficiency η in Eq. (73),
power W/tcyc in Eq. (74), and χ factor in Eq. (83) for the
Carnot cycle [Eqs. (62)–(65)].

The linear response relation [Eq. (4)] is applicable when
the driving speed is much slower than the system’s relaxation
speed, which can be applied to the vanishing limit of relax-
ation times. The linear response coefficient, which also serves
as the metric tensor, is given by Eq. (27) if we choose the
control variables as �μ = (T, k). Thus, for 〈Xk〉, we have

〈Xk〉 = Xk − gkμ�̇μ

= −kBT

2k
+ (ξ 2 + 2mk)kB

4ξk2
Ṫ − (ξ 2 + mk)kBT

4ξk3
k̇, (C1)

and the work of the Carnot cycle [Eqs. (62)–(65)] reads

W =
4∑

i=1

∫ ti

0
〈Xk〉k̇dt

= kBT0(c2 − 1) ln c1

2
− kBT0ξ

4k0

(
1 − 1

c2
2

)(
1

c1t2
+ 1

t4

)

− kBT0ξ

8k0t1

(
c1 − 1

c1

)2(
c1 + 1 + 2k0mc1

ξ 2

)

− kBT0ξ

8k0c2t3

(
c1 − 1

c1

)2(
c1 + 1 + 2k0mc1c2

2

ξ 2

)
. (C2)

The heat intake Qin of the Carnot cycle [Eqs. (62)–(65)] is
given by [52]

Qin =
∑
Qi>0

Qi, (C3)

Qi =
∫ ti

0

ξ

m

(
kBT − 〈p2〉

m

)
dt (i = 1, 2, 3, 4), (C4)

where Q2 and Q4 during the adiabatic processes should van-
ish. With the definition of Xk in Eq. (5) and the replacement

of δXT in Eq. (10), we have

〈p2〉 − 〈p2〉eq = 2m(T 〈δXT 〉 + k〈δXk〉). (C5)

Combined with the linear response relations [Eq. (4)], 〈p2〉
can be expressed as

〈p2〉 = mkBT − m2kB

ξ
Ṫ + m2kBT

2ξk
k̇, (C6)

where 〈p2〉eq = mkBT . Finally, the heat intake is given by

Qin = Q3 = kBT0c2 ln c1

2
. (C7)

With the work W in Eq. (C2) and the heat intake Qin in
Eq. (C7), it is easy to obtain the efficiency η:

η = W

Qin

= ηC − ξ

2k0c2 ln c1

(
1 − 1

c2
2

)(
1

c1t2
+ 1

t4

)

− ξ

4k0t1c2 ln c1

(
c1 − 1

c1

)2(
c1 + 1 + 2k0mc1

ξ 2

)

− ξ

4k0t3c2
2 ln c1

(
c1 − 1

c1

)2(
c1 + 1 + 2k0mc1c2

2

ξ 2

)
.

(C8)

We can express the efficiency η in Eq. (C8) and the power
W/tcyc with W given in Eq. (C2) in terms of ε as

η = ηC − γ

ε
, (C9)

W

tcyc
= W

tcyc
− αγ

ε
, (C10)

where α and γ are given in Eqs. (76) and (77), respectively.
The χ factor in Eq. (82) for the case of harmonic potential

is given as [48,52]

χ = ξT 2
h

tcycT 2
c m2

4∑
i=1

∫ ti

0

1

T

(
T − Tc

Th − Tc

)2

〈p2〉dt

= ξc2
2

tcycm2

4∑
i=1

∫ ti

0

1

T

(
T − T0

c2T0 − T0

)2

〈p2〉dt, (C11)

where the temperatures of heat reservoirs Tc = T0 and Th =
c2T0 are set according to the Carnot cycle [Eqs. (62)–
(65)]. By applying Eq. (C6), we can further calculate χ in
Eq. (C11) as

χ = ωε − ϑ, (C12)

where ω and ϑ are given in Eqs. (84) and (85), respectively.
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