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Synchronization analysis of real-world systems is essential across numerous fields, including physics, chem-
istry, and life sciences. Generally, the governing equations of these systems are unknown, and thus, the phase is
calculated from measurements. Although existing phase calculation techniques are designed for oscillators that
possess no spatial structure, methods for handling spatiotemporal dynamics remain undeveloped. The presence
of spatial structure complicates the determination of which measurements should be used for accurate phase
calculation. To address this, we explore a method for calculating the phase from measurements taken at a
single spatial grid point. The phase is calculated to increase linearly between event times when the measurement
time series intersects the Poincaré section. The difference between the calculated phase and the isochron-based
phase, resulting from the discrepancy between the isochron and the Poincaré section, is evaluated using a linear
approximation near the limit-cycle solution. We found that the difference is small when measurements are taken
from regions that dominate the rhythms of the entire spatiotemporal dynamics. Furthermore, we investigate an al-
ternative method where the Poincaré section is applied to time series obtained through orthogonal decomposition
of the entire spatiotemporal dynamics. We present two decomposition schemes that utilize principal component
analysis. For illustration, the phase is calculated from the measurements of spatiotemporal dynamics exhibiting
target waves or oscillating spots, simulated by weakly coupled FitzHugh-Nagumo reaction-diffusion models.
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I. INTRODUCTION

Researchers across various disciplines, including physics,
chemistry, and life sciences, have shown significant inter-
est in the dynamics of coupled self-sustained oscillators.
According to the phase reduction theory [1,2], a multidi-
mensional nonlinear system can be simplified to a phase
equation with a single phase variable representing the oscil-
lator state. This equation illustrates how coupling functions
influence oscillation rhythms. This theory not only aids in
the experimental and theoretical analysis of synchronization
properties in weakly coupled nonlinear oscillators [3–7] but
also supports an inverse problem framework, enabling causal-
ity to be inferred from measurements through a concise
description. Assuming that the system consists of coupled
oscillators, this framework allows us to characterize the vari-
ations in oscillatory rhythms through phase equations.

The inverse problem of identifying the direction of cou-
pling [8], phase sensitivity function [9–14], or phase coupling
function [15–24] requires developing methods to calculate
the phase time series from measurements. This is because
the inverse problem utilizes the phase time series to obtain
phase equations incorporating the phase coupling function
between the oscillators and the phase sensitivity function,
which quantifies linear response characteristics of the phase
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to weak perturbations. Therefore, accurately calculating the
phase is crucial for understanding the properties of systems.
A straightforward method for phase calculation involves lin-
early interpolating the phase over one period, measured using
the Poincaré section. Recent studies have developed meth-
ods to calculate the phase more accurately [13,14,17,18,25–
27]. Furthermore, many studies employ techniques beyond
the phase reduction theory including the Hilbert transform
[28,29], Koopman operator [30–33], and autoencoder [34,35].
These studies allow the phase to capture fluctuations within
a single period caused by continuous perturbations, includ-
ing noise, coupling functions, and external perturbations. The
development of the aforementioned method has provided a
valuable tool for uncovering the mechanisms of synchroniza-
tion in real-world systems [21,36–43].

Many studies have reported that synchronization occurs
not only in oscillators but also in spatiotemporal dynam-
ics. For example, in atmospheric and oceanic circulation
[44,45], synchronous phenomena are observed between op-
posite sides of the globe, such as the sea surface temperatures
of the Kuroshio Current and the Gulf Stream [46,47], as
well as the atmospheric variability patterns of the Arctic Os-
cillation and the Antarctic Oscillation [48]. This discovery
prompted us to create a method for analyzing the synchroniza-
tion mechanism underlying spatiotemporal dynamics. The
phase reduction theory has been broadened beyond its orig-
inal application to limit-cycle oscillator, now encompassing
collective oscillations of dynamical elements [49–52] and
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spatiotemporal dynamics, such as the oscillatory convec-
tion [53–55], reaction-diffusion system [56,57], periodic flow
[58–63], beating flagella [64], and traveling pulses [65–73].
These extended theories offer systematic methods to ap-
proximate the rhythmic dynamics of networks with highly
multidimensional state space, or spatiotemporal dynamics
with infinite-dimensional state space, using one-dimensional
and space-independent phase equations. These methods fa-
cilitate detailed analysis of synchronization mechanisms both
between networks (i.e., internetwork) and between spatiotem-
poral patterns.

With recent advances in the phase reduction theory, there
is growing interest in developing an inverse method to
estimate phase equations that characterize spatiotemporal
dynamics. However, such an inverse method remains undevel-
oped because reliable techniques for calculating phase from
measurements are lacking. Ideally, phase calculation should
remain consistent regardless of which measurements are used,
accurately reflecting the rhythm of the overall spatiotempo-
ral dynamics. However, as this study demonstrates, practical
phase calculations are dependent on measurements, under-
scoring the need for theoretical support to achieve accurate
phase derivation from empirical data. Furthermore, because
of the spatial structure inherent in spatiotemporal dynamics,
several considerations arise for phase calculation: (i) deter-
mining the optimal locations for fixed-point observations of
the dynamics and (ii) exploring the use of modes obtained
from spatiotemporal dynamics through decomposition tech-
niques such as principal component analysis (PCA) (see, e.g.,
Ref. [74]). Calculating the phase of spatiotemporal dynamics
from measurements presents a complex challenge, and this is-
sue has not yet been addressed in existing research. This study
aims to develop a method that allows for the calculation of
phase in spatiotemporal dynamics, analogous to the approach
used for limit-cycle oscillators. The method for calculating the
phase will be crucial for uncovering causality between spa-
tiotemporal dynamics and providing a clearer, more intuitive
understanding of these systems.

In this study, we explore two methods for calculating the
phase of the spatiotemporal dynamics: one method relies
on measurements taken at a single spatial grid point, while
the other method utilizes measurements from all spatial grid
points. First, we examine the method for calculating the phase
using measurements taken at a single spatial grid point. This
method involves a straightforward technique: measuring the
period of spatiotemporal dynamics using the Poincaré sec-
tion applied to the measurement time series, and then linearly
interpolating the phase over one period. The accuracy of phase
calculation is influenced by the measurement position. Thus,
we developed an approach to optimize the measurement posi-
tion for accurate phase calculation. The difference between
the calculated phase and the isochron-based phase can be
evaluated using a linear approximation in the vicinity of the
limit-cycle solution [56]. To illustrate this approach, we pro-
vide an example by calculating the phase of spatiotemporal
dynamics simulated by coupled FitzHugh-Nagumo (FHN)
reaction-diffusion models. By selecting suitable parameters,
the model can generate various spatiotemporal rhythmic pat-
terns [75–78]. In particular, we simulated target waves and
oscillating spots. Next, we investigate the method for calculat-

ing the phase using measurements from all spatial grid points.
In this method, the phase is calculated by linear interpolation,
with the Poincaré section applied to a one-dimensional time
series obtained from the orthogonal decomposition of the spa-
tiotemporal dynamics. We propose decomposition schemes
using PCA and demonstrate how to calculate the phase of
spatiotemporal dynamics through numerical simulation with
the FHN reaction-diffusion model.

This paper is organized as follows: In Sec. II, we briefly
review the phase reduction theory for partial differential
equations (PDEs) to introduce the concept of phase [56]. In
Sec. III, we present the FHN reaction-diffusion model as a
numerical simulation framework. In the following sections,
we examine methods for calculating phase time series based
on measurements from the numerical simulation. In Sec. IV,
we focus on a method using measurements from a single
spatial grid point. In Sec. V, we shift focus to a method
utilizing measurements across all spatial grid points. Finally,
Sec. VI summarizes our findings and discusses future research
directions stemming from this study.

Appendices A to G provide detailed supplementary infor-
mation. Appendices A and B clarify the concept of isochrons
defined by phase reduction theory (Sec. II) for ordinary dif-
ferential equations (ODEs) and PDEs. Appendix C shows the
limit-cycle solution and phase sensitivity function for the FHN
reaction-diffusion model from Sec. III. Appendix D details
the phase equation derived from phase reduction theory. Ap-
pendix E covers the phase equation estimation mentioned in
Secs. IV and V. Appendix F details the derivation of Eq. (11)
in Sec. V C. Finally, in Appendix G, the phase calculation
methods from Secs. IV and V are applied to a different rhyth-
mic spatiotemporal pattern, known as oscillating spots.

II. BRIEF REVIEW OF THE PHASE REDUCTION THEORY
FOR A PARTIAL DIFFERENTIAL EQUATION

We consider a pair of weakly coupled reaction-diffusion
models. The general form of this dynamical system is de-
scribed by the following PDE:

∂

∂t
X 1(r, t ) = F1(X 1, r) + D1∇2X 1 + G(X 1, X 2),

∂

∂t
X 2(r, t ) = F2(X 2, r) + D2∇2X 2 + G(X 2, X 1), (1)

where X i(r, t ) ∈ RN represents the state variable of system
i at point r and time t , F i(X , r) represents the local reac-
tion dynamics at r, Di∇2X i represents the diffusion of X i

over the field with a diffusion matrix Di, and G(X i, X j ) =
K[X j (r, t ) − X i(r, t )] represents local and linear mutual cou-
plings with a diagonal matrix K representing the intensity of
the mutual coupling. We assume that the reaction-diffusion
model, when uncoupled (G = 0), exhibits a limit-cycle so-
lution with a period Ti. Additionally, we consider that the
mutual coupling is sufficiently weak, such that the state X i

remains close to the limit-cycle solution. As in an ODE case
[1,2], the phase is defined over the basin of attraction of the
limit-cycle solution using the concept of isochrons [56] (see
Appendix A for the ODE case and Appendix B for the PDE
case). We first assign the phase φi(t ) = ωit to the state on the
limit cycle, ensuring that the phase increases linearly with a
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constant frequency ωi := 2π/Ti. The state on the limit-cycle
solution corresponding to φi is represented by χi(r, φi ). This
state satisfies χi(r, φi ) = χi(r, φi + 2π ) owing to the 2π pe-
riodicity. Next, we extend the phase assignment to the entire
basin of attraction of the limit-cycle solution, enabling us to
assign a phase to the state variable X i even when it is not
on the limit cycle. As a result, the phase φi approximately
represents the state X i. The fluctuation of the phase reflects
the changes in the rhythm of spatiotemporal dynamics due to
the mutual coupling G.

III. NUMERICAL SIMULATION WITH
A PAIR OF WEAKLY COUPLED FHN

REACTION-DIFFUSION MODELS

Our goal is to develop a method for calculating phase
time series directly from measurements of spatiotemporal dy-
namics, enabling identification of the phase without requiring
prior knowledge of the governing equations. In this study,
the phase is calculated from measurements obtained through
numerical simulation of a one-dimensional FHN reaction-
diffusion model, which is described in this section.

In the model used in the numerical simulation, the variable
r in Eq. (1) is replaced with x, representing a point in one-
dimensional space. The state variable, diffusion coefficient,
local reaction dynamics, and the mutual coupling in Eq. (1)
are defined as follows:

X i(x, t ) =
(

ui

vi

)
,

F i(X i, x) =
(

ui(ui − α)(1 − ui ) − vi

τ−1
i (ui − γ vi )

)
,

Di =
(

κi 0
0 δi

)
, G(X i, X j ) = K

(
u j − ui

v j − vi

)
, (2)

where ui = ui(x, t ) and vi = vi(x, t ) are activator and inhibitor
variables, respectively. We denote the limit-cycle solution of
the model without mutual coupling (G = 0) as χi(x, φi ) =
(χui (x, φi ), χvi (x, φi )). The spatiotemporal dynamics can ex-
hibit various typical patterns, such as circulating pulses on a
ring, oscillating spots, target waves, and rotating spirals by
setting the parameters α, τi, γi, and the diffusion coefficient
κi and δi appropriately [75–78]. The parameter α = α(x) is
space dependent.

In this study, we simulate rhythmic patterns of target
waves. (In Appendix G, the model exhibiting oscillating spots
is explained.) To create a pacemaker region of target waves,
the parameter α is assumed to possess heterogeneity, i.e.,
α(x) = α0 + (α1 − α0) exp(−r4/r4

0 ), where r = |x − x0| rep-
resents the distance from the center of the pacemaker region,
and r0 is the pacemaker region’s radius. Specifically, α(x) →
α1 as r → 0, and α(x) → α0 as r → ∞. The parameters
defining the pacemaker region are r0 = 10, x0 = 80, a0 = 0.1,
and a1 = −0.1. Other parameters are γ = 2.5, τ−1

1 = 0.005,
τ−1

2 = 0.0055, κ1 = κ2 = 0.15, and δ1 = δ2 = 0. The peri-
ods of the limit-cycle solutions are T1 � 204.6 and T2 �
189.4. The coupling intensity is K = diag(5.0 × 10−4, 0).
For the numerical simulation, we used a one-dimensional
system of size L = 100 with no-flux boundary conditions.
The system is discretized into spatial grids with �x = L/28.

FIG. 1. Spatiotemporal dynamics of the target waves simulated
by the coupled FHN reaction-diffusion models. For reference, the
green, red, and blue vertical lines mark the measurement positions,
xp � 15, 30, 80, respectively (see Sec. IV C).

Time integration begins from spatially uniform initial con-
ditions u1(x, 0) = 0.180, v1(x, 0) = 0.004, u2(x, 0) = 0.463,
and v2(x, 0) = 0.145. The initial time evolution up to 5.0 ×
104 is discarded, and measurements are taken from the sub-
sequent evolution over a duration of 3.0 × 105. (We designate
the start of measurements as t = 0 hereafter.) Time integration
was performed using the explicit Heun scheme with a time
step �t = 0.01.

Figure 1 shows the spatiotemporal dynamics of u1 and
v1. The pacemaker region with radius r0 and center x =
x0 is self-oscillatory and rhythmically emits target waves.
The waves propagate from the pacemaker region outward
through the excitable surrounding area. In addition, the limit-
cycle solution is depicted in Fig. 8(a) in Appendix C, and
Fig. 8(b) in Appendix C shows the phase sensitivity function,
Qi(x, φi ) = (Qui (x, φi ), Qvi (x, φi )), which quantifies linear re-
sponse characteristics of the phase to weak perturbation. The
phase sensitivity function is localized at the pacemaker region
(near x = 80), indicating that this region primarily influences
the rhythm of the entire system.

IV. CALCULATING THE PHASE FROM A MEASUREMENT
ON A SINGLE SPATIAL GRID POINT

This section presents the method for phase calculation that
uses a Poincaré section applied to measurement time series
of spatiotemporal dynamics at a fixed position. We begin by
outlining the linear interpolation technique for phase calcu-
lation (Sec. IV A) and the approach for selecting an optimal
measurement position to ensure accuracy (Sec. IV B). Follow-
ing this, we illustrate the phase calculation method through
a numerical simulation of the FHN reaction-diffusion model,
which features target waves (Sec. IV C). Additionally, in Ap-
pendix G, we applied the same approach to spatiotemporal
dynamics exhibiting oscillating spots.
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FIG. 2. Time series of ui(xp, t ) and the calculation of θ
xp
i (t ). (a) Time series of ui(xp, t ) and the Poincaré sections for xp � 15, 30, 80. The

red and blue lines indicate i = 1 and i = 2, respectively. The horizontal lines depict the Poincaré sections, and the dots represent the times at
which ui(xp, t ) intersects the Poincaré section from negative to positive. (b) Example of the calculation of θ

xp
i (t ) for xp � 30. The red and blue

colors indicate i = 1 and i = 2, respectively. (Top) Recording the time of intersection. The dots represent the time t
xp
i, j . (Bottom) Calculation

of the time series of θ
xp
i (t ) using the linear interpolation [see Eq. (3)]. The phase increases linearly by 2π during t

xp
i, j+1 − t

xp
i, j . (c) Histograms of

θ
xp
1 − θ

xp
2 for xp � 15 (green), 30 (red), and 80 (blue). The histograms are calculated over a duration in which |θ xp

1 − θ
xp
2 | increases by 200π .

The distribution calculated from the phase equations is displayed in gray.

A. Phase calculation by linear interpolation

We calculate the phase by applying a Poincaré section to
the time series of ui(xp, t ), which is measured at a specific
spatial grid point of x = xp. Let us consider an example of
spatiotemporal dynamics exhibiting target waves (Sec. III).
Figure 2(a) shows the time series of ui(xp, t ) measured at
xp � 15, 30, 80. As shown in this figure, the Poincaré sec-
tions are applied to each time series, recording the time t

xp

i, j
when ui(xp, t ) intersects the Poincaré section (from negative
to positive) for the jth time. The phase θ

xp

i is then calculated
from the set of times {t xp

i, j} j ensuring that it satisfies θ
xp

i, j (t
xp

i, j ) =
2π j. To make the time series of θ

xp

i (t ), we employ linear
interpolation of the phase as follows:

θ
xp

i (t ) = 2π j + 2π
t − t

xp

i, j

t
xp

i, j+1 − t
xp

i, j

(
t

xp

i, j � t � t
xp

i, j+1

)
. (3)

Figure 2(b) presents the time series of θ
xp

i calculated from the
time series of ui(xp, t ) for xp � 30. The interval of the time
grid for the interpolation is 0.1. Figure 2(c) shows histograms
of θ

xp

1 (t ) − θ
xp

2 (t ) for xp � 15, 30, 80. The figure indicates the
dependency of θ

xp

i on xp. Specifically, the histograms vary
with changes in xp, indicating that the calculated phase θi

depends on the measurement position. However, according
to phase reduction theory, these phases should ideally remain
independent of the measurement position.

B. Approach to determine the position to measure

We introduce the isochron-based phase φi(t ) to elucidate
the dependency of the calculated phase θ

xp

i on xp and outline
an approach for accurately calculating the phases. Generally,

there is a difference between the two phases, θ
xp

i and φi,
which can be evaluated using a linear approximation near the
limit-cycle solution. (The method for calculating the phase
using the linear approximation in the ODE case is described
in Appendix A, while the corresponding approach for the
PDE case is described in Appendix B.) Here, let us consider
the general reaction-diffusion model described in Eq. (1). We
assume that a Poincaré section is applied to the time series of
Xi,np (xp, t ), which is the npth entry of X i(xp, t ). We record the
time t

xp

i, j when Xi,np (xp, t ) intersects the Poincaré section for
the jth time. The phase time series is then calculated using
Eq. (3). Using the phase sensitivity function Qi(x, φi ) ∈ RN ,
which quantifies linear response characteristics of the phase
to weak perturbations, φi(t

xp

i, j ) is calculated from θ
xp

i (t xp

i, j ) as
follows:

φi
(
t

xp

i, j

) = θ
xp

i

(
t

xp

i, j

) + c
xp

i, j = 2π j + c
xp

i, j,

c
xp

i, j =
(M,N )∑
(m,n)

�=(mp,np)

Qi,n(xm, 0)�i,n
(
xm, t

xp

i, j

)
�xm,

�i,n
(
x, t

xp

i, j

)
:= Xi,n

(
x, t

xp

i, j

) − χi,n(x, 0),

�xm :=
{
�x/2 (m = 0, M ),
�x (otherwise), (4)

where Xi,n(xm, t
xp

i, j ), χi,n(xm, 0), and Qi,n(xm, 0) are the nth
entry of X i(xm, t

xp

i, j ), χi(xm, 0), and Qi(xm, 0), respectively, and
�i,n is the deviation of Xi,n from the state of φi = 0 on the
limit-cycle solution. We assume that χi(xm, 0) is specified at
the intersection of the limit-cycle solution and the Poincaré
section. The integration about x is expressed by discrete repre-
sentation with the spatial grid xm = m�x (m = 0, 1, . . . , M )
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FIG. 3. Illustration of calculation of the correction terms.
[Fig. 3(b) is identical to some of the contents in Fig. 4(a).] (a) Il-
lustration of two states on the same Poincaré section. The two
states, χi(x, 0) and X i(x, t

xp
i, j ), lie on the same Poincaré section P

but on different isochrons, I (0) and I (c
xp
i, j ), respectively. The dif-

ference between these states is represented as �i(x, t
xp
i, j ), whose nth

entry is denoted as �i,n used in Eq.(4). These states are located on
distinct isochrons unless the Poincaré section is the same as I (0).
The correction term quantifies the difference between the phases
assigned to these distinct isochrons. (b) Distributions of �u1 (x, t

xp
1, j )

and �v1 (x, t
xp
1, j ) under the condition of xp � 30, along with the phase

sensitivity functions, Qu1 (x, 0) and Qv1 (x, 0), for the spatiotemporal
dynamics simulated by the FHN reaction-diffusion model. The top
figure displays �u1 (x, t

xp
1, j ) and Qu1 (x, 0), and the bottom figure dis-

plays �v1 (x, t1, j ) and Qv1 (x, 0). The red lines indicate the medians
of �u1 (x, t

xp
1, j ) and �v1 (x, t

xp
1, j ). The red shades indicate the range

between the 25th and 75th percentiles. The black lines indicate
Qu1 (x, 0) and Qv1 (x, 0).

that satisfies xmp = xp and xM = L. The entry of (mp, np)
are removed from the summation in Eq. (4) since the two
values, Xi,np (xp, t

xp

i, j ) and χi,np (xp, 0), have the same value on
the Poincaré section, i.e., �i,np (xmp, t

xp

i, j ) = 0. We call the vari-
able c

xp

i, j , which represents the difference between θ
xp

i (t xp

i, j ) and
φi(t

xp

i, j ), the correction term. Figure 3(a) explains how the cor-
rection term occurs. The figure illustrates that the two states,
χi(x, 0) and X i(x, t

xp

i, j ), lie on the same Poincaré section P

but on different isochrons, I (0) and I (cxp

i, j ). Generally, these
states are located on distinct isochrons unless the Poincaré
section is the same as I (0). The correction term accounts for
the difference between the phases associated with the two
isochrons.

We rewrite Eq. (4) for the FHN reaction-diffusion model
as follows:

φi
(
t

xp

i, j

) = 2π j + c
xp

i, j,

c
xp

i, j =
M∑

m �=mp

Qui (xm, 0)�ui

(
xm, t

xp

i, j

)
�xm

+
M∑

m=0

Qvi (xm, 0)�vi

(
xm, t

xp

i, j

)
�xm,

�ui

(
x, t

xp

i, j

)
:= ui

(
x, t

xp

i, j

) − χui (x, 0),

�vi

(
x, t

xp

i, j

)
:= vi

(
x, t

xp

i, j

) − χvi (x, 0),

�xm :=
{
�x/2 (m = 0, M ),
�x (otherwise), (5)

where Qui (x, φi ) and Qvi (x, φi ) are the phase sensitivity func-
tions of ui and vi, respectively, and �ui and �vi are the
deviations of ui and vi from the state of φi = 0 on the limit-
cycle solution, respectively. The subscript n used in Eq. (4) is
removed since the entry of two-dimensional state (n = 1, 2) is
represented by variable ui and vi. Additionally, the subscript
np is removed since the Poincaré section applied solely to the
time series of ui(xp, t ). We then proceed to linearly interpolate
the phase φi(t ) as follows:

φi(t ) = φi
(
t

xp

i, j

) + (
φi

(
t

xp

i, j+1

) − φi
(
t

xp

i, j

)) t − t
xp

i, j

t
xp

i, j+1 − t
xp

i, j

= 2π j + c
xp

i, j + (
2π + c

xp

i, j+1 − c
xp

i, j

) t − t
xp

i, j

t
xp

i, j+1 − t
xp

i, j(
t

xp

i, j � t � t
xp

i, j+1

)
. (6)

The transformation to the second row is achieved by substi-
tuting Eq. (5) into the first row. Similar to the interpolation
process for θ

xp

i (t ) described in Eq. (3), the time grid interval
for this interpolation is set to 0.1.

The correction terms are influenced by the two factors: (i)
deviation from the limit-cycle solution and (ii) heterogeneity
of the amplitude of the phase sensitivity function. Let us
consider the calculation of θ

xp

i for spatiotemporal dynamics
numerically simulated by the FHN reaction-diffusion model
(Sec. III). For example, we use the measurement time series
of ui(xp, t ) under the condition of xp � 30. Figure 3(b) dis-
plays the distribution of �ui (x, t

xp

i, j ) and �vi (x, t
xp

i, j ), which is
recorded at time t

xp

i, j when the measurement time series inter-
sects the Poincaré section, alongside Qui (x, 0) and Qvi (x, 0).
The figure indicates that the region with large |�ui (x, t

xp

i, j )|
and |�vi (x, t

xp

i, j )| overlaps the region with large |Qui (x, 0)|
and |Qvi (x, 0)|. In such a case, the magnitude of c

xp

i, j is sup-
posed to be large according to Eq. (5). This overlap can
be avoided by setting xp appropriately since the region with
large |�ui (x, t

xp

i, j )| and |�vi (x, t
xp

i, j )| varies with xp. Specifically,
|�ui (x, t

xp

i, j )| and |�vi (x, t
xp

i, j )| near xp are almost zero. There-
fore, a strategy to reduce the magnitude of c

xp

i, j is to choose xp

within the region where the amplitudes of the phase sensitivity
functions are large. It is known that the phase sensitivity
function is localized at the pacemaker region of target waves
[56].

C. Example

We illustrate the approach for reducing the magnitude of
c

xp

i, j using the numerical simulation with the FHN reaction-
diffusion model. The time series of θ

xp

i (t ) and φi(t ), spanning
a duration of 3.0 × 105, are calculated from measurements
obtained from the simulation (Sec. III). Simultaneously,
�ui (x, t

xp

i, j ), �vi (x, t
xp

i, j ), and corresponding c
xp

i, j are obtained for
each t

xp

i, j . The results of the phase calculation are compared for
each measurement position xp. For a detailed explanation, the
distribution of �ui (x, t

xp

i, j ) and �vi (x, t
xp

i, j ) and the statistics of
c

xp

i, j are also shown.
Figure 1 shows the spatiotemporal dynamics exhibiting

target waves. We calculated the time series of θ
xp

i (t ) from
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FIG. 4. Calculation of the correction terms and the phase from measurements taken at a single spatial grid point. (a) Distribution of
�u1 (x, t

xp
1, j ) and �v1 (x, t

xp
1, j ) under the condition of xp � 15 (top), 30 (middle), and 80 (bottom), along with the phase sensitivity functions,

Qu1 (x, 0) and Qv1 (x, 0), for the spatiotemporal dynamics simulated by the FHN reaction-diffusion model. The left figures display �u1 (x, t
xp
1, j )

and Qu1 (x, 0), and the right figures display �v1 (x, t1, j ) and Qv1 (x, 0). The colored lines indicate the medians of �u1 (x, t
xp
1, j ) and �v1 (x, t

xp
1, j ).

The colored shades indicate the range between the 25th and 75th percentiles. The black lines indicate Qu1 (x, 0) and Qv1 (x, 0). (b) Statistics
of the correction term c

xp
i, j for xp � 15, 30, 80. The red (i = 1) and blue (i = 2) boxes represent the first and third quartiles of dataset {cxp

i, j} j .
The horizontal lines mark the medians, while the dots mark the averages. The whiskers extend to show the maximum and minimum values.
(c) Histograms of φ1 − φ2 for xp � 15 (green), 30 (red), and 80 (blue). The histograms are calculated over a duration in which |φ1 − φ2|
increases by 200π . The distribution calculated from the phase equations is displayed in gray.

that of ui(xp, t ) for xp � 15, 30, 80 (the exact values are xp =
38�x, 77�x, 205�x). Only xp � 80 belongs to the pace-
maker region. Examples of the time series of ui(xp, t ) and
the Poincaré section for each xp are shown in Fig. 2(a). Fig-
ure 2(c) shows that the histograms of θ

xp

1 − θ
xp

2 vary with
xp. The difference between the histogram of θ

xp

1 − θ
xp

2 and
the distribution of φ1 − φ2, calculated from the phase equa-
tions (Appendix D), is minimal for xp � 80. Therefore, the
approach described in Sec. IV B appears to be effective.

To verify the effectiveness of the approach, we refer to
Fig. 4(a), which shows the distribution of �ui (x, t

xp

i, j ) and
�vi (x, t

xp

i, j ), along with Qui (x, 0) and Qvi (x, 0). The region
with large |�ui (x, t

xp

i, j )| does not overlap the region with large
|Qui (x, 0)| for xp � 80 although the two regions overlap for
xp � 15, 30 (the same is true for Qvi and �vi ). Given this
result, the magnitude of the correction term is relatively small
for xp � 80 and larger for the other xp. The statistics of the
correction term indicate that the correction term is close to
zero only for xp � 80 [Fig. 4(b)]. From these results, our
method successfully operated as intended.

Ignoring the correction term impacts the phase calculation
results, with the extent of the impact varying according to
the magnitude of the correction term. Figure 4(c) shows the
histograms of φ1 − φ2 calculated on the basis of Eqs. (5) and
(6). The histograms of φ1 − φ2 for xp � 15, 30, 80 are almost
similar, although the histogram of θ

xp

1 − θ
xp

2 shown in Fig. 2(c)
varies with xp. It is evident that the histograms of θ

xp

1 − θ
xp

2
and φ1 − φ2 differ significantly for xp � 15, 30 since the
magnitude of the correction term is large, whereas they are
similar for xp � 80 since the correction term is nearly zero.
Ignoring the correction term degrades the accuracy of phase
equation estimation when xp is not appropriate. Figures 9(a)
and 9(b) in Appendix E show the phase equations estimated
from the time series of θ

xp

i (t ) and φi(t ), respectively. The
phase equations estimated from θ

xp

i deviate significantly from
the true forms for xp � 15, 30, but closely match the true
forms for xp � 80. In contrast, the phase equations estimated
from φi are consistent with the true forms regardless of xp.
Appendix G shows that this approach is also effective for
oscillating spots.
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V. CALCULATING THE PHASE FROM MEASUREMENTS
ON ALL SPATIAL GRID POINTS

We explore a method for calculating the phase using
the Poincaré section applied to time series obtained by the
orthogonal decomposition of the spatiotemporal dynamics.
The orthonormal basis functions used in this decomposi-
tion are assumed to be obtained through PCA (see, e.g.,
Ref. [74]). We explain the orthogonal decomposition tech-
nique (Sec. V A), the linear interpolation to calculate the
phase (Sec. V B), and the differences between the calculated
phase and isochron-based phase (Sec. V C). Then, we illus-
trate the phase calculation for spatiotemporal dynamics using
two different decomposition schemes (Secs. V D and V E).
In addition, we apply the same schemes to spatiotemporal
dynamics exhibiting oscillating spots (Appendix G).

A. Orthogonal decomposition

Before delving into the specifics of the FHN reaction-
diffusion model, we consider the general form of the
reaction-diffusion model described by Eq. (1). The nth en-
tries of the state vector X i, limit-cycle solution χi, and phase
sensitivity function Qi are represented as Xi,n, χi,n, and Qi,n,
respectively. For decomposition, we project them onto the
orthonormal basis functions �k

i,n (k = 1, 2, . . . , K) as follows:

X k
i,n(t ) =

∫ L

0
X k

i,n(x, t )�k
i,n(x)dx,

χ k
i,n(φi ) =

∫ L

0
χ k

i,n(x, φi )�
k
i,n(x)dx,

Qk
i,n(φi ) =

∫ L

0
Qk

i,n(x, φi )�
k
i,n(x)dx, (7)

where the basis function satisfies
∫ L

0 �
p
i,n(x)�q

i,n(x)dx = δpq

(δpq denotes the Kronecker delta). According to Eq. (7), the
infinite-dimensional state space is mapped to KN-dimensional
state space.

We rewrite Eq. (7) for the FHN reaction-diffusion
model. Given the orthonormal basis functions �k

ui
(x) (k =

1, 2, . . . , K), the projections of the state variable, limit cycle
solution, and phase sensitivity function associated with ui onto
the basis functions are calculated as follows:

uk
i (t ) =

∫ L

0
ui(x, t )�k

ui
(x)dx,

χ k
ui

(φi ) =
∫ L

0
χui (x, φi )�

k
ui

(x)dx,

Qk
ui

(φi ) =
∫ L

0
Qui (x, φi )�

k
ui

(x)dx, (8)

where the basis functions satisfies
∫ L

0 �
p
ui (x)�q

ui (x)dx = δpq.
The variables vk

i (t ), χ k
vi

(φi ), and Qk
vi

(φi ) are similarly cal-
culated using the orthonormal basis functions �k

vi
(x) (the

equations are abbreviated). In Sec. V D, we investigate a
scheme that applies PCA to measurements ui and vi collected
across all spatial grid points to obtain the basis functions. In
Sec. V E, we propose an alternative scheme in which PCA
is applied directly to the phase sensitivity functions. We set

K = 50 or K = 200 to ensure that each function can be repro-
duced nearly 100% on the basis of the following equations:

ui(x, t ) �
K∑

k=1

uk
i (t )�k

ui
(x),

χui (x, φi ) �
K∑

k=1

χ k
ui

(φi )�
k
ui

(x),

Qui (x, φi ) �
K∑

k=1

Qk
ui

(φi )�
k
ui

(x). (9)

The variables vi(x, t ), χvi (x, φi ), and Qvi (x, φi ) are calculated
in a similar way (the equations are abbreviated).

B. Phase calculation by linear interpolation

We calculate the phase θ
kp

i from the time series of u
kp

i (x, t )

or v
kp

i (x, t ). The Poincaré section is applied to the time series

of u
kp

i (t ) or v
kp

i (t ), recording the time t
kp

i, j when the time series

intersects the Poincaré section for the jth time. The phase θ
kp

i

is then calculated from the set of times, {t kp

i, j} j , ensuring that

it satisfies θ
kp

i, j (t
kp

i, j ) = 2π j. As in Eq. (3), we employ linear
interpolation of the phase as follows:

θ
kp

i (t ) = 2π j + 2π
t − t

kp

i, j

t
kp

i, j+1 − t
kp

i, j

(
t

kp

i, j � t � t
kp

i, j+1

)
. (10)

We assume kp = 1, and using another variable, u
kp

i (t ) or

v
kp

i (t ) (kp � 2), is not discussed in this study.

C. Difference between the calculated phase and
isochron-based phase

We calculated the isochron-based phase φi(t ), which obeys
the isochron deformed by the orthogonal decomposition.
There is a difference between the phases, θ

kp

i and φi, which
can be evaluated using a linear approximation in the vicinity
of the limit-cycle solution. Let us consider the general form of
the reaction-diffusion model described in Eq. (1). We assume
that the Poincaré section is applied to the time series of X

kp

i,np

and that the time t
kp

i, j is recorded when X
kp

i,np
(t ) intersects the

Poincaré section for the jth time. The time series of the phase
θ

kp

i is calculated using Eq. (10). We then define the correction

term c
kp

i, j as the difference between θ
kp

i (t kp

i, j ) and φi(t
kp

i, j ). The

phase φi(t
kp

i, j ) and correction term are calculated as follows:

φi
(
t

kp

i, j

) = θ
kp

i

(
t

kp

i, j

) + c
kp

i, j = 2π j + c
kp

i, j,

c
kp

i, j =
(K,N )∑

(k,n)�=(kp,np)

Qk
i,n(0)�k

i,n

(
t

kp

i, j

)
,

�k
i,n

(
t

kp

i, j

)
:= X k

i,n

(
t

kp

i, j

) − χ k
i,n(0), (11)

where �k
i,n is the deviations of X k

i,n from the state of φi = 0
on the limit-cycle χ k

i,n. The entry of (kp, np) are removed from
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FIG. 5. Illustration of two states on the same Poincaré section.
We consider the isochron mapped from an infinite-dimensional
space to a KN-dimensional space. The two states, {χ k

i,n(0)}n,k and

{X k
i,n(t

kp
i, j )}n,k , lie on the same Poincaré section P but on different

isochrons, I (0) and I (c
kp
i, j ), respectively. The difference between these

states is represented as {�k
i,n(t

kp
i, j )}n,k used in Eq. (11). These states are

located on distinct isochrons unless the Poincaré section is the same
as I (0). The correction term quantifies the difference between the
phases assigned to these distinct isochrons.

the summation in Eq. (11) since the two values, X
kp

i,np
(t kp

i, j ) and

χ
kp

i,np
(0), are equal on the Poincaré section, i.e., �kp

i,np
(t kp

i, j ) = 0.
The derivation of Eq. (11) is detailed in Appendix F. Figure
5 illustrates that the two states in the KN-dimensional space,
{χ k

i,n(0)}n,k and {X k
i,n(t kp

i, j )}n,k , lie on the same Poincaré sec-

tion P but on different isochrons, I (0) and I (ckp

i, j ). Note that
the isochron is mapped from the infinite-dimensional space
to the KN-dimensional space through orthogonal decomposi-
tion. Unless the Poincaré section is the same as I (0), the two
states are located on distinct isochrons. The correction term
represents the difference between the phases associated with
these two isochrons.

We rewrite Eq. (11) for the FHN reaction-diffusion model.
Here, we use the index np ∈ {u, v} to denote whether the
Poincaré section is applied to the time series of u1

i or v1
i ,

instead of 1 � np � N used in Eq. (11). When we apply the

Poincaré section to the time series of u
kp

i , i.e., np = u, the

phase φi(t
kp

i, j ) and correction term are calculated as follows:

φi
(
t

kp

i, j

) = 2π j + c
kp

i, j,

c
kp

i, j =
K∑

k �=kp

Qk
ui

(0)�k
ui

(
t

kp

i, j

) +
K∑

k=1

Qk
vi

(0)�k
vi

(
t

kp

i, j

)
, (12)

where �k
ui

(t kp

i, j ) := uk
i (t kp

i, j ) − χ k
ui

(0) and �k
vi

(t kp

i, j ) := vk
i (t kp

i, j ) −
χ k

vi
(0) are the deviations of uk

i and vk
i from the state of φi =

0 on the limit-cycle solution. When the Poincaré section is
applied to the time series of v

kp

i , i.e., np = v, the correction

term is calculated as follows instead of Eq. (12):

c
kp

i, j =
K∑

k=1

Qk
ui

(0)�k
ui

(
t

kp

i, j

) +
K∑

k �=kp

Qk
vi

(0)�k
vi

(
t

kp

i, j

)
. (12’)

Hereafter, when we refer to Eq. (12), Eq. (12)’ is also included
to the reference implicitly. Then, we linearly interpolate the
phase as follows:

φi(t ) = φi
(
t

kp

i, j

) + (
φi

(
t

kp

i, j+1

) − φi
(
t

kp

i, j

)) t − t
kp

i, j

t
kp

i, j+1 − t
kp

i, j

= 2π j + c
kp

i, j + (
2π + c

kp

i, j+1 − c
kp

i, j

) t − t
kp

i, j

t
kp

i, j+1 − t
kp

i, j(
t

kp

i, j � t � t
kp

i, j+1

)
. (13)

The transformation to the second row is achieved by substi-
tuting Eq. (12) into the first row. According to Eq. (11) or
(12), the magnitude of the correction term depends on both
the deviation magnitude from the limit-cycle solution and the
amplitude of the (decomposed) phase sensitivity functions.
Therefore, when uk

i or vk
i fluctuates significantly and the cor-

responding Qk
ui

or Qk
vi

has a large amplitude, the magnitude of
the correction term becomes large. We present the results of
phase calculations for both np = u and np = v, but selecting
np does not inherently improve the accuracy of the phase
calculation.

D. Case of using the basis function obtained from the
spatiotemporal dynamics

We illustrate the process of phase calculation for spa-
tiotemporal dynamics using the numerical simulation with
the FHN reaction-diffusion model (Sec. III). We assume that
the basis functions, �k

ui
and �k

vi
, are derived by solving

eigenproblems for the covariance matrices of the measure-
ments ui(x, t ) and vi(x, t ), respectively. The temporal means
of the measurements are defined as ui(x) := ∑S

s=1 ui(x, ts)/S
and vi(x) := ∑S

s=1 vi(x, ts)/S, where ts := s�t . The number
of samplings is S. The covariance matrices are represented
as Cui := ŨiŨ T

i and Cvi := ṼiṼ T
i , where the (m, s) entries

of matrices Ũi and Ṽi are (Ũi )m,s = ui(xm, ts) − ui(xm) and
(Ṽi )m,s = vi(xm, ts) − vi(xm), respectively. The eigenvectors
obtained from Cui and Cvi serve as the basis functions �k

ui

and �k
vi

, respectively, normalized to have unit norm, i.e.,∫ L
0 (�k

ui
(x))2dx = 1 and

∫ L
0 (�k

vi
(x))2dx = 1. The index k =

1, 2, . . . , K is ordered in descending sequence of the eigen-
values.

To begin, we calculate the phase of spatiotemporal dynam-
ics. Figure 6(a) shows the amplitudes of Qk

ui
and Qk

vi
, revealing

that many of these amplitudes are not nearly zero. There-
fore, fluctuations in the corresponding uk

i and vk
i influence

the correction term. We applied the Poincaré section to either
time series of u

kp

i or v
kp

i (kp = 1) to calculate θ
kp

i as shown

in Fig. 6(b). The histograms of θ
kp

1 (t ) − θ
kp

2 for np = u and
np = v shown in Fig. 6(c) slightly differ from the distribution
of φ1 − φ2 calculated from the phase equations. The statistics
of the correction terms are shown in Fig. 6(d). It indicates

014205-8



SETTING OF THE POINCARÉ SECTION FOR … PHYSICAL REVIEW E 111, 014205 (2025)

FIG. 6. Calculation of the phase from measurements on all spatial grid points with the decomposition scheme described in Sec. V D. We
adopt kp = 1. (a) Amplitude of Qk

ui
(top) and Qk

vi
(bottom). The amplitude of Qk

ui
is calculated by

∫ 2π

0 |Qk
ui

(ψ )|dψ/2π (a similar formula

is used for Qk
vi

). The red and blue lines indicate i = 1 and i = 2, respectively. (b) Time series of u
kp
i (t ) (top) and v

kp
i (t ) (bottom) and the

Poincaré sections. The red and blue lines indicate i = 1 and i = 2, respectively. The horizontal lines represent the Poincaré sections, and the
dots represent the times when u

kp
i (t ) or v

kp
i (t ) intersects the Poincaré section from negative to positive. (c) Histograms of θ

kp
1 − θ

kp
2 for np = u

(red) and np = v (blue). The histograms are calculated over a duration in which |θ kp
1 − θ

kp
2 | increases by 200π . The distribution calculated from

the phase equations is displayed in gray. (d) Statistics of the correction term c
kp
i, j for both np = u and np = v. The red (i = 1) and blue (i = 2)

boxes represent the first and third quartiles of dataset {ckp
i, j} j . The horizontal lines mark the medians, while the dots mark the averages. The

whiskers extend to show the maximum and minimum values. (e) Histograms of φ1 − φ2 for np = u (red) and np = v (blue). The histograms
are calculated over a duration in which |φ1 − φ2| increases by 200π . The distribution calculated from the phase equations is displayed in gray.

that the magnitudes of the correction term for both np = u and
np = v are much smaller compared to those calculated from
ui(xp, t ) for xp � 15, 30 [Fig. 4(b)]. Although the magnitude
of the correction term for np = u is smaller compared to that
for np = v, the difference between them is not a primary
concern in this study. To confirm the correction term certainly
represents the difference between θ

kp

i (t kp

i, j ) and φi(t
kp

i, j ) cor-
rectly, we calculated the histogram of φ1 − φ2 on the basis of
Eqs. (12) and (13). Figure 6(e) indicates that both histograms
of φ1 − φ2 are more similar to the distribution calculated from
the phase equations than the histograms of θ

kp

1 − θ
kp

2 shown in
Fig. 6(c). These results support the validity of the correction
terms. Furthermore, Figs. 10(a) and 10(b) in Appendix E show
the phase equations estimated from the time series of θ

kp

i and
φi, respectively. The phase equations estimated from the time
series of θ

kp

i resemble the true forms qualitatively, while those
estimated from the time series of φi appear to match the true
forms even more closely. In Appendix G, we also implement
the same scheme for oscillating spots.

E. Case of using the basis function obtained from the phase
sensitivity function

According to Eqs. (8) and (12), the correction term can
vary depending on the choice of basis functions. The equa-
tions indicate that fluctuations in uk

i and vk
i do not influence the

correction term when their corresponding Qk
ui

and Qk
vi

values

are nearly zero. Therefore, the magnitude of the correction
term is expected to be small if the amplitudes of Qk

ui
and

Qk
vi

are localized to just a few components. To achieve this
localization, we propose using basis functions obtained by
applying PCA to the phase sensitivity function, rather than
the spatiotemporal dynamics.

We assume that the basis functions, �k
ui

and �k
vi

, are de-
rived by solving eigenproblems for the covariance matrices
of the phase sensitivity functions Qui (x, φi ) and Qvi (x, φi ),
respectively. The means of phase sensitivity functions over
2π are defined as Qui (x) := ∑S

s=1 Qui (x, φs)/S and Qvi (x) :=∑S
s=1 Qvi (x, φs)/S, where φs := 2π

S s. The number of uni-
formly spaced grid points on [0, 2π ) is S. The covariance ma-
trices are represented as CQui

:= Q̃ui Q̃
T
ui

and CQvi
:= Q̃vi Q̃

T
vi

,
where the (m, s) entries of matrices Q̃ui and Q̃vi are (Q̃ui )m,s =
Qui (xm, φs) − Qui (xm) and (Q̃vi )m,s = Qvi (xm, φs) − Qvi (xm),
respectively. The eigenvectors obtained from CQui

and CQvi

serve as the basis functions �k
ui

and �k
vi

, respectively, nor-

malized to have unit norm, i.e.,
∫ L

0 (�k
ui

(x))2dx = 1 and∫ L
0 (�k

vi
(x))2dx = 1. The index k = 1, 2, . . . , K is ordered in

descending sequence of the eigenvalues.
We examine the phase calculation for spatiotemporal dy-

namics as we do in Sec. V D. Figure 7(a) indicates that the
amplitude of Qk

ui
and Qk

vi
are localized to k = 1. In such a

situation, the term that contains v1
i mainly determines the

correction term in the case of np = u, while the term that
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FIG. 7. Calculation of the phase from measurements on all spatial grid points with the decomposition scheme described in Sec. V E. We
adopt kp = 1. (a) Amplitude of Qk

ui
(top) and Qk

vi
(bottom). The amplitude of Qk

ui
is calculated by

∫ 2π

0 |Qk
ui

(ψ )|dψ/2π (a similar formula is
used for Qk

vi
). The red and blue lines indicate i = 1 and i = 2, respectively. The amplitudes of Qk

ui
and Qk

vi
are localized to k = 1. (b) Trajectory

of (u1
1, v

1
1 ) (blue) and the limit-cycle of (χ 1

u1
, χ 1

v1
) (red). The Poincaré sections for np = u and np = v are depicted with yellow lines, and the

insets provide a close-up view around the intersection. (c) Time series of u
kp
i (t ) (top) and v

kp
i (t ) (bottom) and the Poincaré sections. The red

and blue lines represent i = 1 and i = 2, respectively. The horizontal lines represent the Poincaré sections, and the dots represent the times
when u

kp
i (t ) or v

kp
i (t ) intersects the Poincaré section from negative to positive. (d) Histograms of θ

kp
1 − θ

kp
2 for np = u (red) and np = v (blue).

The histograms are calculated over a duration in which |θ kp
1 − θ

kp
2 | increases by 200π . The distribution calculated from the phase equations is

displayed in gray. (e) Statistics of the correction term c
kp
i, j for both np = u and np = v. The red (i = 1) and blue (i = 2) boxes represent the first

and third quartiles of dataset {ckp
i, j} j . The horizontal lines mark the medians, while the dots mark the averages. The whiskers extend to show the

maximum and minimum values.

contains u1
i does the same in the case of np = v [Eq. (12)].

This indicates that the magnitude of the correction term is
primarily determined by the fluctuations in either u1

i or v1
i .

Since the trajectory of (u1
1, v

1
1 ) is close to the limit-cycle of

(χ1
u1

, χ1
vi

) as shown in Fig. 7(b), the magnitude of the correc-
tion terms is expected to be relatively small. We applied the
Poincaré section to the time series of u

kp

i or v
kp

i (kp = 1) to

calculate θ
kp

i [Fig. 7(c)]. The histograms of θ
kp

1 − θ
kp

2 shown
in Fig. 7(d) slightly differ from the distribution of φ1 − φ2

calculated from the phase equations. Furthermore, according
to the statistics of the correction term shown in Fig. 7(e),
its magnitude is much smaller compared to those shown in
Fig. 6(d) for both np = u and np = v. These results indicate
that using the basis functions obtained by applying PCA to
the phase sensitivity function reduces the magnitude of the
correction term. Since the correction term is nearly negligible,
ignoring it does not substantially degrade the accuracy of
phase equation estimation. Figure 11 in Appendix E shows
that the phase equations estimated from the time series of θ

kp

i
closely resemble the true forms.

As previously discussed, the localization of the amplitudes
of Qk

ui
and Qk

vi
is an important factor to reduce the magni-

tude of the correction terms. According to Eq. (12), when
Qk

ui
and Qk

vi
have large amplitudes, fluctuations in uk

i and vk
i

significantly influence the correction term. Thus, the degree

of localization is related to the extent to which the correc-
tion term can be reduced. For target waves, where the phase
sensitivity function possesses a rigid coherent structure [see
Fig. 8(b) in Appendix C], Q1

ui
and Q1

vi
predominantly capture

the phase sensitivity function. By contrast, in the case of
oscillating spots where the phase sensitivity function exhibits
the deformation of a coherent structure, several Qk

ui
and Qk

vi

are necessary to approximate it (Appendix G). In summary,
the PCA-based scheme mentioned here is effective for target
waves since only the fluctuation of either u1

i or v1
i impacts

the correction term although this scheme is less effective for
oscillating spots, where the fluctuations of several uk

i and vk
i

influence the correction term. Furthermore, the magnitude
of these fluctuations plays a crucial role in determining the
magnitude of the correction term. For example, given that Q1

ui

and Q1
vi

have the largest amplitude, the fluctuation in either u1
i

or v1
i remains a significant contributor to the correction term

[see Eq. (12)].

VI. DISCUSSION

The investigations in this paper are summarized as fol-
lows. First, we briefly reviewed the phase reduction theory
for PDE to introduce the concept of phase (Sec. II). We
utilized weakly coupled FHN reaction-diffusion models ex-
hibiting target waves in a numerical simulation (Sec. III)
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FIG. 8. Limit-cycle solutions and phase sensitivity functions for
the FHN reaction-diffusion model described in Sec. III (a) Limit
cycle of the target-wave solution χ1(x, φ) = (χu1 (x, φ), χv1 (x, φ)).
(b) Phase sensitivity function of the target-wave solution Q1(x, φ) =
(Qu1 (x, φ), Qv1 (x, φ)).

to illustrate the phase calculation. We examined the meth-
ods for calculating phase based on measurements taken at
a single spatial grid point (Sec. IV) and those taken across
all spatial grid points (Sec. V). Additionally, we applied the
phase calculation methods described in Secs. IV and V to
spatiotemporal dynamics with oscillating spots (Appendix G).
In Sec. IV and Appendix G, we observed that the magnitude
of the correction term is small when the Poincaré section is
applied to measurement time series from a single grid point
within either the pacemaker region, which emits target waves,
or the spot’s front region. These regions are known to possess
phase sensitivity functions with large amplitudes. While the
phase sensitivity functions for real-world systems are gener-
ally unknown, it is likely that they are localized in regions that
govern overall dynamics [56]. Therefore, identifying optimal
measurement positions based on experimental and theoretical
insights is advisable, as these regions may visibly control
the rhythms of spatiotemporal dynamics. In Sec. V and Ap-
pendix G, we proposed a scheme aimed at localizing the
amplitude of the (decomposed) phase sensitivity function to
a few key components (Sec. V E). Our results for target waves
and oscillating spots indicate that the scheme’s effectiveness
depends on whether the phase sensitivity function possesses
a coherent structure without or with deformation. Notably,
phase calculations for target waves can achieve a reasonable
accuracy even without this PCA scheme (Sec. V D).

Properly setting the Poincaré section is crucial not only for
continuous systems but also for real-world discrete systems,
including the network of dynamical elements exhibiting the
collective oscillation [49,52,79]. This necessity arises because
a large magnitude of the correction term can also occur in
high-dimensional ODE systems, especially when the dimen-
sion of the dynamical system is comparable to the number of

spatial grid points in PDE cases. This can be explained by
the fact that the expressions for the correction terms in the
ODE and PDE cases have a similar form [see Eq. (A3) in
Appendix A and Eq. (B4) in Appendix B]. Furthermore, al-
though we assumed the one-dimensional space, the approach
for setting the Poincaré section discussed in this study is
also applicable to multidimensional spaces. This is because
the localization of phase sensitivity functions for rhythmic
patterns occurs similarly in multidimensional spaces [56].

The findings of this study provide insights for calculating
the phase from measurements across various domains such
as meteorology [80,81], electrochemical oscillators [82], bio-
physics [83], and life science [84]. When measuring at a single
grid point, the accuracy of phase calculation is improved by
taking measurements from the pacemaker region or the region
where the front of the oscillating spot exists. In addition, for
systems exhibiting target waves, it is possible to calculate
the phase from a one-dimensional time series obtained by
applying PCA to multidimensional measurements over mul-
tiple spatial grid points. For example, in meteorology, PCA
(also known as empirical orthogonal functions) is sometimes
applied to spatiotemporal dynamics to obtain the time series of
modes (and its basis function). Our study suggests that these
modes can sometimes be used to calculate the phase. The
findings of this study can be experimentally verified using a
pair of photosensitive Belousov-Zhabotinsky systems, where
two spatiotemporal rhythmic patterns are locally coupled via
video cameras and projectors [85].

Our key finding allows for the calculation of the phase of
collective oscillations of dynamical elements [49,52,79] and
spatiotemporal dynamics [56] from measurements. Therefore,
the phase response, phase sensitivity function, and phase cou-
pling function of the collective oscillation and spatiotemporal
dynamics can be estimated by combining our method with
conventional estimation methods [8–23] as we did in Ap-
pendix E. To ensure accurate estimation, it is crucial to reduce
the magnitude of the correction term caused by the discrep-
ancy between the Poincaré section and the isochron. This
study revealed a proper setting for the Poincaré section that
realizes the calculation of the phase with a small magnitude
of the correction term. The setting is based on the spatial
localization of the phase sensitivity function. Ignoring these
considerations can lead to incorrect estimations and misun-
derstandings of system properties, as shown by the incorrectly
estimated phase equations (see Appendix E for target waves
and Appendix G for oscillating spots).

This study showed that even in the absence of noise,
a difference exists between the calculated phase and the
isochron-based phase, and we investigated methods to reduce
this difference. Addressing the robustness of phase calculation
under the noise remains a future task. Furthermore, in this
study, we assumed that the basis functions for the orthogonal
decomposition were obtained using PCA. Other techniques,
such as extended dynamic mode decomposition (EDMD)
[86,87], which identifies non-self-adjoint left and right vectors
from multidimensional measurements, could also be used for
orthogonal decomposition. Developing a method that utilizes
EDMD is a future challenge and might enable the calculation
of the phase for spatiotemporal dynamics exhibiting oscillat-
ing spots with a smaller magnitude of the correction term.
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Finally, some spatiotemporal dynamics have multiple phases,
e.g., the governing equation has a limit-torus solution [88].
Future research should also address the phase calculation for
the systems exhibiting multiple rhythms.
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APPENDIX A: CALCULATION OF THE
ISOCHRON-BASED PHASE BY LINEAR APPROXIMATION
IN THE VICINITY OF LIMIT-CYCLE SOLUTION OF ODE

Let us consider the following ODE:

Ẋ (t ) = F(X ), (A1)

where X ∈ RN represents the state variable. We assume that
Eq. (A1) has a limit-cycle solution χ with period T . According
to phase reduction theory [1,2], the multidimensional state
space is mapped to a one-dimensional space characterized by
a periodic variable, φ ∈ [0, 2π ), called phase. Here, let us
consider a state, X 0(t ), which evolves along the limit-cycle
solution. The phase φ(t ) is assigned to X 0(t ) such that it
increases linearly with a constant frequency ω := 2π/T as
time progresses, i.e., φ(t ) = ωt . We define the state on the
limit-cycle solution as χ(φ(t )) := X 0(t ). Next, we extend the
definition of the phase to the basin of attraction. We assign
the same phase value to a subset of the state space defined as
follows:

I (ψ ) = {
X (t )

∣∣ lim
t→+∞ ‖X (t ) − χ(φ(t ))‖ = 0, φ(0) = ψ

}
,

(A2)

where ‖ · ‖ denotes the L2 norm defined as ‖A‖ = √
A · A.

The subset assigned phase value φ is represented as I (φ). By
analyzing the isochrons corresponding to each phase value,
we can determine a scalar field that represents the configura-
tion of the phase over the basin of attraction. The time series
of the phase φ(t ) is obtained by assigning the phase value to
the time series of X (t ) on the basis of this scalar field.

The concept of the isochron provides a linear approxima-
tion in the vicinity of the limit-cycle solution. We consider a
state X ′, which is slightly kicked out from the state χ(ψ0) by
a weak perturbation. The phase ψ assigned to X ′ is calculated
as follows:

ψ = ψ0 + Z(ψ0) · (X ′ − χ(ψ0))

= ψ0 +
N∑

n=1

Zn(ψ0)(X ′
n − χn(ψ0)), (A3)

where Z(ψ0) ∈ RN is the phase sensitivity function, which
quantifies linear response characteristics of the phase to weak
perturbation, and the subscript n denotes the nth entry of the
vector. When the two states, X ′ and χ(ψ0), lie on the same
Poincaré section that defines ψ0 = 0, the second term can be

considered as a correction term, and ψ is interpreted as the
isochron-based phase.

APPENDIX B: CALCULATION OF THE
ISOCHRON-BASED PHASE BY LINEAR APPROXIMATION
IN THE VICINITY OF LIMIT-CYCLE SOLUTION OF PDE

Similar to the ODE described in Appendix A, the concept
of isochron can be applied to the PDE [56]. Let us consider the
equation described in Eq. (1) without the coupling (G = 0) as
follows (the subscript i is removed for convenience):

∂

∂t
X (r, t ) = F(X , r) + D∇2X . (B1)

We assume that Eq. (B1) has a limit-cycle solution χ with
period T . According to the phase reduction theory extended to
the PDE [56], the infinite-dimensional state space is mapped
to a one-dimensional space characterized by a periodic vari-
able, φ ∈ [0, 2π ). Here, let us consider a state, X 0(r, t ), which
evolves along the limit-cycle solution. The phase φ(t ) is as-
signed on X 0(r, t ) such that it increases linearly with constant
frequency ω := 2π/T as time progresses, i.e., φ(t ) = ωt . We
define a state on the limit-cycle solution as χ(r, φ(t )) :=
X 0(r, t ). Next, we extend the definition of the phase to the
basin of attraction. We assign the same phase value to a subset
of the state space as follows:

I (ψ )={
X (r, t )

∣∣ lim
t→+∞ ‖X (r, t )−χ(r, φ(t ))‖=0, φ(0)=ψ

}
,

(B2)

where ‖ · ‖ denotes the L2 norm defined as ‖A(r)‖ =√∫
A(r) · A(r)dr. We denote the subset assigned phase value

φ as I (φ). By analyzing the isochrons corresponding to each
phase value, we can determine a scalar field that represents
the configuration of the phase over the basin of attraction.
Therefore, the time series of the phase φ(t ) is obtained by
assigning the phase value to the time series of X (r, t ) on the
basis of this scalar field.

The concept of the isochron provides a linear approxima-
tion in the vicinity of the limit-cycle solution. We consider a
state X ′(r), which is slightly kicked out from a state χ(r, ψ0)
by a weak perturbation. The phase ψ assigned to X ′ is calcu-
lated as follows:

ψ = ψ0 +
∫

Q(r, ψ0) · (X ′(r) − χ(r, ψ0))dr

= ψ0 +
∫ N∑

n=1

Qn(r, ψ0)(X ′
n(r) − χn(r, ψ0))dr, (B3)

where Q is the phase sensitivity function and the subscript n
denotes the nth entry of the vector. For simplicity, we assume
a one-dimensional space, i.e., r → x. Given the spatial grid,
xm = m�x (m = 0, 1, . . . , M ), Eq. (B3) is rewritten with dis-
crete representation as follows:

ψ = ψ0 +
M∑

m=0

N∑
n=1

Qn(xm, ψ0)(X ′
n(xm) − χn(xm, ψ0))�xm,

�xm :=
{
�x/2 (m = 0, M ),
�x (otherwise). (B4)
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FIG. 9. Phase equations estimated from the time series of the phase calculated from measurements taken at a single spatial grid point
(see Sec. IV C). The colored lines display the phase equations estimated from the time series of θ

xp
i (t ) or φi(t ). The legend denotes the

correspondence between the colors of the lines and the values of xp. The true forms of the phase equations are displayed in bold-gray lines.
(a) Results obtained from θ

xp
i . (b) Results obtained from φi.

The calculation of the correction term in Eq. (4) is
derived from this equation. When we replace the
variables in Eq. (B4) with ψ → 2π j + c

xp

i, j , ψ0 → 2π j,
Qn(xm, ψ0) → Qi,n(xm, 0), X ′

n(xm) → Xi,n(xm, t
xp

i, j ), and
χn(xm, ψ0) → χi,n(xm, 0) and then consider Xi,np (xmp, t

xp

i, j ) −
χi,np (xmp, 0) = 0, we obtain Eq. (4).

APPENDIX C: LIMIT-CYCLE SOLUTION AND PHASE
SENSITIVITY FUNCTION OF THE FHN

REACTION-DIFFUSION MODEL

The FHN reaction-diffusion model described in
Sec. III has the limit-cycle solution χi(x, φi ) =
(χui (x, φi ), χvi (x, φi )) and the phase sensitivity function
Qi(x, φi ) = (Qui (x, φi ), Qvi (x, φi )). The limit-cycle solution
χ1 and the phase sensitivity function Q1 for the target-wave
solution are shown in Figs. 8(a) and 8(b).

APPENDIX D: PHASE EQUATIONS OF THE FHN
REACTION-DIFFUSION MODEL

Phase reduction theory extended to the PDE [56] allows
for deriving a phase equation from a PDE with a limit-cycle
solution. The FHN reaction-diffusion model falls within the
applicability of this theory. For a pair of weakly coupled
reaction-diffusion models described by Eq. (1), the phase
equations are given by

φ̇1(t ) = ω1 + �12(φ1 − φ2),

φ̇2(t ) = ω2 + �21(φ2 − φ1),
(D1)

where ωi := 2π/Ti represents the frequency of the limit-cycle
solution χi of Eq. (1) without coupling (G = 0). The constant
Ti represents the period of the limit-cycle solution. The phase
coupling functions between the two phases, �12 and �21, de-
scribe how the phases are affected by the coupling function G.
The phase equations for the coupled FHN reaction-diffusion
models that simulate target waves are displayed in Fig. 9 in
Appendix E. (Figures 10 and 11 in Appendix E also show the
same.)

The distribution of φ1 − φ2 shown in several fig-
ures was calculated using the phase equations [see the
gray plots in Figs. 2(c), 4(c), 6(c), 6(e), and 7(d)].
This distribution is inversely related to the velocity of
φ1 − φ2. We calculated it by taking the reciprocal of
the difference between the phase equations, i.e., P(φ1 −
φ2) ∝ 1/(ω1 − ω2 + �12(φ1 − φ2) − �21(−[φ1 − φ2])). Ad-
ditionally, Appendix G presents the phase equations and
distribution of φ1 − φ2 derived from the model simulating
oscillating spots.

APPENDIX E: ESTIMATING THE PHASE EQUATIONS

Neglecting the correction term during phase calculation
introduces errors in estimating the phase equations [Eq. (D1)],
with the error becoming more significant as the magnitude of
the correction term increases. To illustrate this, we estimated
the phase equations using the approach from Ref. [22].

Figures 9(a) and 9(b) show the phase equations estimated
from the time series of θ

xp

i (t ) and φi(t ), respectively, for
spatiotemporal dynamics featuring target waves (Sec. III).
Examining the results for xp � 15, 30 shown in Fig. 9(a),
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FIG. 10. Phase equations estimated from the time series of the phase calculated from measurements taken at all spatial grid points. The
orthogonal decomposition scheme described in Sec. V D is used. The red and blue lines display the phase equations obtained from the time
series of u

kp
i (t ) and v

kp
i (t ) (kp = 1), respectively. The true forms of the phase equations are displayed in bold gray lines. (a) Results obtained

from θ
kp
i . (b) Results obtained from φi.

we see that a large magnitude of the correction term [see
Fig. 4(b)] leads to significant discrepancies between the es-
timated phase equations and the true forms, indicated by
bold-gray lines. In contrast, for xp � 80, where the correction
term is small, the estimated phase equations closely align
with the true forms. These findings indicate that omitting
the correction term impacts the estimation accuracy, with the
extent of impact linked to the magnitude of the correction
term. In addition, all phase equations estimated from the time
series of φi(t ) closely resemble the true forms [Fig. 9(b)].
This suggests that incorporating correction terms in phase
calculation effectively reduces estimation errors in the phase
equations.

Similar estimations are presented in Sec. V D. Fig-
ures 10(a) and 10(b) show phase equations estimated from
time series of θ

kp

i (t ) and φi(t ), respectively (we consider kp =

1). The results in Fig. 10(a) show close alignment with the true
forms owing to the small magnitude of the correction terms,
which reduces errors in the estimation of the phase equation.
The phase equations estimated from the time series of φi(t )
shown in Fig. 10(b) are more accurate than those estimated
from the time series of θ

kp

i (t ).
Section V E repeats estimations of the same phase equa-

tions, with Fig. 11 presenting phase equations estimated
from the time series of θ

kp

i (t ) for spatiotemporal dynamics.
Figures 10(a) and 11 both show phase equations estimated
from θ

kp

i (t ) for target waves, using different decomposition
schemes (see Secs. V D and V E). The latter estimation cap-
tures more detailed phase equation features than the former,
indicating that the scheme in Sec. V E reduces the magnitude
of the correction term and improves the estimation of the
phase equations.

FIG. 11. Phase equations estimated from the time series of the phase calculated from measurements taken at all spatial grid points. The
orthogonal decomposition scheme described in Sec. V E is used. The red and blue lines display the phase equations obtained from the time
series of u

kp
i (t ) and v

kp
i (t ) (kp = 1), respectively. The true forms of the phase equations are displayed in bold-gray lines.
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FIG. 12. Illustration of FHN reaction-diffusion models used in Appendix G. (a) Spatiotemporal dynamics of oscillating spots simulated
by the coupled FHN reaction-diffusion models. For reference, the yellow, green, red, and blue vertical lines mark the measurement positions,
xp = 10, 20, 30, 40, respectively. (b) Limit cycle of the oscillating spot solution χ1(x, φ). (c) Phase sensitivity function of the oscillating spot
solution Q1(x, φ).

The detailed estimation method is found in Ref. [22].
Hyperparameters are set as χold

i = (ω̄i, 0, 0, . . . , 0)T, �old
i =

λ−1
i E , and αold

i = βold
i = 0.001 (see Ref. [22]), where ω̄i is

the mean velocity calculated from the time series of the phase,
and E denotes an identity matrix. In addition, to optimize the
marginal likelihood functions, we set λi, which represents the
magnitude of �old

i , and Mi, which represents the Fourier series
order in the phase coupling function. (These parameters were
determined in the range of Mi = 0, 1, . . . , 10 and log10 λi =
1, 2, . . . , 5.) Phase equations were estimated from phase time
series during intervals where |φ1 − φ2| increases by 200π .

APPENDIX F: THE ORTHOGONALLY DECOMPOSED
PHASE SENSITIVITY FUNCTION

We mention the derivation of Eq. (11). Let us consider the
state variable X (x, t ) ∈ RN , which obeys

∂

∂t
X (x, t ) = F(X , x) + εp(x, t ), (F1)

where F(X , x) represents the local dynamics at point x and
time t , p(x, t ) represents the local perturbation to X (x, t ),
and ε � 1 represents the intensity of the perturbation. For
simplicity, the local dynamics F includes any diffusion of X if
present. We assume that Eq. (F1), in the absence of coupling
(p = 0), has a limit-cycle solution χ(x, φ) with φ = [0, 2π ).
Additionally, we assume that the perturbation is sufficiently
weak so that X does not deviate significantly from the limit-
cycle solution. Given the phase sensitivity function Q(x, φ)
for the limit-cycle solution, the phase equation is derived as
follows [56]:

φ̇(t ) = ω + ε

∫ L

0
Q(x, φ) · p(x, t )dx

= ω + ε

∫ L

0

N∑
n=1

Qn(x, φ)pn(x, t )dx, (F2)

where, subscript n denotes the nth entry of the vectors, L is
the size of the system, and ω is frequency of the limit-cycle
solution.

We consider mapping from an infinite-dimensional state
space to the KN-dimensional space through orthogonal
decomposition. Given a set of orthonormal basis functions
�k

n (n = 1, 2, . . . , N, k = 1, 2, . . . , K ), the N-dimensional

state or functions, X̃
k
(t ) = (X̃ k

1 (t ), X̃ k
2 (t ), . . . , X̃ k

N (t )),

Q̃
k
(φ) = (Q̃k

1(φ), Q̃k
2(φ), . . . , Q̃k

N (φ)), F̃
k
(X ) =

(F̃ k
1 (X ), F̃ k

2 (X ), . . . , F̃ k
N (X )), and p̃k (t ) =

( p̃k
1(t ), p̃k

2(t ), . . . , p̃k
N (t )) are obtained as follows:

X̃ k
n (t ) =

∫ L

0
Xn(x, t )�k

n(x)dx,

Q̃k
n(φ) =

∫ L

0
Qn(x, φ)�k

n(x)dx,

F̃ k
n (X ) =

∫ L

0
Fn(X , x)�k

n(x)dx,

p̃k
n(t ) =

∫ L

0
pn(x, t )�k

n(x)dx, (F3)

where the basis function satisfies
∫ L

0 �
p
n (x)�q

n(x) = δpq. The
tilde indicates that the value is obtained by projection onto the
basis functions. We assume that the number of the component
K is sufficiently large to ensure that each function can be
reproduced nearly 100%. The dynamics of the state variable
X k

n projected onto �k
n(x) obeys

∂

∂t
X̃ k

n (t ) = F̃ k
n (X ) + ε p̃k

n(t ). (F4)

We rewrite Eq. (F4) with N-dimensional vector representation
as follows:

∂

∂t
X̃

k
(t ) = F̃

k
(X ) + ε p̃k (t ). (F5)
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FIG. 13. Time series of ui(xp, t ) and the calculation of θ
xp
i (t )

for the spatiotemporal dynamics exhibiting oscillating spots (Ap-
pendix G). (a) Time series of ui(xp, t ) and the Poincaré sections for
xp = 10, 20, 30, 40. The red and blue lines indicate i = 1 and i = 2,
respectively. The horizontal lines depict the Poincaré sections, while
the dots represent the times at which ui(xp, t ) intersects the Poincaré
section from negative to positive. (b) Histograms of θ

xp
1 − θ

xp
2 for

xp = 10 (yellow), 20 (green), 30 (red), and 40 (blue). The histograms
are calculated over a duration in which |θ xp

1 − θ
xp
2 | increases by

200π . The distribution calculated from the phase equations is dis-
played in gray.

Given Eq. (F5) for k = 1, 2, . . . , K , the state variable X̃ (t ) =
(X̃

1
(t ), X̃

2
(t ), . . . , X̃

K
(t )) ∈ RKN is subjected to the per-

turbation p̃(t ) = ( p̃1(t ), p̃2(t ), . . . , p̃K (t )) ∈ RKN . The limit-
cycle solution of Eq. (F1) persists as the limit-cycle solution
of Eq. (F5), albeit it deformed. Therefore, there exists a phase
equation that describes the phase response to the perturbation
p̃, as follows:

φ̇(t ) = ω + εQ̂(φ) · p̃(t )

= ω + ε

K∑
k=1

Q̂
k
(φ) · p̃k (t )

= ω + ε

K∑
k=1

N∑
n=1

Q̂k
n(φ) p̃k

n(t ), (F6)

where unknown Q̂(φ) = (Q̂
1
(φ), Q̂

2
(φ), . . . , Q̂

K
(φ)) ∈ RKN

with Q̂
k
(φ) = (Q̂k

1(φ), Q̂k
2(φ), . . . , Q̂k

N (φ)) represents the lin-
ear response characteristics of the phase to the perturbation p̃.
The frequency ω in Eq. (F6) is the same as that in Eq. (F2)
since the period of the limit-cycle solution of Eq. (F1) and
Eq. (F5) must have same period.

Here, we derive what the unknown function Q̂ is. From
Eqs. (F2) and (F6), we obtain the following equation:∫ L

0

N∑
n=1

Qn(x, φ)pn(x, t )dx =
K∑

k=1

N∑
n=1

Q̂k
n(φ) p̃k

n(t ). (F7)

We also obtain the following equation starting from the left-
hand side of Eq. (F7):∫ L

0

N∑
n=1

Qn(x, φ)pn(x, t )dx

=
∫ L

0

N∑
n=1

Qn(x, φ)

[
K∑

k=1

p̃k
n(t )�k

n(x)

]
dx

=
K∑

k=1

N∑
n=1

[∫ L

0
Qn(x, φ)�k

n(x)dx

]
p̃k

n(t )

=
K∑

k=1

N∑
n=1

Q̃k
n(φ) p̃k

n(t ). (F8)

The transformation to the second and fourth rows is
achieved by substituting pn(x, t ) � ∑K

k=1 p̃k
n(t )�k

n(x) and
Q̃k

n(t ) = ∫ L
0 Qn(x, t )�k

n(x)dx, respectively. Finally, we derived
Q̂k

n(φ) = Q̃k
n(φ) from Eqs. (F7) and (F8), and thus we obtain

the following equation from Eq. (F6):

φ̇(t ) = ω + ε

K∑
k=1

N∑
n=1

Q̃k
n(φ) p̃k

n(t ). (F9)

We also obtain the equation with vector representation as
follows:

φ̇(t ) = ω + ε

K∑
k=1

Q̃
k
(φ) · p̃k (t )

= ω + εQ̃(φ) · p̃(t ). (F10)

Equations (F9) and (F10) indicate that Q̃ serves as the phase
sensitivity function when the infinite-dimensional state space
is mapped to the finite-dimensional space spanned by basis
functions as described in Eq. (F3).

We denote the limit-cycle solution projected onto the basis
functions as χ̃(φ) ∈ RKN , whose nth entry is calculated by
χ̃ k

n (t ) = ∫ L
0 χn(x, t )�k

n(x)dx. In the previous paragraph, we
found that Q̃ represents the linear response characteristics of
the phase to the perturbation p̃ when Q̃ and p̃ are obtained
by the projection onto the same basis functions. Therefore,
the phase ψ assigned to a state X̃

′ ∈ RKN , which is slightly
kicked out from the state χ̃(ψ0), is calculated as follows:

ψ = ψ0 + Q̃(ψ0) · (X̃
′ − χ̃(ψ0))

= ψ0 +
K∑

k=1

N∑
n=1

Q̃k
n(ψ0)

(
[X̃ ′]k

n − χ k
n (ψ0)

)
. (F11)

The calculation of the correction term in Eq. (11) is based
on this equation. Specifically, when we replace the variables
in Eq. (F11) with ψ → 2π j + c

kp

i, j , ψ0 → 2π j, Q̃k
n(ψ0) →

Qk
i,n(0), [X̃ ′]k

n → X k
i,n(t kp

i, j ), and χ̃ k
n (ψ0) → χ k

i,n(0) and then
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FIG. 14. Calculation of the correction terms and the phase for the spatiotemporal dynamics exhibiting oscillating spots from measurements
taken at a single spatial grid point (Appendix G). (a) Distribution of �u1 (x, t

xp
1, j ) and �v1 (x, t

xp
1, j ) under the condition of xp = 10 (first row), 20

(second row), 30 (third row), and 40 (fourth row), along with the phase sensitivity functions, Qu1 (x, 0) and Qv1 (x, 0). The left figures display
�u1 (x, t

xp
1, j ) and Qu1 (x, 0), and the right figures display �v1 (x, t1, j ) and Qv1 (x, 0). The colored lines indicate the medians of �u1 (x, t

xp
1, j ) and

�v1 (x, t
xp
1, j ). The colored shades indicate the range between the 25th and 75th percentiles. The black lines indicate Qu1 (x, 0) and Qv1 (x, 0).

(b) Statistics of the correction term c
xp
i, j for each xp. The red (i = 1) and blue (i = 2) boxes represent the first and third quartiles of dataset

{cxp
i, j} j . The horizontal lines mark the medians, while the dots mark the averages. The whiskers extend to show the maximum and minimum

values. (c) Histograms of φ1 − φ2 for xp = 10 (yellow), 20 (green), 30 (red), and 40 (blue). The histograms are calculated over a duration in
which |φ1 − φ2| increases by 200π . The distribution calculated from the phase equations is displayed in gray.

consider X
kp

i,np
(t kp

i, j ) − χ
kp

i,np
(0) = 0, we obtain Eq. (11). From

this derivation, it follows that Qk
i,n(0) in Eq. (11) represents

the linear response characteristics of the phase to deviations
of X k

i,n from the state of φi = 0 on the limit-cycle solution.

APPENDIX G: PHASE CALCULATION FOR
OSCILLATING SPOTS

In this appendix, we investigate phase calculation for spa-
tiotemporal dynamics exhibiting oscillating spots, applying
the same methods used for target waves (Secs. IV and V). The
first subsection describes the FHN reaction-diffusion model
for numerical simulation. The second to fourth subsections
describe the application of each phase calculation method.

1. Numerical simulation

To generate spatiotemporal dynamics with oscillating
spots, we conducted a numerical simulation using the FHN

reaction-diffusion model [Eqs. (1) and (2)]. The space-
dependent parameter α(x) = α0 + (α1 − α0)(2x/L − 1)2

is the largest at the center (x = L/2) and smallest at the
boundaries (x = 0, L). The other parameters are a0 = −1.1,
a1 = 1.6, γ = 2.0, τ−1

1 = 0.03, τ−1
2 = 0.028, κ1 = 1.0,

κ2 = 0.9, δ1 = 2.5, and δ2 = 2.4. The periods of the limit-
cycle solutions are T1 � 195.3 and T2 � 212.2. The coupling
intensity is K = diag(1.0 × 10−4, 0). For the numerical
simulation, we used a one-dimensional system of size L = 80
with no-flux boundary conditions. The system is discretized
into spatial grids with �x = L/28. Time integration starts
from u1(x, 0) = v1(x, 0) = −0.424 + sin[1.133 + (x/L)π ]
and u2(x, 0) = v2(x, 0) = −0.993 + sin[0.122 + (x/L)π ].
The initial time evolution up to 5.0 × 104 is discarded, and
measurements are taken from the subsequent evolution over a
duration of 3.0 × 105. Time integration was performed using
the explicit Heun scheme with a time step �t = 0.01.

Under these conditions, oscillating spots constrained at the
center are generated. Figure 12(a) shows the spatiotemporal
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FIG. 15. Similar to Fig. 9, but these results are obtained from measurements of spatiotemporal dynamics exhibiting oscillating spots
(Appendix G) instead of target waves. (a) Results obtained from θ

xp
i . (b) Results obtained from φi.

FIG. 16. Calculation of the phase of spatiotemporal dynamics exhibiting oscillating spots from measurements on all spatial grid points
(Appendix G). The decomposition scheme described in Sec. V D is used, and kp = 1 is adopted. (a) Amplitude of Qk

ui
(top) and Qk

vi
(bottom).

The amplitude of Qk
ui

is calculated by
∫ 2π

0 |Qk
ui

(ψ )|dψ/2π (a similar formula is used for Qk
vi

). The red and blue lines indicate i = 1 and

i = 2, respectively. (b) Time series of u
kp
i (t ) (top) and v

kp
i (t ) (bottom) and the Poincaré sections. The red and blue lines indicate i = 1 and

i = 2, respectively. The horizontal lines represent the Poincaré sections, and the dots represent the times when u
kp
i (t ) or v

kp
i (t ) intersects the

Poincaré section from negative to positive. (c) Histograms of θ
kp
1 − θ

kp
2 for np = u (red) and np = v (blue). The histograms are calculated over

a duration in which |θ kp
1 − θ

kp
2 | increases by 200π . The distribution calculated from the phase equations is displayed in gray. (d) Statistics of the

correction term c
kp
i, j for both np = u and np = v. The red (i = 1) and blue (i = 2) boxes represent the first and third quartiles of dataset {ckp

i, j} j .
The horizontal lines mark the medians, while the dots mark the averages. The whiskers extend to show the maximum and minimum values.
(e) Histograms of φ1 − φ2 for np = u (red) and np = v (blue). The histograms are calculated over a duration in which |φ1 − φ2| increases by
200π . The distribution calculated from the phase equations is displayed in gray.
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FIG. 17. Similar to Fig. 10, but these results are obtained from measurements of spatiotemporal dynamics exhibiting oscillating spots
(Appendix G) instead of target waves. (a) Results obtained from θ

xp
i . (b) Results obtained from φi.

dynamics of u1 and v1. The oscillating spot, characterized by
large values of ui and vi, can be seen rhythmically expanding
and contracting. The fronts of the oscillating spot for ui appear
sharply. Therefore, the time series of ui(xp, t ) measured in
the region where the spot’s fronts oscillate shows intermittent
sharp increases and decreases. In contrast, in other regions,
the time series of ui(xp, t ) exhibits only slight variations with-
out abrupt changes. The limit-cycle solution and the phase
sensitivity function are shown in Figs. 12(b) and 12(c), re-
spectively. The phase sensitivity function is localized at the
spot’s front. This fact indicates that the region where the front
exists influences the rhythm of the entire system.

2. Calculating the phase from a measurement on
a single spatial grid point

We focus on the phase calculation that relies on mea-
surements from a single spatial grid point. We implement
the approach described in Sec. IV for oscillating spots. The
time series of θ

xp

i (t ) was calculated from that of ui(xp, t ) for
xp = 10, 20, 30, 40. Only xp = 30 is located in the region
containing the spot’s front, where the phase sensitivity func-
tion is localized. Examples of the time series of ui(xp, t ) and
the Poincaré sections for each xp are shown in Fig. 13(a).
According to Fig. 13(b), the difference between the histogram
of θ

xp

1 − θ
xp

2 and the distribution of φ1 − φ2 calculated from
the phase equation is the smallest for xp = 30. Therefore, the
approach described in Sec. IV B is effective for oscillating
spots.

Figure 14(a) shows the distribution of �ui (x, t
xp

i, j ) and
�vi (x, t

xp

i, j ) as well as Qui (x, 0) and Qvi (x, 0). The figure in-
dicates that the region with large |�ui (x, t

xp

i, j )| do not overlap

the region with large |Qui (x, 0)| only for xp = 30 (the same
is true for Qvi and �vi ). Given this result, the magnitude of
the correction term is notably small only for xp = 30. The
statistics of the correction term indicate that the correction
term is close to zero for xp = 30 [Fig. 14(b)].

As with the target waves (Sec. IV C), ignoring the correc-
tion term changes the phase calculation results, and the extent
of this change depends on the correction term. Figure 14(c)
shows the histograms of φ1 − φ2 calculated on the basis of
Eqs. (5) and (6). The histograms of φ1 − φ2 for each xp are
almost similar, although the histogram of θ

xp

1 − θ
xp

2 shown
in Fig. 13(b) varies depending on xp. It is evident that the
histograms of θ

xp

1 − θ
xp

2 and φ1 − φ2 differ significantly for
xp = 10, 20, 40 since the magnitude of the correction term is
large, but they are similar for xp = 30 since the correction
term is nearly zero. Ignoring the correction term degrades
the accuracy of phase equation estimation unless the correc-
tion term is nearly zero. Figures 15(a) and 15(b) show the
phase equations estimated from the time series of θ

xp

i (t ) and
φi(t ), respectively. The phase equations estimated from θ

xp

i
differ significantly from the true forms for xp = 10, 20, 40,
but closely match the true forms for xp = 30. In contrast, the
phase equations estimated from φi are consistent with the true
forms regardless of xp.

3. Calculating the phase from measurements on
all spatial grid points

We shift focus to methods involving measurements from all
spatial grid points. We implement the decomposition scheme
described in Sec. V D for spatiotemporal dynamics exhibiting
oscillating spots as we do for target waves. Since the ampli-
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FIG. 18. Calculation of the phase of spatiotemporal dynamics exhibiting oscillating spots from measurements on all spatial grid points
(Appendix G). The decomposition scheme described in Sec. V E is used, and kp = 1 is adopted. (a) Amplitude of Qk

ui
(top) and Qk

vi
(bottom).

The amplitude of Qk
ui

is calculated by
∫ 2π

0 |Qk
ui

(ψ )|dψ/2π (a similar formula is used for Qk
vi

). The red and blue lines indicate i = 1 and
i = 2, respectively. The amplitudes are not localized to a small number of Qk

ui
and Qk

vi
despite the implementation of the scheme described

in Sec. V E. (b) Trajectory of (u1
1, v

1
1 ) (blue) and the limit-cycle of (χ 1

u1
, χ 1

v1
) (red). The Poincaré sections for np = u and np = v are depicted

with yellow lines, and the insets provide a close-up view around the intersection. (c) Time series of u
kp
i (t ) (top) and v

kp
i (t ) (bottom) and the

Poincaré sections. The red and blue lines represent i = 1 and i = 2, respectively. The horizontal lines represent the Poincaré sections, and the
dots represent the times when u

kp
i (t ) or v

kp
i (t ) intersects the Poincaré section from negative to positive. (d) Histograms of θ

kp
1 − θ

kp
2 for np = u

(red) and np = v (blue). The histograms are calculated over a duration in which |θ kp
1 − θ

kp
2 | increases by 200π . The distribution calculated

from the phase equations is displayed in gray. (e) Statistics of the correction term c
kp
i, j for both np = u and np = v. The red (i = 1) and blue

(i = 2) boxes represent the first and third quartiles of dataset {ckp
i, j} j . The horizontal lines mark the medians, while the dots mark the averages.

The whiskers extend to show the maximum and minimum values.

tude of Qk
ui

and Qk
vi

up to about k = 5 are nonzero [Fig. 16(a)],
the fluctuations in the corresponding uk

i and vk
i influence the

correction term. We applied the Poincaré section to either
time series of u

kp

i or v
kp

i (kp = 1) to calculate θ
kp

i as shown in

Fig. 16(b). The histograms of θ
kp

1 (t ) − θ
kp

2 shown in Fig. 16(c)
differs from the distribution of φ1 − φ2 calculated from the
phase equations. The large difference between the histogram
and distribution is supported by the statistics of the correction
term shown in Fig. 16(d). The statistics indicate that the mag-
nitude of the correction term is comparable to those calculated

from ui(xp, t ) for xp = 10, 20, 40 [Fig. 14(b)]. Figure 16(e) in-
dicates that both histograms of φ1 − φ2, which are calculated
from the time series of isochron-based phases, are similar to
the distribution calculated from the phase equations. These
findings validate that the correction term represents the dif-
ference between θ

kp

i (t kp

i, j ) and φi(t
kp

i, j ). Furthermore, Figs. 17(a)
and 17(b) show the phase equations estimated from the time
series of θ

kp

i and φi, respectively. The phase equations es-

timated from θ
kp

i deviate from the true forms while those
estimated from φi closely match the true forms.

FIG. 19. Similar to Fig. 11, but these results are obtained from measurements of spatiotemporal dynamics exhibiting oscillating spots
(Appendix G) instead of target waves.
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4. Case of using the basis function obtained from the
phase sensitivity function

We also implement another scheme of orthogonal decom-
position implemented in Sec. V E. Figure 18(a) indicates that
Qk

ui
and Qk

vi
up to about k = 5 have nonzero amplitude. There-

fore, fluctuations in uk
i and vk

i up to about k = 5 determine
the correction terms. Figure 18(b) shows the deviation of
the trajectory of (u1

1, v
1
1 ) from the limit-cycle of (χ1

u1
, χ1

vi
) is

larger compared to the target waves shown in Fig. 7(b). Thus,
the magnitude of the correction term is likely to be larger
for oscillating spots than for target waves. We applied the

Poincaré section to the time series of u
kp

i or v
kp

i (kp = 1) to

calculate θ
kp

i [Fig. 18(c)]. The histograms of θ
kp

1 − θ
kp

2 differ
from the distribution of φ1 − φ2 calculated from the phase
equations [Fig. 18(d)]. Furthermore, the statistics of the cor-
rection term shown in Fig. 18(e) indicate that its magnitude is
comparable to that shown in Fig. 16(d). These results indicate
that this PCA-based scheme does not reduce the magnitude
of the correction term. Furthermore, ignoring the correction
term degrades the accuracy of the phase equation estimation.
Figure 19 shows that the phase equations estimated from the
time series of θ

kp

i differ from the true forms.
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