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Synchronization analysis of real-world systems is essential across numerous fields, including physics, chem-
istry, and life sciences. Generally, the governing equations of these systems are unknown, and thus, the phase is
calculated from measurements. Although existing phase calculation techniques are designed for oscillators that
possess no spatial structure, methods for handling spatiotemporal dynamics remain undeveloped. The presence
of spatial structure complicates the determination of which measurements should be used for accurate phase
calculation. To address this, we explore a method for calculating the phase from measurements taken at a
single spatial grid point. The phase is calculated to increase linearly between event times when the measurement
time series intersects the Poincaré section. The difference between the calculated phase and the isochron-based
phase, resulting from the discrepancy between the isochron and the Poincaré section, is evaluated using a linear
approximation near the limit-cycle solution. We found that the difference is small when measurements are taken
from regions that dominate the rhythms of the entire spatiotemporal dynamics. Furthermore, we investigate an al-
ternative method where the Poincaré section is applied to time series obtained through orthogonal decomposition
of the entire spatiotemporal dynamics. We present two decomposition schemes that utilize principal component
analysis. For illustration, the phase is calculated from the measurements of spatiotemporal dynamics exhibiting
target waves or oscillating spots, simulated by weakly coupled FitzHugh-Nagumo reaction-diffusion models.
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I. INTRODUCTION

Researchers across various disciplines, including physics,
chemistry, and life sciences, have shown significant inter-
est in the dynamics of coupled self-sustained oscillators.
According to the phase reduction theory [1,2], a multidi-
mensional nonlinear system can be simplified to a phase
equation with a single phase variable representing the oscil-
lator state. This equation illustrates how coupling functions
influence oscillation rhythms. This theory not only aids in
the experimental and theoretical analysis of synchronization
properties in weakly coupled nonlinear oscillators [3—7] but
also supports an inverse problem framework, enabling causal-
ity to be inferred from measurements through a concise
description. Assuming that the system consists of coupled
oscillators, this framework allows us to characterize the vari-
ations in oscillatory rhythms through phase equations.

The inverse problem of identifying the direction of cou-
pling [8], phase sensitivity function [9-14], or phase coupling
function [15-24] requires developing methods to calculate
the phase time series from measurements. This is because
the inverse problem utilizes the phase time series to obtain
phase equations incorporating the phase coupling function
between the oscillators and the phase sensitivity function,
which quantifies linear response characteristics of the phase
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to weak perturbations. Therefore, accurately calculating the
phase is crucial for understanding the properties of systems.
A straightforward method for phase calculation involves lin-
early interpolating the phase over one period, measured using
the Poincaré section. Recent studies have developed meth-
ods to calculate the phase more accurately [13,14,17,18,25—
27]. Furthermore, many studies employ techniques beyond
the phase reduction theory including the Hilbert transform
[28,29], Koopman operator [30-33], and autoencoder [34,35].
These studies allow the phase to capture fluctuations within
a single period caused by continuous perturbations, includ-
ing noise, coupling functions, and external perturbations. The
development of the aforementioned method has provided a
valuable tool for uncovering the mechanisms of synchroniza-
tion in real-world systems [21,36—43].

Many studies have reported that synchronization occurs
not only in oscillators but also in spatiotemporal dynam-
ics. For example, in atmospheric and oceanic circulation
[44,45], synchronous phenomena are observed between op-
posite sides of the globe, such as the sea surface temperatures
of the Kuroshio Current and the Gulf Stream [46,47], as
well as the atmospheric variability patterns of the Arctic Os-
cillation and the Antarctic Oscillation [48]. This discovery
prompted us to create a method for analyzing the synchroniza-
tion mechanism underlying spatiotemporal dynamics. The
phase reduction theory has been broadened beyond its orig-
inal application to limit-cycle oscillator, now encompassing
collective oscillations of dynamical elements [49-52] and
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spatiotemporal dynamics, such as the oscillatory convec-
tion [53-55], reaction-diffusion system [56,57], periodic flow
[58-63], beating flagella [64], and traveling pulses [65-73].
These extended theories offer systematic methods to ap-
proximate the rhythmic dynamics of networks with highly
multidimensional state space, or spatiotemporal dynamics
with infinite-dimensional state space, using one-dimensional
and space-independent phase equations. These methods fa-
cilitate detailed analysis of synchronization mechanisms both
between networks (i.e., internetwork) and between spatiotem-
poral patterns.

With recent advances in the phase reduction theory, there
is growing interest in developing an inverse method to
estimate phase equations that characterize spatiotemporal
dynamics. However, such an inverse method remains undevel-
oped because reliable techniques for calculating phase from
measurements are lacking. Ideally, phase calculation should
remain consistent regardless of which measurements are used,
accurately reflecting the rhythm of the overall spatiotempo-
ral dynamics. However, as this study demonstrates, practical
phase calculations are dependent on measurements, under-
scoring the need for theoretical support to achieve accurate
phase derivation from empirical data. Furthermore, because
of the spatial structure inherent in spatiotemporal dynamics,
several considerations arise for phase calculation: (i) deter-
mining the optimal locations for fixed-point observations of
the dynamics and (ii) exploring the use of modes obtained
from spatiotemporal dynamics through decomposition tech-
niques such as principal component analysis (PCA) (see, e.g.,
Ref. [74]). Calculating the phase of spatiotemporal dynamics
from measurements presents a complex challenge, and this is-
sue has not yet been addressed in existing research. This study
aims to develop a method that allows for the calculation of
phase in spatiotemporal dynamics, analogous to the approach
used for limit-cycle oscillators. The method for calculating the
phase will be crucial for uncovering causality between spa-
tiotemporal dynamics and providing a clearer, more intuitive
understanding of these systems.

In this study, we explore two methods for calculating the
phase of the spatiotemporal dynamics: one method relies
on measurements taken at a single spatial grid point, while
the other method utilizes measurements from all spatial grid
points. First, we examine the method for calculating the phase
using measurements taken at a single spatial grid point. This
method involves a straightforward technique: measuring the
period of spatiotemporal dynamics using the Poincaré sec-
tion applied to the measurement time series, and then linearly
interpolating the phase over one period. The accuracy of phase
calculation is influenced by the measurement position. Thus,
we developed an approach to optimize the measurement posi-
tion for accurate phase calculation. The difference between
the calculated phase and the isochron-based phase can be
evaluated using a linear approximation in the vicinity of the
limit-cycle solution [56]. To illustrate this approach, we pro-
vide an example by calculating the phase of spatiotemporal
dynamics simulated by coupled FitzHugh-Nagumo (FHN)
reaction-diffusion models. By selecting suitable parameters,
the model can generate various spatiotemporal rhythmic pat-
terns [75-78]. In particular, we simulated target waves and
oscillating spots. Next, we investigate the method for calculat-

ing the phase using measurements from all spatial grid points.
In this method, the phase is calculated by linear interpolation,
with the Poincaré section applied to a one-dimensional time
series obtained from the orthogonal decomposition of the spa-
tiotemporal dynamics. We propose decomposition schemes
using PCA and demonstrate how to calculate the phase of
spatiotemporal dynamics through numerical simulation with
the FHN reaction-diffusion model.

This paper is organized as follows: In Sec. II, we briefly
review the phase reduction theory for partial differential
equations (PDEs) to introduce the concept of phase [56]. In
Sec. III, we present the FHN reaction-diffusion model as a
numerical simulation framework. In the following sections,
we examine methods for calculating phase time series based
on measurements from the numerical simulation. In Sec. IV,
we focus on a method using measurements from a single
spatial grid point. In Sec. V, we shift focus to a method
utilizing measurements across all spatial grid points. Finally,
Sec. VI summarizes our findings and discusses future research
directions stemming from this study.

Appendices A to G provide detailed supplementary infor-
mation. Appendices A and B clarify the concept of isochrons
defined by phase reduction theory (Sec. II) for ordinary dif-
ferential equations (ODEs) and PDEs. Appendix C shows the
limit-cycle solution and phase sensitivity function for the FHN
reaction-diffusion model from Sec. III. Appendix D details
the phase equation derived from phase reduction theory. Ap-
pendix E covers the phase equation estimation mentioned in
Secs. IV and V. Appendix F details the derivation of Eq. (11)
in Sec. VC. Finally, in Appendix G, the phase calculation
methods from Secs. IV and V are applied to a different rhyth-
mic spatiotemporal pattern, known as oscillating spots.

II. BRIEF REVIEW OF THE PHASE REDUCTION THEORY
FOR A PARTIAL DIFFERENTIAL EQUATION

We consider a pair of weakly coupled reaction-diffusion
models. The general form of this dynamical system is de-
scribed by the following PDE:

0
EXI("J) =F(X,,r)+ D VX, +G(X,,X>),

%Xz(",l)=F2(X2J‘)+D2V2X2+G(X2,X1), (D
where X;(r, 1) € RV represents the state variable of system
i at point r and time ¢, F;(X,r) represents the local reac-
tion dynamics at r, D;VZX; represents the diffusion of X;
over the field with a diffusion matrix D;, and G(X;, X ;) =
K[X j(r,t) — X;(r, t)] represents local and linear mutual cou-
plings with a diagonal matrix K representing the intensity of
the mutual coupling. We assume that the reaction-diffusion
model, when uncoupled (G = 0), exhibits a limit-cycle so-
lution with a period 7;. Additionally, we consider that the
mutual coupling is sufficiently weak, such that the state X;
remains close to the limit-cycle solution. As in an ODE case
[1,2], the phase is defined over the basin of attraction of the
limit-cycle solution using the concept of isochrons [56] (see
Appendix A for the ODE case and Appendix B for the PDE
case). We first assign the phase ¢;(f) = w;t to the state on the
limit cycle, ensuring that the phase increases linearly with a
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constant frequency w; := 27 /T;. The state on the limit-cycle
solution corresponding to ¢; is represented by x;(r, ¢;). This
state satisfies x;(r, ¢;) = x;(r, ¢; + 27) owing to the 27 pe-
riodicity. Next, we extend the phase assignment to the entire
basin of attraction of the limit-cycle solution, enabling us to
assign a phase to the state variable X; even when it is not
on the limit cycle. As a result, the phase ¢; approximately
represents the state X;. The fluctuation of the phase reflects
the changes in the rhythm of spatiotemporal dynamics due to
the mutual coupling G.

III. NUMERICAL SIMULATION WITH
A PAIR OF WEAKLY COUPLED FHN
REACTION-DIFFUSION MODELS

Our goal is to develop a method for calculating phase
time series directly from measurements of spatiotemporal dy-
namics, enabling identification of the phase without requiring
prior knowledge of the governing equations. In this study,
the phase is calculated from measurements obtained through
numerical simulation of a one-dimensional FHN reaction-
diffusion model, which is described in this section.

In the model used in the numerical simulation, the variable
r in Eq. (1) is replaced with x, representing a point in one-
dimensional space. The state variable, diffusion coefficient,
local reaction dynamics, and the mutual coupling in Eq. (1)
are defined as follows:

Xi(x,1) = (Z'j),

FiX;.x) = <Mi(ui —a)(l —u)— Ui)’

i — yvy)

_ (ki 0 ) N Uj — u;
Di_(o ai)’ G(XI,XJ)_K(UJ,_M), @)

where u; = u;(x, t) and v; = v;(x, t) are activator and inhibitor
variables, respectively. We denote the limit-cycle solution of
the model without mutual coupling (G = 0) as x;(x, ¢;) =
(Xu; (X, @i), Xv: (x, @i)). The spatiotemporal dynamics can ex-
hibit various typical patterns, such as circulating pulses on a
ring, oscillating spots, target waves, and rotating spirals by
setting the parameters «, t;, ¥;, and the diffusion coefficient
k; and §; appropriately [75-78]. The parameter o = «(x) is
space dependent.

In this study, we simulate rhythmic patterns of target
waves. (In Appendix G, the model exhibiting oscillating spots
is explained.) To create a pacemaker region of target waves,
the parameter o is assumed to possess heterogeneity, i.e.,
a(x) =oap+ (a) — oto)exp(—r“/r(‘)‘), where r = |x — xp| rep-
resents the distance from the center of the pacemaker region,
and ry is the pacemaker region’s radius. Specifically, o(x) —
o as r — 0, and a(x) - oy as r — oo. The parameters
defining the pacemaker region are rp = 10, xo = 80, ap = 0.1,
and a; = —0.1. Other parameters are y = 2.5, rl_l = 0.005,
7, =0.0055, k1 = ko = 0.15, and §; = 8, = 0. The peri-
ods of the limit-cycle solutions are 7} >~ 204.6 and T, ~
189.4. The coupling intensity is K = diag(5.0 x 1074, 0).
For the numerical simulation, we used a one-dimensional
system of size L = 100 with no-flux boundary conditions.
The system is discretized into spatial grids with Ax = L/28.

~ 21000

-0.25 025 0.75 0.000.050.100.15

FIG. 1. Spatiotemporal dynamics of the target waves simulated
by the coupled FHN reaction-diffusion models. For reference, the
green, red, and blue vertical lines mark the measurement positions,
x, 2= 15, 30, 80, respectively (see Sec. IV C).

Time integration begins from spatially uniform initial con-
ditions u;(x, 0) = 0.180, v;(x, 0) = 0.004, uy(x, 0) = 0.463,
and v(x, 0) = 0.145. The initial time evolution up to 5.0 x
10* is discarded, and measurements are taken from the sub-
sequent evolution over a duration of 3.0 x 10°. (We designate
the start of measurements as t = 0 hereafter.) Time integration
was performed using the explicit Heun scheme with a time
step At = 0.01.

Figure 1 shows the spatiotemporal dynamics of u; and
v;. The pacemaker region with radius ry and center x =
Xo is self-oscillatory and rhythmically emits target waves.
The waves propagate from the pacemaker region outward
through the excitable surrounding area. In addition, the limit-
cycle solution is depicted in Fig. 8(a) in Appendix C, and
Fig. 8(b) in Appendix C shows the phase sensitivity function,
0;(x, ¢:) = (Qy,(x, @:), O, (x, ¢;)), which quantifies linear re-
sponse characteristics of the phase to weak perturbation. The
phase sensitivity function is localized at the pacemaker region
(near x = 80), indicating that this region primarily influences
the rhythm of the entire system.

IV. CALCULATING THE PHASE FROM A MEASUREMENT
ON A SINGLE SPATIAL GRID POINT

This section presents the method for phase calculation that
uses a Poincaré section applied to measurement time series
of spatiotemporal dynamics at a fixed position. We begin by
outlining the linear interpolation technique for phase calcu-
lation (Sec. IV A) and the approach for selecting an optimal
measurement position to ensure accuracy (Sec. IV B). Follow-
ing this, we illustrate the phase calculation method through
a numerical simulation of the FHN reaction-diffusion model,
which features target waves (Sec. IV C). Additionally, in Ap-
pendix G, we applied the same approach to spatiotemporal
dynamics exhibiting oscillating spots.
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FIG. 2. Time series of u;(x,, t) and the calculation of 0,.x "(t). (a) Time series of u;(x,, t) and the Poincaré sections for x, >~ 15, 30, 80. The
red and blue lines indicate i = 1 and i = 2, respectively. The horizontal lines depict the Poincaré sections, and the dots represent the times at
which u;(x,, t) intersects the Poincaré section from negative to positive. (b) Example of the calculation of GI.X " (¢) for x,, > 30. The red and blue

colors indicate i = 1 and i = 2, respectively. (Top) Recording the time of intersection. The dots represent the time ¢,
of the time series of 6;” (¢) using the linear interpolation [see Eq. (3)]. The phase increases linearly by 27 during
6;” — 6, for x, = 15 (green), 30 (red), and 80 (blue). The histograms are calculated over a duration in which |6,” — 6,
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The distribution calculated from the phase equations is displayed in gray.

A. Phase calculation by linear interpolation

We calculate the phase by applying a Poincaré section to
the time series of u;(x,, t), which is measured at a specific
spatial grid point of x = x,,. Let us consider an example of
spatiotemporal dynamics exhibiting target waves (Sec. III).
Figure 2(a) shows the time series of u;(x,,?) measured at
xp 22 15,30, 80. As shown in this figure, the Poincaré sec-
tions are applied to each time series, recording the time tf f
when u;(xp, t) intersects the Poincaré section (from negative
to positive) for the jth time. The phase 9; " is then calculated
from the set of times {ti)f’j"} j ensuring that it satisfies 6 ’ (; ") =
2 j. To make the time series of 9;‘ "(t), we employ linear
interpolation of the phase as follows:

t—£"
0,7 (t) =27 j + 27—

— Xp
i,j+1 ij

(05 <1 <)

3)
Figure 2(b) presents the time series of 0? ? calculated from the
time series of u;(x,, t) for x, 2 30. The interval of the time
grid for the interpolation is 0.1. Figure 2(c) shows histograms
of 0" (t) — 65" (¢) for x, ~ 15, 30, 80. The figure indicates the
dependency of Gix” on x,. Specifically, the histograms vary
with changes in x,, indicating that the calculated phase 6;
depends on the measurement position. However, according
to phase reduction theory, these phases should ideally remain
independent of the measurement position.

B. Approach to determine the position to measure

We introduce the isochron-based phase ¢;(¢) to elucidate
the dependency of the calculated phase 9:"’ on x, and outline
an approach for accurately calculating the phases. Generally,

there is a difference between the two phases, Gix 7 and ¢;,
which can be evaluated using a linear approximation near the
limit-cycle solution. (The method for calculating the phase
using the linear approximation in the ODE case is described
in Appendix A, while the corresponding approach for the
PDE case is described in Appendix B.) Here, let us consider
the general reaction-diffusion model described in Eq. (1). We
assume that a Poincaré section is applied to the time series of
Xin, (Xp, 1), which is the n,th entry of X;(x,, t). We record the
time tf ’J when X; ,, (x), t) intersects the Poincaré section for
the jth time. The phase time series is then calculated using
Eq. (3). Using the phase sensitivity function Q;(x, ¢;) € RY,
which quantifies linear response characteristics of the phase

to weak perturbations, ¢i(t;f ’]’.) is calculated from 0;‘ ’ (t;f ’]’.) as
follows:
¢it;") = 6,7 () + ¢ = 2w j + ¢,
(M,N)
=D QinComs ) As (., 1) Ay,
(m,n)
F(mp,np)
Ain(x, %) = Xin(x, £7) = xin(x, 0),
| Ax/2 (m=0,M),
A += {Ax (otherwise), @)

where Xi,,,(xm,tfj.), Xin(Xm, 0), and Q; ,(x,, 0) are the nth
entry of X ; (x,, t;f;.), Xi(Xm, 0), and Q;(x,,, 0), respectively, and
A;, is the deviation of X;, from the state of ¢; = 0 on the
limit-cycle solution. We assume that x;(x,,, 0) is specified at
the intersection of the limit-cycle solution and the Poincaré
section. The integration about x is expressed by discrete repre-
sentation with the spatial grid x,, = mAx im=0,1,..., M)
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FIG. 3. Illustration of calculation of the correction terms.
[Fig. 3(b) is identical to some of the contents in Fig. 4(a).] (a) II-
lustration of two states on the same Poincaré section. The two
states, x;(x,0) and X;(x, tx”) lie on the same Poincaré section P
but on different isochrons, I(0) and I (cx”) respectively. The dif-
ference between these states is represented as A;(x, f; o "), whose nth
entry is denoted as A, used in Eq.(4). These states are located on
distinct isochrons unless the Poincaré section is the same as 7(0).
The correction term quantifies the difference between the phases
assigned to these distinct isochrons. (b) Distributions of A, (x, t"’ )
and A, (x, ’J) under the condition of x, >~ 30, along with the phase
sensitivity functions, Q,, (x, 0) and Q,, (x, 0), for the spatiotemporal
dynamics simulated by the FHN reaction-diffusion model. The top
figure displays A, (x, ti”j) and Q,, (x, 0), and the bottom figure dis-
plays A, (x, ;) and Q,, (x, 0). The red lines indicate the medians
of Ay (x, t’li”j) and A, (x, t’li”j). The red shades indicate the range
between the 25th and 75th percentiles. The black lines indicate
0., (x, 0) and Q,, (x, 0).

that satisfies x,,, = x, and xy = L. The entry of (m,,n,)
are removed from the summation in Eq. (4) since the two
values, X; , (xp, tf;) and x; n (xp, 0), have the same value on
the Poincaré section, i.e., A; , L (Xm, » l”) = 0. We call the vari-

able ¢;”;, which represents the difference between 6;”(1;";) and

i (tl.,’]’.), the correction term. Figure 3(a) explains how the cor-
rection term occurs. The figure illustrates that the two states,
Xxi(x,0) and X,(x, tx”) lie on the same Poincaré section P

but on different isochrons, 7(0) and I (cl.fj). Generally, these
states are located on distinct isochrons unless the Poincaré
section is the same as 1(0). The correction term accounts for
the difference between the phases associated with the two
isochrons.

We rewrite Eq. (4) for the FHN reaction-diffusion model
as follows:

¢i(1;5) =

Cf’; = Z Qu;(xm» O)Au[ (Xm’ t;cj.)AXm

m#m,

271]+Cl],

+ ZQU,(xm,O)A (. 1) A,

m=0
Ay (6, 57) =i (x, 17) = X (x, 0),
Av,.(x t ) = (x,t”) — Xu; (%, 0),
. Ax/Z (m=0,M), 5
- (otherwise), )

where Q,, (x, ¢;) and Q,,(x, ¢;) are the phase sensitivity func-
tions of u; and v;, respectively, and A,, and A, are the
deviations of u; and v; from the state of ¢; = 0 on the limit-
cycle solution, respectively. The subscript n used in Eq. (4) is
removed since the entry of two-dimensional state (n = 1, 2) is
represented by variable u; and v;. Additionally, the subscript
n, is removed since the Poincaré section applied solely to the
time series of u;(x,, t). We then proceed to linearly interpolate
the phase ¢;(¢) as follows:

t— tx”
i(t) = ¢i(t;;') + (‘f’i(ti)fl}ﬂ) it x,,)) % X,
v — L
. oy 1 t
=2+l Q- ) s
tz j+1 t
(65 <1< 10)- (6)

The transformation to the second row is achieved by substi-
tuting Eq. (5) into the first row. Similar to the interpolation
process for Gix ”(t) described in Eq. (3), the time grid interval
for this interpolation is set to 0.1.

The correction terms are influenced by the two factors: (i)
deviation from the limit-cycle solution and (ii) heterogeneity
of the amplitude of the phase sensitivity function. Let us
consider the calculation of Qf " for spatiotemporal dynamics
numerically simulated by the FHN reaction-diffusion model
(Sec. IIT). For example, we use the measurement time series
of u;j(x,,t) under the condition of x, >~ 30. Figure 3(b) dis-
plays the distribution of A, (x, lx’J) and A, (x, tx”) which is
recorded at time ¢; 3 when the measurement time series inter-
sects the Pomcare section, alongside Q,,(x, 0) and Q,, (x, O)
The figure indicates that the region with large |A,, (x, 1 ])|
and |A,,(x, tX”)l overlaps the region with large |Q,,(x, 0)|
and |Q,,(x, 0)|. In such a case, the magnitude of ¢; ’; is sup-
posed to be large according to Eq. (5). This overlap can
be avoided by setting x, appropriately since the region with
large A, (x, IX‘})| and |A,, (x, lx’;)| varies with x,,. Specifically,
| Ay, (x, tx")| and |A,,(x, tx”)| near x, are almost zero. There-
fore, a strategy to reduce the magnitude of c; ”j is to choose x),
within the region where the amplitudes of the phase sensitivity
functions are large. It is known that the phase sensitivity
function is localized at the pacemaker region of target waves
[56].

C. Example

We illustrate the approach for reducing the magnitude of

”. using the numerical simulation with the FHN reaction-

car.

L]
diffusion model. The time series of Gix "(t) and ¢;(t), spanning
a duration of 3.0 x 10°, are calculated from measurements
obtained from the simulation (Sec. III) Simultaneously,

Ay, (x, tx’ ), Ay (x, 1; ”) and corresponding c; 3 , are obtained for

each?; ” The results of the phase calculatlon are compared for

each measurement position x,,. For a detailed explanation, the

distribution of A, (x, ¢ x”) and A, (x, ¢, X”) and the statistics of
”j are also shown.

Figure 1 shows the spatiotemporal dynamics exhrbrtrng
target waves. We calculated the time series of 91”(t) from
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FIG. 4. Calculation of the correction terms and the phase from measurements taken at a single spatial grid point. (a) Distribution of
Ay (x, t;”]) and A, (x, ti”j) under the condition of x, > 15 (top), 30 (middle), and 80 (bottom), along with the phase sensitivity functions,
0., (x,0) and Q,, (x, 0), for the spatiotemporal dynamics simulated by the FHN reaction-diffusion model. The left figures display A, (x, ti’})
and Q,, (x, 0), and the right figures display A, (x,? ;) and Q,, (x, 0). The colored lines indicate the medians of A, (x, ti”j) and A, (x, ti”j).
The colored shades indicate the range between the 25th and 75th percentiles. The black lines indicate Q,, (x, 0) and Q,, (x, 0). (b) Statistics
of the correction term cf‘; for x, >~ 15, 30, 80. The red (i = 1) and blue (i = 2) boxes represent the first and third quartiles of dataset {cz”j }i-
The horizontal lines mark the medians, while the dots mark the averages. The whiskers extend to show the maximum and minimum values.
(c) Histograms of ¢, — ¢, for x, >~ 15 (green), 30 (red), and 80 (blue). The histograms are calculated over a duration in which |¢; — ¢,]
increases by 200 . The distribution calculated from the phase equations is displayed in gray.

that of u;(x,, t) for x, > 15, 30, 80 (the exact values are x, = Ignoring the correction term impacts the phase calculation
38Ax, 77Ax,205Ax). Only x, ~ 80 belongs to the pace- results, with the extent of the impact varying according to
maker region. Examples of the time series of u;(x,,?) and the magnitude of the correction term. Figure 4(c) shows the
the Poincaré section for each x,, are shown in Fig. 2(a). Fig- histograms of ¢ — ¢, calculated on the basis of Egs. (5) and
ure 2(c) shows that the histograms of 6,” —6,” vary with  (6). The histograms of ¢; — ¢, for x, = 15, 30, 80 are almost
x,. The difference between the histogram of §;” — ¢,” and  similar, although the histogram of ;" — 65" shown in Fig. 2(c)

the distribution of ¢; — ¢, calculated from the phase equa- varies with x,. It is evident that the histograms of 0;‘” — 9;”
tions (Appendix D), is minimal for x, >~ 80. Therefore, the and ¢, — ¢, differ significantly for x, >~ 15,30 since the
approach described in Sec. IV B appears to be effective. magnitude of the correction term is large, whereas they are

To verify the effectiveness of the approach, we refer to similar for x, ~ 80 since the correction term is nearly zero.
Fig. 4(a), which shows the distribution of A, (x, tfﬁ.) and Ignoring the correction term degrades the accuracy of phase
Ay, (x, t[x; ), along with Q,, (x,0) and Q,,(x,0). The region equation festimation.when Xp is not appropriate?. Figurf:s 9(a)
with large |A,, (x, tf’})| does not overlap the region with large and 9(b) mn Appen'd1x E shgw the phase equatlons'estlmated
|Qu, (x,0)| for x ~ 80 although the two regions overlap for from the time series of 6;”(t) and ¢;(t), respectively. The
x ~ 15. 30 (thg same is true for Q, and A, ). Given this phase equations estimated from Gix " deviate significantly from

p — ) Vi v/ ~
result, the magnitude of the correction term is relatively small the true forms for x, > 15, 30, but closely qlatch the true
for x, =~ 80 and larger for the other x,. The statistics of the forms for x,, = 80. In contrast, the phase equations estimated
correction term indicate that the correction term is close to ~ (1om @i are consistent with the true forms regardless of x,,.
zero only for x, ~ 80 [Fig. 4(b)]. From these results, our Appenchx G shows that this approach is also effective for
method successfully operated as intended. oscillating spots.
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V. CALCULATING THE PHASE FROM MEASUREMENTS
ON ALL SPATIAL GRID POINTS

We explore a method for calculating the phase using
the Poincaré section applied to time series obtained by the
orthogonal decomposition of the spatiotemporal dynamics.
The orthonormal basis functions used in this decomposi-
tion are assumed to be obtained through PCA (see, e.g.,
Ref. [74]). We explain the orthogonal decomposition tech-
nique (Sec. V A), the linear interpolation to calculate the
phase (Sec. V B), and the differences between the calculated
phase and isochron-based phase (Sec. V C). Then, we illus-
trate the phase calculation for spatiotemporal dynamics using
two different decomposition schemes (Secs. VD and VE).
In addition, we apply the same schemes to spatiotemporal
dynamics exhibiting oscillating spots (Appendix G).

A. Orthogonal decomposition

Before delving into the specifics of the FHN reaction-
diffusion model, we consider the general form of the
reaction-diffusion model described by Eq. (1). The nth en-
tries of the state vector X;, limit-cycle solution yx;, and phase
sensitivity function Q; are represented as X; », Xi.n. and Q; .,
respectively. For decomposition, we project them onto the
orthonormal basis functions q)f{n (k=1,2,...,K)asfollows:

L
Xﬂaw=/<ﬁu&n®ﬁumt
0
L
xb () = f xE, G, 9 ®F, (0)dx,
0

L
0f () = fo 0 ,(x, ¢)®@F , (x)dx, (7)

where the basis function satisfies fOL 7 ()] (x)dx = 8
(8,4 denotes the Kronecker delta). According to Eq. (7), the
infinite-dimensional state space is mapped to K N-dimensional
state space.

We rewrite Eq. (7) for the FHN reaction-diffusion
model. Given the orthonormal basis functions CDI;[ x) (k=
1,2, ..., K), the projections of the state variable, limit cycle
solution, and phase sensitivity function associated with ; onto
the basis functions are calculated as follows:

L
Ui (1) = / ui(x, 1) P} (x)dx,
0
L
X (i) = f X, (X, §) @} (x)dx,
0

L
0k (¢) = /O 0, (x. ¢ (1)dr, ®)

where the basis functions satisfies fOL Ol ()P, (x)dx = 8.
The variables vf‘(t), lef,- (¢;), and Qﬁ,(qﬁi) are similarly cal-
culated using the orthonormal basis functions le,ji(x) (the
equations are abbreviated). In Sec. VD, we investigate a
scheme that applies PCA to measurements u; and v; collected
across all spatial grid points to obtain the basis functions. In
Sec. VE, we propose an alternative scheme in which PCA
is applied directly to the phase sensitivity functions. We set

K =50 or K = 200 to ensure that each function can be repro-
duced nearly 100% on the basis of the following equations:

K
wi(x, 1) = Y uf () (x),

k=1

K
Xu (6 B0) 2 Y ik ($)PL (),

k=1

K
Qi (x, 1) = Y O (9P (x). ©)

k=1

The variables v;(x, t), x.,(x, ¢;), and Q,,(x, ¢;) are calculated
in a similar way (the equations are abbreviated).

B. Phase calculation by linear interpolation

We calculate the phase G[k ” from the time series of uf” (x,1)
or vf” (x, ). The Poincaré section is applied to the time series
of uf” (t) or vf” (1), recording the time tlk ’] when the time series
intersects the Poincaré section for the jth time. The phase Gik ’
is then calculated from the set of times, {ti]f ’;} j» ensuring that
it satisfies 6" (")) = 2 j. As in Eq. (3), we employ linear
interpolation of the phase as follows:

kp
— 1 k, k

t
k, . i, p
9i'(t)=2nj+2nﬁ—f (nh<r<gh,). (10)

We assume k, =1, and using another variable, uf”(t) or
vf” (t) (kp, = 2), is not discussed in this study.

C. Difference between the calculated phase and
isochron-based phase

We calculated the isochron-based phase ¢;(¢), which obeys
the isochron deformed by the orthogonal decomposition.

There is a difference between the phases, 9ik” and ¢;, which
can be evaluated using a linear approximation in the vicinity
of the limit-cycle solution. Let us consider the general form of
the reaction-diffusion model described in Eq. (1). We assume

that the Poincaré€ section is applied to the time series of Xi],(Z,,

and that the time tilf Z is recorded when Xfflp (t) intersects the
Poincaré section for the jth time. The time series of the phase
Qik” is calculated using Eq. (10). We then define the correction
term cf"j as the difference between Gik ’ (ti]f ’;) and ¢,~(ti]f ’,) The
phase ¢; (ti]f ’]) and correction term are calculated as follows:

kp
iJ?

k, ky ¢ Ky koA
(f)l‘(l‘ 1) = 91‘1 (ti,j) =+ Ci,lj = 27'[] +c

i,j
k &0 k
k k
alhi= Y QL AL (L)

(k,m)#(kp,np)

kp P kl’
AF (1) =X, (1) — X0, (11)

where Af, is the deviations of X/, from the state of ¢; =0
on the limit-cycle x/,. The entry of (k,, n,)) are removed from
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{X7 \n (f)}n,k'

{X;ic,n (d)l)}nk

FIG. 5. Illustration of two states on the same Poincaré section.
We consider the isochron mapped from an infinite-dimensional
space to a KN-dimensional space. The two states, { Xf_'n(O)},,’k and
{X; k (t,k ’]’)}n x> lie on the same Poincaré section P but on different
isochrons, /(0) and I(c; k ", respectlvely The difference between these
states is represented as {Ak (; kp Dk used in Eq. (11). These states are
located on distinct isochrons unless the Poincaré section is the same
as 1(0). The correction term quantifies the difference between the
phases assigned to these distinct isochrons.

the summation in Eq. (11) since the two values, X k”p(tik ") and

Xl " ' (0), are equal on the Poincaré section, i.e., A, “ (tf 1) =0.

The derivation of Eq. (11) is detailed in Appendlx F. Figure
5 illustrates that the two states in the KN-dimensional space,

{x},(0)},x and {Xi’fn(tf ")uk» lie on the same Poincaré sec-
tion P but on different isochrons, /(0) and / (ci”j). Note that
the isochron is mapped from the infinite-dimensional space
to the KN-dimensional space through orthogonal decomposi-
tion. Unless the Poincaré section is the same as 1(0), the two
states are located on distinct isochrons. The correction term
represents the difference between the phases associated with
these two isochrons.

We rewrite Eq. (11) for the FHN reaction-diffusion model.
Here, we use the index n, € {u, v} to denote whether the
Poincaré section is applied to the time series of ”;1 or vil,
instead of 1 < n, < N used in Eq. (11). When we apply the

. . . . . k, .

Poincaré section to the time series of u;”, i.e., n, = u, the
k, .

phase ¢;(z; ’j) and correction term are calculated as follows:

Bt )—zm+c,,,

K
oy = Z Ok (AL (1) + 3" 0L @Ak (17),  (12)

kk, k=1

where A% (#; ”) = u"(tl’;) - Xu (0) and A% (1; ”) = vf‘(lf’}) -
X5 (0) are the deviations of u¥ and v¥ from the state of ¢; =
0 on the limit-cycle solution. When the Poincaré section is

. . . k, . .
applied to the time series of v;”, i.e., n, = v, the correction

term is calculated as follows instead of Eq. (12):
Z 0L ()AL (17) + Z oL (AL (17).  (12)
k=1 kstk,

Hereafter, when we refer to Eq. (12), Eq. (12)’ is also included

to the reference implicitly. Then, we linearly interpolate the
phase as follows:

k
—t.7
9i(1) = ¢i(1%) + (#i(111) — (1) ——
lijrr — L
t — t.k”.
=2mj —l—ci‘fi + (2JT +C, i cj"’])kp—”kp
Lijr — b
(55 <1 <), (13)

The transformation to the second row is achieved by substi-
tuting Eq. (12) into the first row. According to Eq. (11) or
(12), the magnitude of the correction term depends on both
the deviation magnitude from the limit-cycle solution and the
amplitude of the (decomposed) phase sensitivity functions.
Therefore, when uf? or vl’f fluctuates significantly and the cor-
responding Qﬁi or Q’;i has a large amplitude, the magnitude of
the correction term becomes large. We present the results of
phase calculations for both n, = u and n, = v, but selecting
n, does not inherently improve the accuracy of the phase
calculation.

D. Case of using the basis function obtained from the
spatiotemporal dynamics

We illustrate the process of phase calculation for spa-
tiotemporal dynamics using the numerical simulation with
the FHN reaction-diffusion model (Sec. III). We assume that
the basis functions, Cbﬁ and <I>k , are derived by solving
eigenproblems for the covariance matrices of the measure-
ments u;(x, t) and v;(x, t), respectively. The temporal means
of the measurements are defined as u;(x) := Zle ui(x,t,)/S
and v;(x) := Zle vi(x, t;)/S, where t; := sAt. The number
of samplings is S. The covariance matrices are represented
as C,, :=UUT and C,, :=V;V;T, where the (m,s) entries
of matrices U; and V; are (U;),.s = ti(Xp, t5) — %;(x,,) and
(\7,-),” = v; (X, t;) — V;(x,), respectively. The eigenvectors
obtained from C,, and C,, serve as the basis functions <I>ﬁi
and ©* .» respectively, normalized to have unit norm, i.e.,
s (¥ (x))zdx =1 and [y (®% (x))*dx = 1. The index k =
1,2,...,K is ordered in descending sequence of the eigen-
values.

To begin, we calculate the phase of spatiotemporal dynam-
ics. Figure 6(a) shows the amplitudes of Q];, and Qﬁi, revealing
that many of these amplitudes are not nearly zero. There-
fore, fluctuations in the corresponding u* and v influence
the correction term. We applied the Poincaré section to either
time series of uf” or vf” (k, = 1) to calculate Oik ? as shown
in Fig. 6(b). The histograms of 9f”(t) - 9;” for n, = u and
n, = v shown in Fig. 6(c) slightly differ from the distribution
of ¢; — ¢, calculated from the phase equations. The statistics
of the correction terms are shown in Fig. 6(d). It indicates
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FIG. 6. Calculation of the phase from measurements on all spatial grid points with the decomposition scheme described in Sec. VD. We
adopt k, = 1. (a) Amplitude of @/ (top) and @} (bottom). The amplitude of Q; is calculated by fozn |04 (¥)|dy /27 (a similar formula
is used for Q’;i). The red and blue lines indicate i = 1 and i = 2, respectively. (b) Time series of uf” () (top) and vf"(t) (bottom) and the
Poincaré sections. The red and blue lines indicate i = 1 and i = 2, respectively. The horizontal lines represent the Poincaré sections, and the
dots represent the times when uf” (t) or vfl’ (¢) intersects the Poincaré section from negative to positive. (c) Histograms of Qlk” — 0;” forn, =u

(red) and n,, = v (blue). The histograms are calculated over a duration in which |9f” — 9;” | increases by 2007 . The distribution calculated from

the phase equations is displayed in gray. (d) Statistics of the correction term c[”/ for both n, = u and n, = v. The red (i = 1) and blue (i = 2)

boxes represent the first and third quartiles of dataset {ci’}} ;- The horizontal lines mark the medians, while the dots mark the averages. The
whiskers extend to show the maximum and minimum values. (e) Histograms of ¢, — ¢, for n, = u (red) and n, = v (blue). The histograms
are calculated over a duration in which |¢; — ¢, | increases by 200 . The distribution calculated from the phase equations is displayed in gray.

that the magnitudes of the correction term for both n, = u and
n, = v are much smaller compared to those calculated from
u;(x,, t) for x, ~ 15, 30 [Fig. 4(b)]. Although the magnitude
of the correction term for n,, = u is smaller compared to that
for n, = v, the difference between them is not a primary
concern in this study. To confirm the correction term certainly
represents the difference between Ql.k ”(zf ’;) and ¢; (ti]f ’J’.) cor-
rectly, we calculated the histogram of ¢; — ¢, on the basis of
Egs. (12) and (13). Figure 6(e) indicates that both histograms
of ¢1 — ¢, are more similar to the distribution calculated from
the phase equations than the histograms of Gf P — 9;” shown in
Fig. 6(c). These results support the validity of the correction
terms. Furthermore, Figs. 10(a) and 10(b) in Appendix E show
the phase equations estimated from the time series of Oik ” and
¢;, respectively. The phase equations estimated from the time
series of 9l.k ” resemble the true forms qualitatively, while those
estimated from the time series of ¢; appear to match the true
forms even more closely. In Appendix G, we also implement
the same scheme for oscillating spots.

E. Case of using the basis function obtained from the phase
sensitivity function

According to Egs. (8) and (12), the correction term can
vary depending on the choice of basis functions. The equa-
tions indicate that fluctuations in u¥ and v¥ do not influence the
correction term when their corresponding Qf and Qﬁi values

are nearly zero. Therefore, the magnitude of the correction
term is expected to be small if the amplitudes of Q’,ji and
Q’;i are localized to just a few components. To achieve this
localization, we propose using basis functions obtained by
applying PCA to the phase sensitivity function, rather than
the spatiotemporal dynamics.

We assume that the basis functions, CDﬁ/_ and <I>’l‘,[, are de-
rived by solving eigenproblems for the covariance matrices
of the phase sensitivity functions Q,,(x, ¢;) and Q,,(x, ¢;),
respectively. The means of phase sensitivity functions over
27 are defined as Q,, (x) := Y°_, 0, (x, ¢,)/S and 0, (x) :=
Zle Oy, (x, ¢5)/S, where ¢, = %”s. The number of uni-
formly spaced grid points on [0, 277) is S. The covariance ma-
trices are represented as Cp, := 0,0} and Cp, := 0,0,
where the (m, 5) entries of matrices 0y, and Oy, are (Qu)m.s =
Qu,- (X, @5) — Qu; (x,,) and (Qv[ )m,x = QU; (X, @5) — Qv; (Xm),

respectively. The eigenvectors obtained from Co, and Co,

serve as the basis functions le;i and CD’,ji, respectively, nor-
malized to have unit norm, i.e., fOL (CD’;I,(x))zdle and
foL (d>’,ji (x))*dx = 1. The index k = 1,2, ..., K is ordered in
descending sequence of the eigenvalues.

We examine the phase calculation for spatiotemporal dy-
namics as we do in Sec. V D. Figure 7(a) indicates that the
amplitude of Qﬁ, and Qﬁ[ are localized to k = 1. In such a
situation, the term that contains vi1 mainly determines the
correction term in the case of n, = u, while the term that
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FIG. 7. Calculation of the phase from measurements on all spatial grid points with the decomposition scheme described in Sec. VE. We
adopt k, = 1. (a) Amplitude of Q) (top) and O}, (bottom). The amplitude of Q) is calculated by f02” |0 (¥)Idy /27 (a similar formula is
used for Qﬁi). The red and blue lines indicate i = 1 and i = 2, respectively. The amplitudes of Q’;i and Q’L‘,i are localized to k = 1. (b) Trajectory
of (u}, v}) (blue) and the limit-cycle of ( Xu‘], xv'l) (red). The Poincaré sections for n, = u and n, = v are depicted with yellow lines, and the

insets provide a close-up view around the intersection. (c) Time series of uf” () (top) and vf” (t) (bottom) and the Poincaré sections. The red
and blue lines represent i = 1 and i = 2, respectively. The horizontal lines represent the Poincaré sections, and the dots represent the times

k Kp ooy . ) . . .. . kp
when u,”(t) or v;” (¢) intersects the Poincaré section from negative to positive. (d) Histograms of 6,” — 6,

5 for n, = u (red) and n, = v (blue).

The histograms are calculated over a duration in which |9f” — 0;” | increases by 200sr. The distribution calculated from the phase equations is

displayed in gray. (e) Statistics of the correction term cf_’} for both n, = u and n, = v. The red (i = 1) and blue (i = 2) boxes represent the first

and third quartiles of dataset {cf”}} ;- The horizontal lines mark the medians, while the dots mark the averages. The whiskers extend to show the

maximum and minimum values.

contains ui' does the same in the case of n, = v [Eq. (12)].
This indicates that the magnitude of the correction term is
primarily determined by the fluctuations in either uil or vil.
Since the trajectory of (u}, v}) is close to the limit-cycle of
(Xa,+ Xy,) as shown in Fig. 7(b), the magnitude of the correc-

tion terms is expected to be relatively small. We applied the

. ) . . . k, k,
Poincaré section to the time series of #;” or v;” (k, = 1) to

calculate Gik ? [Fig. 7(c)]. The histograms of 0{(” — 9;” shown

in Fig. 7(d) slightly differ from the distribution of ¢; — ¢»
calculated from the phase equations. Furthermore, according
to the statistics of the correction term shown in Fig. 7(e),
its magnitude is much smaller compared to those shown in
Fig. 6(d) for both n, = u and n, = v. These results indicate
that using the basis functions obtained by applying PCA to
the phase sensitivity function reduces the magnitude of the
correction term. Since the correction term is nearly negligible,
ignoring it does not substantially degrade the accuracy of
phase equation estimation. Figure 11 in Appendix E shows

that the phase equations estimated from the time series of Ol.k i
closely resemble the true forms.

As previously discussed, the localization of the amplitudes
of Q% and QF is an important factor to reduce the magni-
tude of the correction terms. According to Eq. (12), when
Qf and Q% have large amplitudes, fluctuations in u} and v}

significantly influence the correction term. Thus, the degree

of localization is related to the extent to which the correc-
tion term can be reduced. For target waves, where the phase
sensitivity function possesses a rigid coherent structure [see
Fig. 8(b) in Appendix C], @, and Q| predominantly capture
the phase sensitivity function. By contrast, in the case of
oscillating spots where the phase sensitivity function exhibits
the deformation of a coherent structure, several Q% and Q%
are necessary to approximate it (Appendix G). In summary,
the PCA-based scheme mentioned here is effective for target
waves since only the fluctuation of either u; or v} impacts
the correction term although this scheme is less effective for
oscillating spots, where the fluctuations of several u¥ and v}
influence the correction term. Furthermore, the magnitude
of these fluctuations plays a crucial role in determining the

magnitude of the correction term. For example, given that Q;i
and Q) have the largest amplitude, the fluctuation in either u;
or v} remains a significant contributor to the correction term

[see Eq. (12)].

VI. DISCUSSION

The investigations in this paper are summarized as fol-
lows. First, we briefly reviewed the phase reduction theory
for PDE to introduce the concept of phase (Sec. II). We
utilized weakly coupled FHN reaction-diffusion models ex-
hibiting target waves in a numerical simulation (Sec. III)
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FIG. 8. Limit-cycle solutions and phase sensitivity functions for
the FHN reaction-diffusion model described in Sec. III (a) Limit
cycle of the target-wave solution x,(x, ¢) = (x., (x, @), xv, (X, @)).
(b) Phase sensitivity function of the target-wave solution Q, (x, ¢) =

(Qu, (x, 9), Qu, (x, $)).

to illustrate the phase calculation. We examined the meth-
ods for calculating phase based on measurements taken at
a single spatial grid point (Sec. IV) and those taken across
all spatial grid points (Sec. V). Additionally, we applied the
phase calculation methods described in Secs. IV and V to
spatiotemporal dynamics with oscillating spots (Appendix G).
In Sec. IV and Appendix G, we observed that the magnitude
of the correction term is small when the Poincaré section is
applied to measurement time series from a single grid point
within either the pacemaker region, which emits target waves,
or the spot’s front region. These regions are known to possess
phase sensitivity functions with large amplitudes. While the
phase sensitivity functions for real-world systems are gener-
ally unknown, it is likely that they are localized in regions that
govern overall dynamics [56]. Therefore, identifying optimal
measurement positions based on experimental and theoretical
insights is advisable, as these regions may visibly control
the rhythms of spatiotemporal dynamics. In Sec. V and Ap-
pendix G, we proposed a scheme aimed at localizing the
amplitude of the (decomposed) phase sensitivity function to
a few key components (Sec. V E). Our results for target waves
and oscillating spots indicate that the scheme’s effectiveness
depends on whether the phase sensitivity function possesses
a coherent structure without or with deformation. Notably,
phase calculations for target waves can achieve a reasonable
accuracy even without this PCA scheme (Sec. V D).

Properly setting the Poincaré section is crucial not only for
continuous systems but also for real-world discrete systems,
including the network of dynamical elements exhibiting the
collective oscillation [49,52,79]. This necessity arises because
a large magnitude of the correction term can also occur in
high-dimensional ODE systems, especially when the dimen-
sion of the dynamical system is comparable to the number of

spatial grid points in PDE cases. This can be explained by
the fact that the expressions for the correction terms in the
ODE and PDE cases have a similar form [see Eq. (A3) in
Appendix A and Eq. (B4) in Appendix B]. Furthermore, al-
though we assumed the one-dimensional space, the approach
for setting the Poincaré section discussed in this study is
also applicable to multidimensional spaces. This is because
the localization of phase sensitivity functions for rhythmic
patterns occurs similarly in multidimensional spaces [56].

The findings of this study provide insights for calculating
the phase from measurements across various domains such
as meteorology [80,81], electrochemical oscillators [82], bio-
physics [83], and life science [84]. When measuring at a single
grid point, the accuracy of phase calculation is improved by
taking measurements from the pacemaker region or the region
where the front of the oscillating spot exists. In addition, for
systems exhibiting target waves, it is possible to calculate
the phase from a one-dimensional time series obtained by
applying PCA to multidimensional measurements over mul-
tiple spatial grid points. For example, in meteorology, PCA
(also known as empirical orthogonal functions) is sometimes
applied to spatiotemporal dynamics to obtain the time series of
modes (and its basis function). Our study suggests that these
modes can sometimes be used to calculate the phase. The
findings of this study can be experimentally verified using a
pair of photosensitive Belousov-Zhabotinsky systems, where
two spatiotemporal rhythmic patterns are locally coupled via
video cameras and projectors [85].

Our key finding allows for the calculation of the phase of
collective oscillations of dynamical elements [49,52,79] and
spatiotemporal dynamics [56] from measurements. Therefore,
the phase response, phase sensitivity function, and phase cou-
pling function of the collective oscillation and spatiotemporal
dynamics can be estimated by combining our method with
conventional estimation methods [8-23] as we did in Ap-
pendix E. To ensure accurate estimation, it is crucial to reduce
the magnitude of the correction term caused by the discrep-
ancy between the Poincaré section and the isochron. This
study revealed a proper setting for the Poincaré section that
realizes the calculation of the phase with a small magnitude
of the correction term. The setting is based on the spatial
localization of the phase sensitivity function. Ignoring these
considerations can lead to incorrect estimations and misun-
derstandings of system properties, as shown by the incorrectly
estimated phase equations (see Appendix E for target waves
and Appendix G for oscillating spots).

This study showed that even in the absence of noise,
a difference exists between the calculated phase and the
isochron-based phase, and we investigated methods to reduce
this difference. Addressing the robustness of phase calculation
under the noise remains a future task. Furthermore, in this
study, we assumed that the basis functions for the orthogonal
decomposition were obtained using PCA. Other techniques,
such as extended dynamic mode decomposition (EDMD)
[86,87], which identifies non-self-adjoint left and right vectors
from multidimensional measurements, could also be used for
orthogonal decomposition. Developing a method that utilizes
EDMD is a future challenge and might enable the calculation
of the phase for spatiotemporal dynamics exhibiting oscillat-
ing spots with a smaller magnitude of the correction term.
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Finally, some spatiotemporal dynamics have multiple phases,
e.g., the governing equation has a limit-torus solution [88].
Future research should also address the phase calculation for
the systems exhibiting multiple rhythms.
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APPENDIX A: CALCULATION OF THE
ISOCHRON-BASED PHASE BY LINEAR APPROXIMATION
IN THE VICINITY OF LIMIT-CYCLE SOLUTION OF ODE

Let us consider the following ODE:

X(t)=F(X), (A1)

where X e RY represents the state variable. We assume that
Eq. (A1) has a limit-cycle solution y with period 7. According
to phase reduction theory [1,2], the multidimensional state
space is mapped to a one-dimensional space characterized by
a periodic variable, ¢ € [0, 27), called phase. Here, let us
consider a state, X((¢), which evolves along the limit-cycle
solution. The phase ¢(¢) is assigned to X(t) such that it
increases linearly with a constant frequency w := 27 /T as
time progresses, i.e., ¢(t) = wt. We define the state on the
limit-cycle solution as x(¢(?)) := Xo(¢). Next, we extend the
definition of the phase to the basin of attraction. We assign
the same phase value to a subset of the state space defined as
follows:

1(y) = {X(t)|tlir+1f1Oo IX (1) = X(@)] = 0, $(0) = ¥},
(A2)

where || - || denotes the L? norm defined as |A| = VA - A.
The subset assigned phase value ¢ is represented as /(¢). By
analyzing the isochrons corresponding to each phase value,
we can determine a scalar field that represents the configura-
tion of the phase over the basin of attraction. The time series
of the phase ¢ () is obtained by assigning the phase value to
the time series of X (¢) on the basis of this scalar field.

The concept of the isochron provides a linear approxima-
tion in the vicinity of the limit-cycle solution. We consider a
state X', which is slightly kicked out from the state x(y) by
a weak perturbation. The phase ¥ assigned to X' is calculated
as follows:

¥ = Yo+ Z(Yo) - X' — x(¥0))

N
=0+ Y Ze(0)(X; — Xa(¥0)),

n=1

(A3)

where Z(y) € RV is the phase sensitivity function, which
quantifies linear response characteristics of the phase to weak
perturbation, and the subscript n denotes the nth entry of the
vector. When the two states, X’ and x(i), lie on the same
Poincaré section that defines vy = 0, the second term can be

considered as a correction term, and v is interpreted as the
isochron-based phase.

APPENDIX B: CALCULATION OF THE
ISOCHRON-BASED PHASE BY LINEAR APPROXIMATION
IN THE VICINITY OF LIMIT-CYCLE SOLUTION OF PDE

Similar to the ODE described in Appendix A, the concept
of isochron can be applied to the PDE [56]. Let us consider the
equation described in Eq. (1) without the coupling (G = 0) as
follows (the subscript i is removed for convenience):

3
X =FX.r) + DV2X. (B1)

We assume that Eq. (B1) has a limit-cycle solution x with
period T'. According to the phase reduction theory extended to
the PDE [56], the infinite-dimensional state space is mapped
to a one-dimensional space characterized by a periodic vari-
able, ¢ € [0, 2). Here, let us consider a state, X o(r, t ), which
evolves along the limit-cycle solution. The phase ¢(t) is as-
signed on X (r, t) such that it increases linearly with constant
frequency w := 27 /T as time progresses, i.e., ¢(f) = wt. We
define a state on the limit-cycle solution as x(r, ¢(t)) :=
Xo(r, t). Next, we extend the definition of the phase to the
basin of attraction. We assign the same phase value to a subset
of the state space as follows:

IW)={X(r.1)| Jim (X (r, 1)—x(, ¢())]1=0, Pp(O)=y},
(B2)

where ||-|| denotes the L? norm defined as |A(r)| =
\/ f A(r) - A(r)dr. We denote the subset assigned phase value

¢ as I(¢). By analyzing the isochrons corresponding to each
phase value, we can determine a scalar field that represents
the configuration of the phase over the basin of attraction.
Therefore, the time series of the phase ¢(r) is obtained by
assigning the phase value to the time series of X (r, ) on the
basis of this scalar field.

The concept of the isochron provides a linear approxima-
tion in the vicinity of the limit-cycle solution. We consider a
state X'(r), which is slightly kicked out from a state x(r, ¥)
by a weak perturbation. The phase ¥ assigned to X' is calcu-
lated as follows:

v =10 +/Q(r, vo) - (X'(r) — x(r, Yo))dr

N
=+ [ 3000 X o, (B3)

n=1

where Q is the phase sensitivity function and the subscript n
denotes the nth entry of the vector. For simplicity, we assume
a one-dimensional space, i.e., r — x. Given the spatial grid,
Xp=mAx(m=0,1,...,M), Eq. (B3) is rewritten with dis-
crete representation as follows:

M N
=0+ Y Y Q. Y0) Xy (i) = XuComs Y0)) A,
m=0 n=1
_jAax2 (m=0,M),
A = {Ax (otherwise). (B4)
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FIG. 9. Phase equations estimated from the time series of the phase calculated from measurements taken at a single spatial grid point
(see Sec. IV C). The colored lines display the phase equations estimated from the time series of Gf ?(t) or ¢:(t). The legend denotes the
correspondence between the colors of the lines and the values of x,,. The true forms of the phase equations are displayed in bold-gray lines.

(a) Results obtained from 9;[ . (b) Results obtained from ¢;,.

The calculation of the correction term in Eq. (4) is
derived from this equation. When we replace the
variables in Eq. (B4) with ¢ — 2mj +cff’j, Yo — 21,
O (X, Vo) — Qi,n(xma 0), X,:(xm) - Xi,n(xm’ t;fl])‘)’
Xn(Xms Yo) = Xin(Xm, 0) and then consider X; », (X, , ti’}) —
Xin, (Xm,» 0) = 0, we obtain Eq. (4).

and

APPENDIX C: LIMIT-CYCLE SOLUTION AND PHASE
SENSITIVITY FUNCTION OF THE FHN
REACTION-DIFFUSION MODEL

The FHN reaction-diffusion model described in
Sec. 1III has the limit-cycle solution x;(x,¢;) =
(Xu; (x, @i), X, (x, ¢;)) and the phase sensitivity function
0;(x, ¢:) = (Qu,(x, ¢:), Oy, (x, ¢i)). The limit-cycle solution
x; and the phase sensitivity function Q; for the target-wave
solution are shown in Figs. 8(a) and 8(b).

APPENDIX D: PHASE EQUATIONS OF THE FHN
REACTION-DIFFUSION MODEL

Phase reduction theory extended to the PDE [56] allows
for deriving a phase equation from a PDE with a limit-cycle
solution. The FHN reaction-diffusion model falls within the
applicability of this theory. For a pair of weakly coupled
reaction-diffusion models described by Eq. (1), the phase
equations are given by

$1(t) = w1 + Tia(dy — ),

. (D1)
§2(t) = wr + Ty (g — 1),

where w; := 27 /T; represents the frequency of the limit-cycle
solution yx; of Eq. (1) without coupling (G = 0). The constant
T; represents the period of the limit-cycle solution. The phase
coupling functions between the two phases, '}, and I';;, de-
scribe how the phases are affected by the coupling function G.
The phase equations for the coupled FHN reaction-diffusion
models that simulate target waves are displayed in Fig. 9 in
Appendix E. (Figures 10 and 11 in Appendix E also show the
same.)

The distribution of ¢; — ¢, shown in several fig-
ures was calculated using the phase equations [see the
gray plots in Figs. 2(c), 4(c), 6(c), 6(e), and 7(d)].
This distribution is inversely related to the velocity of
¢1 — ¢». We calculated it by taking the reciprocal of
the difference between the phase equations, i.e., P(¢; —
) X 1/(w1 — wy + Ty — ¢2) — Do (—[d1 — ¢2])). Ad-
ditionally, Appendix G presents the phase equations and
distribution of ¢; — ¢, derived from the model simulating
oscillating spots.

APPENDIX E: ESTIMATING THE PHASE EQUATIONS

Neglecting the correction term during phase calculation
introduces errors in estimating the phase equations [Eq. (D1)],
with the error becoming more significant as the magnitude of
the correction term increases. To illustrate this, we estimated
the phase equations using the approach from Ref. [22].

Figures 9(a) and 9(b) show the phase equations estimated
from the time series of Ol.x "(t) and ¢;(t), respectively, for
spatiotemporal dynamics featuring target waves (Sec. III).
Examining the results for x, ~ 15,30 shown in Fig. 9(a),
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FIG. 10. Phase equations estimated from the time series of the phase calculated from measurements taken at all spatial grid points. The
orthogonal decomposition scheme described in Sec. VD is used. The red and blue lines display the phase equations obtained from the time

series of uf” (t) and v,.k” (t) (k, = 1), respectively. The true forms of the phase equations are displayed in bold gray lines. (a) Results obtained

from 0,.1{ ”. (b) Results obtained from ¢;.

we see that a large magnitude of the correction term [see
Fig. 4(b)] leads to significant discrepancies between the es-
timated phase equations and the true forms, indicated by
bold-gray lines. In contrast, for x, > 80, where the correction
term is small, the estimated phase equations closely align
with the true forms. These findings indicate that omitting
the correction term impacts the estimation accuracy, with the
extent of impact linked to the magnitude of the correction
term. In addition, all phase equations estimated from the time
series of ¢;(t) closely resemble the true forms [Fig. 9(b)].
This suggests that incorporating correction terms in phase
calculation effectively reduces estimation errors in the phase
equations.

Similar estimations are presented in Sec. VD. Fig-
ures 10(a) and 10(b) show phase equations estimated from

time series of Gik” (t) and ¢;(¢), respectively (we consider k, =

0.0310

0.0308 1

0.0306 1

@1 +T12(h1 — ¢h2)

0.0304 :
0.0 0.57

1.0x .57 207

1). The results in Fig. 10(a) show close alignment with the true
forms owing to the small magnitude of the correction terms,
which reduces errors in the estimation of the phase equation.
The phase equations estimated from the time series of ¢;(t)
shown in Fig. 10(b) are more accurate than those estimated
from the time series of Gik 7).

Section VE repeats estimations of the same phase equa-
tions, with Fig. 11 presenting phase equations estimated

from the time series of Ql.k” (t) for spatiotemporal dynamics.
Figures 10(a) and 11 both show phase equations estimated
from Qikp (t) for target waves, using different decomposition
schemes (see Secs. VD and V E). The latter estimation cap-
tures more detailed phase equation features than the former,
indicating that the scheme in Sec. V E reduces the magnitude
of the correction term and improves the estimation of the
phase equations.
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FIG. 11. Phase equations estimated from the time series of the phase calculated from measurements taken at all spatial grid points. The
orthogonal decomposition scheme described in Sec. V E is used. The red and blue lines display the phase equations obtained from the time
series of uf” (t) and vf" (t) (k, = 1), respectively. The true forms of the phase equations are displayed in bold-gray lines.
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FIG. 12. Illustration of FHN reaction-diffusion models used in Appendix G. (a) Spatiotemporal dynamics of oscillating spots simulated
by the coupled FHN reaction-diffusion models. For reference, the yellow, green, red, and blue vertical lines mark the measurement positions,
x, = 10, 20, 30, 40, respectively. (b) Limit cycle of the oscillating spot solution x, (x, ¢). (c) Phase sensitivity function of the oscillating spot

solution @, (x, @).

The detailed estimation method is found in Ref. [22].
Hyperparameters are set as x4 = (@;,0,0,...,0)T, 204 =
A'E, and o4 = B = 0.001 (see Ref. [22]), where @; is
the mean velocity calculated from the time series of the phase,
and E denotes an identity matrix. In addition, to optimize the
marginal likelihood functions, we set A;, which represents the
magnitude of 9, and M;, which represents the Fourier series
order in the phase coupling function. (These parameters were
determined in the range of M; =0, 1, ..., 10 and log;; A; =
1,2,...,5.) Phase equations were estimated from phase time
series during intervals where |¢; — ¢,| increases by 2007 .

APPENDIX F: THE ORTHOGONALLY DECOMPOSED
PHASE SENSITIVITY FUNCTION

We mention the derivation of Eq. (11). Let us consider the
state variable X (x, t) € RV, which obeys
%X(x,t) =FX,x)+epx,t), (F1)
where F (X, x) represents the local dynamics at point x and
time ¢, p(x,t) represents the local perturbation to X (x, 1),
and € < 1 represents the intensity of the perturbation. For
simplicity, the local dynamics F includes any diffusion of X if
present. We assume that Eq. (F1), in the absence of coupling
(p = 0), has a limit-cycle solution x(x, ¢) with ¢ = [0, 2r).
Additionally, we assume that the perturbation is sufficiently
weak so that X does not deviate significantly from the limit-
cycle solution. Given the phase sensitivity function Q(x, ¢)
for the limit-cycle solution, the phase equation is derived as
follows [56]:

L
$) =+ e/o 0(x. ¢) - plr. 1)dx

L N
=w+te fo Y 0ulx, $)palx, 1)dx,  (F2)
n=1

where, subscript n denotes the nth entry of the vectors, L is
the size of the system, and w is frequency of the limit-cycle
solution.

We consider mapping from an infinite-dimensional state
space to the KN-dimensional space through orthogonal
decomposition. Given a set of orthonormal basis functions
®*n=1,2,...,N, k=1,2,...,K), the N-dimensional

state  or functions, Xk(t):(}?{‘(t),f(f(t),...,X/\}(t)),

0" (#) = (0L(@). 059). ... Ok (o)), Flao =
(Flk(X), sz(X), R FA’,‘(X)), and i)k(t) =
(Ph(0), ph(), ..., pY(¢)) are obtained as follows:
L
X4 = f X, (x, )0 (r)dx,
0
B L
04¢) = /0 0, (r. )k (x)d,
L
FfX) = / Fy(X, x)®% (x)dx,
0
L
PAGES / Pu(x, )P (x)dx, (F3)
0

where the basis function satisfies fOL @) (X))@ (x) = 8. The
tilde indicates that the value is obtained by projection onto the
basis functions. We assume that the number of the component
K is sufficiently large to ensure that each function can be
reproduced nearly 100%. The dynamics of the state variable
X* projected onto @ (x) obeys

%Xf(;) = FNX) + eph (o).

We rewrite Eq. (F4) with N-dimensional vector representation
as follows:

(F4)

.

gx"(r) = F'X) + ep o). (F5)
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FIG. 13. Time series of u;(x,,¢) and the calculation of Oix P(t)
for the spatiotemporal dynamics exhibiting oscillating spots (Ap-
pendix G). (a) Time series of u;(x,, t) and the Poincaré sections for
x, = 10, 20, 30, 40. The red and blue lines indicate i = 1 and i = 2,
respectively. The horizontal lines depict the Poincaré sections, while
the dots represent the times at which u;(x,, ¢) intersects the Poincaré
section from negative to positive. (b) Histograms of 6,” — 6,” for
x, = 10 (yellow), 20 (green), 30 (red), and 40 (blue). The histograms
are calculated over a duration in which |6;” — 6,”| increases by
2007 . The distribution calculated from the phase equations is dis-
played in gray.

Given Eq. (F5) fork = 1,2, ..., K, the state variable X)) =
&', %), ..., X5¢)) € REV is subjected to the per-
turbation p(t) = (p' (1), p>(), ..., p¥(t)) € RXY. The limit-
cycle solution of Eq. (F1) persists as the limit-cycle solution
of Eq. (F5), albeit it deformed. Therefore, there exists a phase
equation that describes the phase response to the perturbation
P, as follows:

(1) = o +eQ(@) - p(t)

K
ZQ (@) p*(t)

Ok (p)phe), (F6)

K N

ted )

k=1

where unknown Q(¢) = <Q‘<¢>, Q2<¢>>, ., 05 (@) e REY
with 0 (¢) = (0%(), k(9. ..., O%(#)) represents the lin-
ear response characteristics of the phase to the perturbation p.
The frequency w in Eq. (F6) is the same as that in Eq. (F2)
since the period of the limit-cycle solution of Eq. (F1) and
Eq. (F5) must have same period.

Here, we derive what the unknown function @ is. From
Egs. (F2) and (F6), we obtain the following equation:

L N K N
fo > 0. @Ipalx )dx =Y D " OK(@IPL().  (FT)
n=1

k=1 n=1

We also obtain the following equation starting from the left-
hand side of Eq. (F7):

L N
/0 ZQn(J@ ®)pn(x, )dx
) N
Z n(x, ¢)|:2Pn(f)¢ﬁ(x)j|dx

[ / 0, (x, ¢)<I>"<x>dx} pha)

I
Mw i Mw \

£5

(P @) (F8)

»
Il

1 n=
The transformation to the second and fourth rows is
achieved by substituting p,(x,7) =~ Yt p(@)®*(x) and
Okt) = fOL 0, (x, 1)K (x)dx, respectively. Finally, we derived

Ok(¢) = Qk(¢) from Eqgs. (F7) and (F8), and thus we obtain
the following equation from Eq. (F6):
K N
p)=w+e) Y OL@)P). (F9)
k=1 n=1

We also obtain the equation with vector representation as
follows:

K
dy=w+e) 0@ p'®

k=1
= w+€eQ(¢) - p(0).

Equations (F9) and (F10) indicate that Q serves as the phase
sensitivity function when the infinite-dimensional state space
is mapped to the finite-dimensional space spanned by basis
functions as described in Eq. (F3).

We denote the limit-cycle solution projected onto the basis
functions as ¥(¢) € RXN, whose nth entry is calculated by
f(,’l‘(t) = fOL Xn(x, t)CDﬁ(x)dx. In the previous paragraph, we
found that Q represents the linear response characteristics of
the phase to the perturbation p when Q and p are obtained
by the projection onto the same basis functions. Therefore,
the phase v assigned to a state X' € RXN, which is slightly
kicked out from the state X(y), is calculated as follows:

¥ = Yo+ 0Wo) - X' — x(¥o))

K N
=vo+ Y Y O (X1

k=1 n=1

(F10)

- xk(W).  (F1D)

The calculation of the correction term in Eq. (11) is based
on this equation. Specifically, when we replace the variables

in Eq. (F11) with ¢ — 27 +cfﬂj, Yo — 2j, Ok (o) —
01,0, [X'T, — X\, (1 p) and %f(yo) = x},(0) and then
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(second row), 30 (third row), and 40 (fourth row), along with the phase sensitivity functions, Q,, (x, 0) and Q,, (x, 0). The left figures display
Ay, (x, ti’}) and Q,, (x, 0), and the right figures display A, (x, 1 ;) and Q,, (x, 0). The colored lines indicate the medians of A, (x, tf’}) and
Ay, (x, tf_”j). The colored shades indicate the range between the 25th and 75th percentiles. The black lines indicate Q,, (x, 0) and Q,, (x, 0).
(b) Statistics of the correction term cf”j for each x,. The red (i = 1) and blue (i = 2) boxes represent the first and third quartiles of dataset
{cf_’}} ;- The horizontal lines mark the medians, while the dots mark the averages. The whiskers extend to show the maximum and minimum
values. (c) Histograms of ¢ — ¢, for x, = 10 (yellow), 20 (green), 30 (red), and 40 (blue). The histograms are calculated over a duration in
which |¢; — ¢ increases by 200sr. The distribution calculated from the phase equations is displayed in gray.

consider X (tf‘g ) — X-k” (0) = 0, we obtain Eq. (11). From reaction-diffusion model [Egs. (1) and (2)]. The space-
b S "1 dependent parameter o (x) = g + (o] — 0p)(2x/L — 1)?
this derivation, it follows that Q (0) in Eq. (11) represents .
. . oL .. is the largest at the center (x = L/2) and smallest at the
the linear response characteristics of the phase to deviations .
boundaries (x = 0, L). The other parameters are ap = —1.1,

k _ ey .
Oin,n from the state of ¢; = 0 on the limit-cycle solution. a =16, y=20, _L_l_l —0.03. r2_1 — 0.028, x = 1.0,

k, =0.9, 6; = 2.5, and §, = 2.4. The periods of the limit-
APPENDIX G: PHASE CALCULATION FOR cycle solutions are 77 >~ 195.3 and 7, ~ 212.2. The coupling
OSCILLATING SPOTS intensity is K = diag(1.0 x 107%,0). For the numerical
simulation, we used a one-dimensional system of size L = 80
with no-flux boundary conditions. The system is discretized
into spatial grids with Ax = L/2%. Time integration starts
from u;(x,0) = vi(x,0) = —0.424 + sin[1.133 + (x/L)x]
and  up(x, 0) = va(x,0) = —0.993 + sin[0.122 + (x/L)7].
The initial time evolution up to 5.0 x 10* is discarded, and
measurements are taken from the subsequent evolution over a
duration of 3.0 x 10°. Time integration was performed using
1. Numerical simulation the explicit Heun scheme with a time step At = 0.01.
Under these conditions, oscillating spots constrained at the
center are generated. Figure 12(a) shows the spatiotemporal

In this appendix, we investigate phase calculation for spa-
tiotemporal dynamics exhibiting oscillating spots, applying
the same methods used for target waves (Secs. IV and V). The
first subsection describes the FHN reaction-diffusion model
for numerical simulation. The second to fourth subsections
describe the application of each phase calculation method.

To generate spatiotemporal dynamics with oscillating
spots, we conducted a numerical simulation using the FHN
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FIG. 15. Similar to Fig. 9, but these results are obtained from measurements of spatiotemporal dynamics exhibiting oscillating spots
(Appendix G) instead of target waves. (a) Results obtained from 9;". (b) Results obtained from ¢;.
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FIG. 16. Calculation of the phase of spatiotemporal dynamics exhibiting oscillating spots from measurements on all spatial grid points
(Appendix G). The decomposition scheme described in Sec. VD is used, and k, = 1 is adopted. (a) Amplitude of Q’;[ (top) and Qﬁi (bottom).
The amplitude of Q’,ji is calculated by fOZ” |Q’;’_(w)|dw /27 (a similar formula is used for Q’;i). The red and blue lines indicate i = 1 and
i = 2, respectively. (b) Time series of uf” (t) (top) and vf" (t) (bottom) and the Poincaré sections. The red and blue lines indicate i = 1 and
i = 2, respectively. The horizontal lines represent the Poincaré sections, and the dots represent the times when uf” (t) or vf” (t) intersects the
Poincar€ section from negative to positive. (c) Histograms of Qf P— 9;” for n, = u (red) and n, = v (blue). The histograms are calculated over
a duration in which |9]k b 0;" | increases by 2007 . The distribution calculated from the phase equations is displayed in gray. (d) Statistics of the
correction term cﬁ’} for both n, = u and n, = v. The red (i = 1) and blue (i = 2) boxes represent the first and third quartiles of dataset {cf”}} I
The horizontal lines mark the medians, while the dots mark the averages. The whiskers extend to show the maximum and minimum values.
(e) Histograms of ¢; — ¢, for n, = u (red) and n, = v (blue). The histograms are calculated over a duration in which |¢; — ¢,| increases by
2007 . The distribution calculated from the phase equations is displayed in gray.
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FIG. 17. Similar to Fig. 10, but these results are obtained from measurements of spatiotemporal dynamics exhibiting oscillating spots
(Appendix G) instead of target waves. (a) Results obtained from 6; ”. (b) Results obtained from ¢;.

dynamics of u; and v,. The oscillating spot, characterized by
large values of u; and v;, can be seen rhythmically expanding
and contracting. The fronts of the oscillating spot for u; appear
sharply. Therefore, the time series of u;(x,,?) measured in
the region where the spot’s fronts oscillate shows intermittent
sharp increases and decreases. In contrast, in other regions,
the time series of u;(x), t) exhibits only slight variations with-
out abrupt changes. The limit-cycle solution and the phase
sensitivity function are shown in Figs. 12(b) and 12(c), re-
spectively. The phase sensitivity function is localized at the
spot’s front. This fact indicates that the region where the front
exists influences the rhythm of the entire system.

2. Calculating the phase from a measurement on
a single spatial grid point

We focus on the phase calculation that relies on mea-
surements from a single spatial grid point. We implement
the approach described in Sec. IV for oscillating spots. The
time series of 9?” () was calculated from that of u;(x,, t) for
x, = 10, 20, 30,40. Only x, = 30 is located in the region
containing the spot’s front, where the phase sensitivity func-
tion is localized. Examples of the time series of u;(x,, ) and
the Poincaré sections for each x, are shown in Fig. 13(a).
According to Fig. 13(b), the difference between the histogram
of 9f" — 9;” and the distribution of ¢; — ¢, calculated from
the phase equation is the smallest for x,, = 30. Therefore, the
approach described in Sec. IV B is effective for oscillating
spots.

Figure 14(a) shows the distribution of A, (x, t;f ’]’.) and
Ay, (x, t;fs.) as well as Q,,(x,0) and Q,,(x, 0). The figure in-
dicates that the region with large |A,, (x, tz;)| do not overlap

the region with large |Q,,(x, 0)| only for x, = 30 (the same
is true for Q,, and A,,). Given this result, the magnitude of
the correction term is notably small only for x, = 30. The
statistics of the correction term indicate that the correction
term is close to zero for x, = 30 [Fig. 14(b)].

As with the target waves (Sec. IV C), ignoring the correc-
tion term changes the phase calculation results, and the extent
of this change depends on the correction term. Figure 14(c)
shows the histograms of ¢; — ¢, calculated on the basis of
Eqgs. (5) and (6). The histograms of ¢; — ¢ for each x, are
almost similar, although the histogram of 6, — 6" shown
in Fig. 13(b) varies depending on x,. It is evident that the
histograms of 9{‘” — 0;" and ¢; — ¢, differ significantly for
x, = 10, 20, 40 since the magnitude of the correction term is
large, but they are similar for x, = 30 since the correction
term is nearly zero. Ignoring the correction term degrades
the accuracy of phase equation estimation unless the correc-
tion term is nearly zero. Figures 15(a) and 15(b) show the
phase equations estimated from the time series of Gf "(¢) and
¢(1), respectively. The phase equations estimated from 9; r
differ significantly from the true forms for x, = 10, 20, 40,
but closely match the true forms for x, = 30. In contrast, the
phase equations estimated from ¢; are consistent with the true
forms regardless of x,,.

3. Calculating the phase from measurements on
all spatial grid points

We shift focus to methods involving measurements from all
spatial grid points. We implement the decomposition scheme
described in Sec. V D for spatiotemporal dynamics exhibiting
oscillating spots as we do for target waves. Since the ampli-
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FIG. 18. Calculation of the phase of spatiotemporal dynamics exhibiting oscillating spots from measurements on all spatial grid points
(Appendix G). The decomposition scheme described in Sec. V E is used, and k, = 1 is adopted. (a) Amplitude of Qﬁi (top) and Q’;’, (bottom).
The amplitude of Qﬁi is calculated by f02" |Q§i(1//)|d1// /27 (a similar formula is used for Q’;i). The red and blue lines indicate i = 1 and
i = 2, respectively. The amplitudes are not localized to a small number of Q’;i and Q’;i despite the implementation of the scheme described
in Sec. VE. (b) Trajectory of (uj, v}) (blue) and the limit-cycle of (x,, , x,,) (red). The Poincaré sections for n, = u and n, = v are depicted

with yellow lines, and the insets provide a close-up view around the intersection. (c) Time series of uf” (t) (top) and vf’” (t) (bottom) and the
Poincaré sections. The red and blue lines represent i = 1 and i = 2, respectively. The horizontal lines represent the Poincaré sections, and the
dots represent the times when uf” (t) or vf” (t) intersects the Poincaré section from negative to positive. (d) Histograms of le” — 49;‘” forn, =u

(red) and n, = v (blue). The histograms are calculated over a duration in which |9f”

— 9;”| increases by 2007r. The distribution calculated

from the phase equations is displayed in gray. (e) Statistics of the correction term cf{”j for both n, = u and n, = v. The red (i = 1) and blue

(i = 2) boxes represent the first and third quartiles of dataset {cﬁ’}} ;- The horizontal lines mark the medians, while the dots mark the averages.

The whiskers extend to show the maximum and minimum values.

tude of Qﬁl_ and Q’;’_ up to about k = 5 are nonzero [Fig. 16(a)],
the fluctuations in the corresponding #* and v} influence the

correction term. We applied the Poincaré section to either

f” (k, = 1) to calculate Gik ” as shown in

Fig. 16(b). The histograms of 6, (t) — 64" shown in Fig. 16(c)
differs from the distribution of ¢ — ¢, calculated from the
phase equations. The large difference between the histogram
and distribution is supported by the statistics of the correction
term shown in Fig. 16(d). The statistics indicate that the mag-
nitude of the correction term is comparable to those calculated

. . k
time series of u;” or v

0.0323

o -m

0.0321 4
0.0

w1+ 1201 = h2)

0.57 1.0x 1.57 207

from u;(x,, t) for x, = 10, 20, 40 [Fig. 14(b)]. Figure 16(¢) in-
dicates that both histograms of ¢ — ¢,, which are calculated
from the time series of isochron-based phases, are similar to
the distribution calculated from the phase equations. These
findings validate that the correction term represents the dif-
ference between Gik r (t[k 3.) and ¢; (tik;). Furthermore, Figs. 17(a)
and 17(b) show the pflase equatiéns estimated from the time
series of Ql.k 7 and ¢;, respectively. The phase equations es-

timated from Gl,k” deviate from the true forms while those
estimated from ¢; closely match the true forms.
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FIG. 19. Similar to Fig. 11, but these results are obtained from measurements of spatiotemporal dynamics exhibiting oscillating spots

(Appendix G) instead of target waves.
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4. Case of using the basis function obtained from the
phase sensitivity function

We also implement another scheme of orthogonal decom-
position implemented in Sec. V E. Figure 18(a) indicates that
Of and Qf up to about k = 5 have nonzero amplitude. There-
fore, fluctuations in uf? and vf‘ up to about k = 5 determine
the correction terms. Figure 18(b) shows the deviation of
the trajectory of (u{, v{) from the limit-cycle of (x, . x,.) is
larger compared to the target waves shown in Fig. 7(b). Thus,
the magnitude of the correction term is likely to be larger
for oscillating spots than for target waves. We applied the

P . . K, kp
Poincaré section to the time series of u;” or v;” (k, =1) to

calculate Ql,k” [Fig. 18(c)]. The histograms of Of” - 9;” differ
from the distribution of ¢; — ¢, calculated from the phase
equations [Fig. 18(d)]. Furthermore, the statistics of the cor-
rection term shown in Fig. 18(e) indicate that its magnitude is
comparable to that shown in Fig. 16(d). These results indicate
that this PCA-based scheme does not reduce the magnitude
of the correction term. Furthermore, ignoring the correction
term degrades the accuracy of the phase equation estimation.
Figure 19 shows that the phase equations estimated from the

. . k o
time series of 6,” differ from the true forms.
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