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In our previous paper [N. Tsutsumi et al., Chaos 32, 091101 (2022)], we proposed a method for constructing
a system of differential equations of chaotic behavior from only observable deterministic time series, which
we call the radial function-based regression (RfR) method. However, when the targeted variable’s behavior is
rather complex, the direct application of the RfR method does not function well. In this study, we propose
a method of modeling such dynamics, including the high-frequency intermittent behavior of a fluid flow, by
considering another variable (base variable) showing relatively simple, less intermittent behavior. We construct
an autonomous joint model composed of two parts: the first is an autonomous system of a base variable, and the
other concerns the targeted variable being affected by a term involving the base variable to demonstrate complex
dynamics. The constructed joint model succeeded in not only inferring a short trajectory but also reconstructing
chaotic sets and statistical properties obtained from a long trajectory such as the density distributions of the

actual dynamics.
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I. INTRODUCTION

We are often eager to identify a dynamical system model
that generates observable time series data. Many systems that
describe physical phenomena have been found since the find-
ing of the equation of motion. In decades, various methods
have been proposed that estimate a dynamical system de-
scribing observed data combining physical knowledge and
machine learning techniques. Chorin ef al. [1] proposed a
method to describe unknown partial dynamics that are not
described by equations of physical systems. Physics-informed
machine learning methods [2—4] construct a model by suppos-
ing physical conditions that a system generating time series is
expected to have. Sometimes, we do not have any physical
knowledge of a system that generates time series. Several ap-
proaches have been proposed concerning modeling dynamics
using machine learning from given time series data with-
out physical knowledge. The dynamic mode decomposition
[5] is a method to derive macroscopic features and estimate
a dynamical system of the variables. Reservoir computing
[6-11] is a recurrent neural network with low computational
cost. These methods usually model a continuous dynamical
system as discrete-time, not differential equations. Note that
a model constructed using reservoir computing is commonly
a discrete-time system, but there are some types of reservoir
computing using differential equations to describe the dynam-
ics of the reservoir states [12].

In some studies, a system of ordinary differential equa-
tions (ODEs) is constructed to describe the dynamics of
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deterministic time series. Neural ODE [13] recently attracted
much attention for using a neural network to model ODE. The
method based on the theory of the Koopman operator [14-16]
projects the phase space to an infinite dimensional space to
construct a model as a linear system. There are studies to
make a simple and understandable model of ODE:s in a finite
dimensional space without a neural network. Several studies
[17-20] have estimated a system of ODEs from the time series
of all variables of the background system. Other investigations
[21-23] have derived a system of ODEs using an observable
variable and its time derivatives as the model variables. In
these studies, prior knowledge of the background dynam-
ics was used to choose basis functions for the regression;
however, this method is not appropriate for some practical
purposes [24].

Recently, we proposed a simple method for constructing
a system of ODEs for chaotic behavior based on regression
using only observable deterministic scalar time series data
[25,26], referred to as the radial function-based regression
(RfR) method. The RfR method constructs a model describing
the dynamics of a time series in a space made only from
understandable variables without background knowledge. For
the regression, we employ the delay coordinate of the observ-
able variable and spatially localized radial basis functions in
addition to polynomial basis functions. The introduction of
the localized functions leads to higher computational costs
than that of some other methods such as reservoir comput-
ing. The method’s forecasting capability is not limited to a
short time series but also to a density distribution created
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using a long time series. We can generate a long trajectory
of the model using the stagger-and-step method [27] when
the appropriate model trajectory is realized on a chaotic set of
the model that is not an attractor. This RfR method functions
even when observable variables are obtained from an infinite-
dimensional system such as partial differential equations and
delay differential equations [26].

Regardless of the modeling method, some types of com-
plex time series governed by dynamics with multiscale
structures and/or high Lyapunov dimensions are difficult to
model. In the case of a fluid flow, direct modeling of high-
frequency variable dynamics is not practically easy, even if
the delay coordinate of the observable variable is used. To
model high-frequency variable dynamics, a method using a
low-frequency variable is effective [7]. In this study, we first
model the dynamics of a low-frequency variable using only
the time series data of the variable and its delay coordinate.
Next, we construct a model that predicts the dynamics of
the high-frequency variable from that of the low-frequency
variable. The set of the constructed models succeeds in de-
scribing the dynamics of the high-frequency variable. This
approach involving modeling via other variables is effective
for dealing with complex dynamics. Abarbanel et al. [28]
introduced a method to construct a function describing the
targeted variables depending on the delay coordinate of an-
other variable. By applying the proposed method and adopting
spatially localized functions, we construct ODEs that describe
the targeted variable using mainly the delay coordinate of a
different variable.

We introduce a variant of the RfR method, which first
models the simple coherent dynamics of a certain variable
using the RfR method, and this system is then used to model
the complex and sometimes intermittent dynamics of a tar-
geted variable. The proposed method is referred to as the
joint RfR method. This method enables the construction of a
system of ODEs describing the complex time series using only
physically understandable variables, and it dramatically en-
larges the capabilities of methods for constructing data-driven
ODEs. We describe the joint RfR method and demonstrate its
validity by applying it to two examples. The first involves the
time series of the Rossler equation, which is a well-known
chaotic system. The second concerns the time series of the
energy function of a chaotic fluid flow. The proposed method
succeeds in describing the connection between the two types
of time series of a single dynamical system, although their
behaviors are quite different.

II. MODELING METHOD

We aim to achieve a data-driven construction of a system of
ODE:s for describing the relatively complex deterministic dy-
namics of a targeted variable. For this purpose, we assume that
we can observe a time series of two variables showing simple
and relatively complex dynamics. Because directly modeling
the targeted variable’s dynamics is difficult, we first construct
a relatively simple dynamics model and use it to model the
targeted variable’s dynamics as the skew-product-type ODE,
as described in Fig. 1. When the dimension of the delay co-
ordinate for a variable showing relatively moderate dynamics
is sufficiently high, invariant sets of the original system are
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FIG. 1. Outline of the joint RfR method for constructing a joint
model composed of the base and fiber models. The proposed method
constructs a system of ODEs that infer the time series of two vari-
ables x(¢) and y(z) from only their observable time series data, where
x(t) = g1(p) and y(t) = g2(p) for some functions g, and g,, and
p is determined by some unknown dynamical system ‘j—’t’ = f(p).
Using the time series of x(¢) that shows relatively simple dynamics,
we construct a “base model” using a system of ODEs of a variable
X composed of x and its time delay variables employing the RfR
method [25,26]. The relatively complex behavior of the y variable
is described as fiber dynamics using a system of skew-product-type
ODEs of a variable ¥ composed of y, its time delay variables, and
the variable X of the “base model.” The constructed model for the
fiber dynamics is called the “fiber model.” Here the first component
of the variables X and Y are X; and Y;, respectively.

reconstructed in the base model [29]. The relatively complex
dynamics of the original system are almost completely re-
constructed by the base model. The fiber model picks up the
dynamics of the targeted variable from the base model. The
skew-product-type ODE is expected to demonstrate relatively
complex dynamics. We use the RfR method [25] to estimate
the base model describing the relatively simple variable x(t)
(i.e., the base variable), and the new method is applied to
modeling the relatively complex dynamics of a variable y()
(i.e., the targeted variable) as a system of ODEs, which is
referred to as the fiber model. In this section, we briefly review
the RfR method for constructing the base model and explain
the method used for the targeted variable in detail. Finally, a
method to generate a numerical trajectory from the estimated
system is explained. To describe the dynamics of a targeted
observation y(¢), we construct a joint model composed of base
and fiber models.

A. Base Model

The first part of the joint model describes the dynamics
of the base variable x. It is constructed from scalar time
series data of x(¢) using the RfR method [25]. In the RfR
method, the delay coordinate is employed to describe chaotic
behavior using only a scalar observable time series. We esti-
mate a D-dimensional system of ODEs of the variable X =
Xy, Xa, ..., Xp), which almost satisfies the delay structures
among components of the variable

X))~ X\t +1)~ - -~ Xpt+ (D - 1)), QY

where X is considered to describe the dynamics of x, and ©
is the delay time. See [25] for details concerning the choice of
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7. The model

dX—FX 2
E_() ()

is constructed, where F (X ) is formulated by

FX)=B+ Y. BiXa+ Y. Boi¢i(X). (3

d=1,--.D j=1,

where ¢;(X) = exp(M), and the paramters c;(j =
1,...,J) are distributed as lattice points and o is the standard
deviation of the Gaussian distribution. The model coeffi-
cients B;(i=1,---,D +J) are determined using the time
derivative at each sample point estimated by the Taylor
approximation. See [25] for more details concerning this
process.

It should be noted that if we can observe a time series of
the base variable, the base modeling process is not required,
and a fiber model may be directly constructed to predict the
time series of the targeted variable.

B. Fiber Model

With the knowledge of the variable X obtained from the
base model, we next construct a model describing the dy-
namics of the targeted variable y. For a given delay time
7(> 0), we construct a system of two-dimensional ODEs of
the variable Y = (Y7, ¥2), which is expected to satisfy the
delay structures among components of the variable: Y;(¢) ~
Y>(t + t). The relationship will be used for generating an
appropriate numerical trajectory. Using the variable X of the
base model, we form the ODEs describing Y as follows:

dy

= =ar +G). @)

and p; and a is the model coefficients and ¢; is the same as
that in Eq. (3), which means that c¢; of ¢; are distributed as
lattice points for X. The model coefficients p; and a are de-
termined via the time series data using ridge regression. This
formulation and the introduction of the linear term Y; into (4)
are important for modeling complex dynamics with restricted
computational resources. In the above formulation, we can
avoid distributing center points in the delay coordinate of the
targeted variable. See Appendix A for the explanation of the
linear term. When we estimate the model coefficients, we use
the time series of the delay coordinate [y(¢), y(t — 7)] as that
of Y (¢). See [25] for more details concerning this estimation.
The appropriate delay time depends on the frequency of the
time series, and the delay time t for the base model and the
delay time 7 for the fiber model need not be the same. In our
examples, T should be chosen to be smaller than 7.

C. Generation of a Model Trajectory

Here, we introduce a method for estimating a numerical
trajectory without detailed information for the variable y. In
some data-driven models, an appropriate trajectory is not on
its chaotic attractor but on its chaotic saddle. A chaotic saddle
is a chaotic invariant set that does not attract some neighbor-
hoods. The bias and the shortage of learning data can easily

TABLE I. Sets of parameters. These parameters are used for
modeling the dynamics of the Rossler equation and fluid flow.*

D T J 7 t*
RoOssler 3 0.60 7716 0.40 0.60
Fluid flow 7 2.00 832291 1.00 1.50

“We set (8gid, 1, T, At, m, p) = (0.25,5 x 10%,10°,0.10,3,0.1) in
the case of the Rossler equation, and (8gig,n, T, At,m, p) =
(0.40, 5 x 10*,5 x 10*,0.05, 3,0.1) in the case of the fluid flow,
where the parameter 8,4 is the grid size used to determine the Gaus-
sian radial basis function, n is the number of regression data points, T
is the time length of the time series of the base and targeted variable,
and At is the time step of the time series data. The parameter o of ¢;
is determined from m and p (see [26] for more details).

cause the situation. Even when a model trajectory is realized
on a chaotic saddle, a short-term numerical trajectory via the
forward integration of the model mimics that of the actual
well, but a long-term trajectory diverges. In [26], instead of
using the simple forward integration, we generate an appro-
priate numerical trajectory on a chaotic saddle of the model
constructed using the RfR method employing the stagger-
and-step method [27]. The appropriateness of a trajectory is
determined by the delay structure (1) along a trajectory. To
generate a long trajectory of the base model, we employ the
stagger-and-step method when the chaotic invariant set of the
model is a saddle. We also apply the idea of this stagger-and-
step method to the given fiber model (4).

To generate a trajectory from the estimated fiber model
(4), the time series of the variable of the base model X (¢) is
required. When the time series X (¢) is given, we can inter-
pret the fiber model (4) as a linear system of Y with a time
depending external force G(X (¢)). Using the description of a
solution of a linear system, the solutions of the fiber model
(4) can be analytically described. The appropriateness of a
model trajectory is quantified by the delay structure A(¢) :=
Yi(t) — Yo(t + ), which is written as A(t) = C(¢)Y;(0) —
Y>(0) + M(¢), where C(¢) and M(¢) do not depend on Y;(0)
and Y»(0). Note that this form is a linear equation for ¥;(0) and
Y>(0). The appropriate trajectory of the fiber model (4) should
satisfy A(z) ~ 0 for any 7. Suppose A(0) =0 and A(z*) =0
for some given ¢* > 0, then Y;(0) and Y>(0) can be obtained
only from the ODEs of Eq. (4) (see Appendix B for more
detail). By applying this approach, we can estimate a model
trajectory corresponding to the targeted observation y(z).

The settings of the parameters for the example dynamics
are given in Table I. The following results can be obtained
robustly with different sets of parameters.

III. EXAMPLE 1: ROSSLER EQUATION

We model a system of differential equations using the
time series of the Rossler equation [30]: Z—f =-y—z dd—f =
x + 0.2y, Z—f = 0.2 + xz — 5.7z. It is known that a z variable
behaves less coherently than x and y variables. Therefore, the
direct modeling of z dynamics is more difficult than that of x
or y dynamics. As an example, we first model the dynamics of
a variable x by considering it to be the base variable and using
it to model the z dynamics.
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FIG. 2. Short time series for the Rossler dynamics. The estimated
time series of the targeted variable z (¥} of the fiber model) (red) is
shown together with that of the actual time series (blue). The time
series including noise used for the estimation is also plotted (yellow).
We added Gaussian noise, with a standard deviation of 1% of the raw
data, to the time series of the z variable.

We assume that we can observe discrete time series of x
and z variables with Gaussian noise whose standard deviation
is 1% of the standard deviation for each variable. See Fig. 2
for the time series of the z variable with noise used for the
modeling together with that without noise. Here, the size of
the noise is large enough to hide small amplitude fluctuations.

We construct a base model (2) for X := (X;, X5, X3) us-
ing the time series of the x variable and a fiber model (4)
for Y := (Y}, ¥2) using the time series of z together with
the dynamics of the base model. Refer to Fig. 2 for the
short time series of the Y; variable obtained from the joint
model, the skew-product-type model that joins the fiber and
base models. It is shown that the joint model well predicts
the short time series. Figure 3 shows a projection of long
trajectory points to a (X, Y;) plane. The results imply the
successful reconstruction of the connection between the base
and targeted variables. Note that the Lyapunov exponent of the
base model (A; = 0.07124) agrees with that of the original
Rossler equation (A} = 0.07123), and the second Lyapunov
exponents A, of both systems are neutral. The negative Lya-
punov exponent of the model is —0.27506, and that of
the original is —5.21974. This discrepancy of the negative
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FIG. 3. Projection of a chaotic set for the Rossler dynamics. The
projection of a long trajectory generated from the original system
onto the xz plane (actual) is shown in the left panel and that of
the model (model) in the right panel. The two trajectories exhibit
a similar shape.

x107*

x10-°

FIG. 4. Short time series of two different variables for the macro-
scopic behavior of the fluid dynamics. The relatively moderate
estimated time series of the base variable E; (X; of the base model)
(red) is shown in the upper panel. The relatively complex estimated
time series of the targeted variable £}, (Y] of the fiber model) (red) is
shown in the lower panel. The actual trajectories are plotted together
with the estimations, which are shown by the blue lines.

Lyapunov exponents is commonly observed in data-driven
modelings [25,31].

IV. EXAMPLE 2: FLUID SYSTEM

Next, we model the complex dynamics of a high-frequency
fluid variable using a model of the simpler dynamics of a
low-frequency variable. It is known that the high-frequency
dynamics of fluid flow show intermittency and complex be-
havior. To obtain time series data for training, we consider
the direct numerical simulation of the incompressible three-
dimensional Navier-Stokes equation under periodic boundary
conditions, and the forcing is input into the low-frequency
variables at each time step so as to preserve the energy of the
low-frequency part. The settings of the numerical simulation
are the same as those used by [7] with a viscosity parameter
of 0.0585. We exemplify a time series of energy functions
Ey(¢) for wavenumber k € N, which is defined by Ei(¢) :=
Y Y 1 Frug(k, D2, where Dy := {x € Z*|k — 0.5 <
|k| < k+ 0.5}, v; is the ith component of the velocity, and
Fvq is the Fourier coefficient of the variable v;. We as-
sume that the time series of the E;(t) and E¢(¢) variables
is known. In this section, we construct a base model (2) for
X = (Xy, ..., X7) using the time series of the E;(¢) variable
and a fiber model (4) for Y := (Y1, Y») using the time series
of the E((¢) variable. Note that the turbulent dynamics of the
high-wavenumber variable E}y(7) is much more complex than
that of the low-wavenumber variable E;(z). We succeeded in
achieving the short-term prediction of the E;(¢) variable using
the base model [Fig. 4 (top)] and E|((¢) variable using the
joint model [Fig. 4 (bottom)]. Although the long time series
prediction failed because of the chaotic property, the density
distribution of Ejy can be reproduced from the time series of
the model (Fig. 5). These results imply that the constructed
joint model can well describe the dynamics of Ej.

The joint model reconstructs the connection between E;
and E;¢ (Fig. 6). This imitation of the connection between
the two energy variables contributes to the success of de-
scribing the high-frequency variable, which is difficult to
model. The positive Lyapunov exponents of the base model
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FIG. 5. Density distribution of a targeted variable Y; for the
macroscopic behavior of the fluid dynamics. The density distribution
created from a long model trajectory (T = 50 000) of Y; (estimation
of Ejp) (red) is shown together with the actual trajectory (blue). The
distributions exhibit similar shapes.

are Ay = 0.2157, A, = 0.0718, and A3 = 0.0200. The actual
first Lyapunov exponent is estimated to be around 0.07-0.08
by averaging the exponential growth rate of two nearby finite-
time trajectories using the training data, which corresponds to
Ay. A is expected to correspond to the exponent transversal to
the model dynamics that is realized on a model chaotic saddle.
In fact, X is not robust with respect to the change in the hyper-
parameter, whereas the second is. Note that we do not know
a governing equation describing the macroscopic dynamics
of a fluid flow because a closed-form equation concerning
the energy variable cannot be derived from the Navier-
Stokes equations. Hence, we cannot calculate the full actual
Lyapunov exponents using an equation.

V. CONCLUDING REMARKS

The proposed method of constructing a system of ODEs
from an observable time series is useful for modeling
complex and multiscale dynamics in time and space. The
computational cost to model behaviors of two or more vari-
ables with different time scales is high. In such a situation,
the effective strategy that we employ is to model moderate

x10-6 Actual Model

Exo(t)
o
Ya(t)

a4l | : . L . i . - L
54 56 58 60 62 54 56 58 60 62

Eq(t) x107% Xa1(t) x107%

FIG. 6. Projection of a chaotic set for the macroscopic behavior
of the fluid dynamics. The projection of a long trajectory generated
from the original system onto the (E;, Ejp) coordinate (actual) is
shown in the left panel and that of the model (model) is shown in the
right panel. These two systems exhibit similar shapes. Note that the
original system has an attractor, whereas the corresponding chaotic
set in the model is a saddle.

dynamics and use it to model complex dynamics through a
fiber model. The computational cost to model moderate dy-
namics with the delay coordinate is lower, and describing the
major part of the complex dynamics with the variable of the
base model reduces the required computational resource. This
skew-product-type modeling succeeds because the invariant
sets of the original system are reconstructed in the base model
when the dimension of the delay coordinate is sufficiently
high. The developed method will be used to model multiscale
dynamics, such as those of weather, beginning with the con-
struction of a base model of low-frequency dynamics.
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APPENDIX A: NECESSITY OF THE LINEAR TERM

In this section, we explain the reasons why the linear term
of Y| in the fiber model (4) is necessary to construct a model
practically. When the dimension of the base model D is high,
the dynamics of the targeted variable may be described with-
out a linear term as follows:

dy .

— =GX), Al
I X) (A1)
where y(t) := (y(¢t), y(t — 7)) and y(¢) is the targeted variable.
To construct this system using numerical data, the constructed
model includes the estimation and numerical errors, which
means that the estimated model can be described as

ay .
— =G6X) +§X). (A2)
dt
By using an adequate modeling method and sufficient data,
8(X) is determined to be small. A trajectory of the model (A2)
can be described as

Y(t):y(t)—i—/ 8(X (5))ds.
0

This implies that a long-generated trajectory includes ac-
cumulated errors, and the effect of these errors gradually
increases. This deviation is caused by the independence of the
right-hand side of the fiber model (A2) from Y. In the joint
RfR method, the linear term of Y; is employed to avoid this
issue.

APPENDIX B: GENERATION OF A MODEL TRAJECTORY
FROM THE FIBER MODEL

Here, we explain the method used to generate a model
trajectory of the fiber model in detail. To simplify the descrip-
tions, we denote G(X (¢t)) of the fiber model (4) as G(¢) and
the ith component of the vector G(¢) and a of the fiber model
(4) as G;(t) and q;, respectively. The estimated fiber model (4)
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can be described as follows:

dy
— =aY +G(1),
i aY + G(1)

which is a linear system of Y. The solution of this linear
system can be described as

Y1(t) = Y1(0)e™ + ™K (1),

Qo D@ ar 1
Y2(t) =Y (0)+ =" — DX(0) + ="K () + —L(1),
a) a a)

where
t
K(l):/ e~ Gy(s)ds,
0
L) = / a1G,(s) — arG(s)ds.
0

The appropriateness of a model trajectory is quantified by the
delay structure A(t) := Y (t) — Y»(¢t + t), which is written as

follows using the above forms:
A1) = C(1)Y1(0) — Y2(0) + M (),

where

Ct) = (1 - @e‘“f)e‘“’ +2
a

aj 1
__at _ a_2 a)t S _ l S
M(@t)=e"[K(t) K+ 1) L(t + 7).
ay ap

Note that this form is a linear equation for Y;(0) and ¥>(0).
The appropriate trajectory of the fiber model (4) should satisfy
A(t) ~ 0 for any ¢. Suppose A(0) =0 and A(t*) =0 for
some given t* > 0; Y;(0) and Y>(0) can then be obtained using
only the fiber model (4) as follows:

n = - ZHO)
C*) — C(0)
_ CUHM0) — COM (%)
RO = Ct*) — C(0) :

By applying this approach, we can estimate a model trajectory
corresponding to the targeted observation y(z).
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