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Mixed-spin Heisenberg ladders in a magnetic field
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In this work, we study alternating mixed-spin (s, S) Heisenberg ladders in the magnetic field h density matrix
renormalization group and linear spin-wave calculations. The h versus interchain coupling J⊥ phase diagram for
the (1/2, 1) case is investigated in detail. In particular, we demonstrate the compatibility between the critical
line estimates and magnetic ordering by analyzing chains with variable values of J⊥ and of h along the chain, J⊥
and h scans, and considering the usual case of chains with uniform couplings. The magnetization plateau at 1/3
of saturation magnetization, 1/3 plateau, is observed for J⊥ > 0 and in a limited range for J⊥ < 0. The critical
Kosterlitz-Thouless transition point, where the 1/3 plateau closes, is identified through a finite-size analysis of
the transverse spin correlation functions.
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I. INTRODUCTION

Quantum magnets exhibit a variety of fascinating physical
phenomena [1,2]. In particular, a gap in the energy spec-
trum of a magnetic system gives rise to a plateau in the
magnetization curve, such that a quantum phase transition
[3] to a gapless phase, with a distinct magnetization, takes
place at the critical fields bounding the plateau [1,2]. How-
ever, depending on the couplings between the components
of the system, it can be driven to a Kosterlitz-Thouless-
type transition [4] if the gap-closing point is reached along
a parameter line that maintains the magnetization fixed. A
fundamental feature of the quantum state in a magnetization
plateau is that its unit period needs to satisfy the Oshikawa,
Yamanaka, and Affleck condition [5]. On the other hand,
in one dimension, the gapless phases are critical, exhibiting
an asymptotic power-law decay of the spin correlation func-
tions. The low-energy physics is captured by the Luttinger
model [6], with the asymptotic behavior of the spin corre-
lation functions characterized by the nonuniversal Luttinger
parameter K .

One-dimensional spin-1/2 ladder models [7–10] have been
fundamental for the investigation of interacting quantum mat-
ter in one dimension [11–14]. In particular, a two-leg spin-1/2
ladder has a singlet gapped ground state, with short-range spin
correlation functions. On the other hand, depending on the
distribution of the spins along the chain and the couplings,
the ground state of mixed-spin ladders [15–24] can show a
ferrimagnetic order, as expected by the Lieb-Mattis theorem
[25,26]. In fact, some interesting features are exhibited by
other one-dimensional ferrimagnetic models [27,28]. In par-
ticular, the spin-(1/2, 1) and spin-(1/2, 5/2) alternating spin
chains also have a ferrimagnetic ground state and display the
1/3 plateau [29–34] and the 2/3 plateau [35], respectively,
in their magnetization curves. The role of density-dependent
magnon hopping and the magnon-magnon interaction terms

in a spin-wave approximation and the nature of the edge
states were investigated [36] with the help of density matrix
renormalization group (DMRG) calculations. Furthermore,
in the phase diagram of some anisotropic spin models, the
1/3 plateau closes in a Kosterlitz-Thouless (KT)-type tran-
sition [37]. In fact, the KT transition was also observed in
anisotropic ferrimagnetic chains [38–40]. Interacting spin-
1/2 trimers with isotropic exchange couplings exhibit a 1/3
magnetization plateau, but do not show a Kosterlitz-Thouless
phase transition in their phase diagram [41].

In this study, we used the DMRG [42–44] and linear spin-
wave theory from a fully polarized vacuum [45] to investigate
an alternating (1/2, 1) ladder in a magnetic field. We ex-
amined both positive and negative values of the interdimer
coupling J⊥. The critical lines that define the fully polarized
and 1/3 magnetization plateaus were identified, along with the
magnetic correlations within these phases. Additionally, the
KT transition point was determined through analysis of the
transverse spin correlation functions.

In Sec. II, we present the Hamiltonian, discuss its glide
symmetry, and explain the methodology used to obtain our
results. Section III covers the general aspects of the phase
diagram h versus J⊥. In Sec. IV, we calculate the magnon
bands from the fully polarized vacuum. Section V discusses
the magnetic ordering observed in the phase diagram and
compares the results of h and J⊥ scans [46] with those
of chains with uniform couplings. The KT transition point
is determined in Sec. VI, and a summary is presented
in Sec. VII.

II. MIXED-SPIN HEISENBERG LADDER, GLIDE
REFLECTION SYMMETRY, AND METHODS

The Hamiltonian of the (s, S)-alternating ladder in the
presence of a magnetic field h is illustrated in Fig. 1(a) and
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FIG. 1. (a) Illustration of the spin-(s, S) ladder Hamiltonian. The
unit cell has two spins of magnitude s and two others with magni-
tude S, a four-spin unit cell with a 2u periodicity, where u is the
distance between neighboring dimers l . The coupling along the legs
(J) defines the energy unit, and we study the quantum phases of the
system as the interdimer coupling J⊥ changes. (b) The Hamiltonian
with a periodicity of u can become explicit by exchanging the spins
at alternate dimers. (c) First Brillouin zone for the model with a
four-spin unit cell, the folded Brillouin zone (FBZ), and two-spin unit
cell, the unfolded Brillouin zone (UBZ), for J⊥ = −0.5 in a system
with L = 20 dimers.

is given by

H = J
Nc∑
j=1

[
s(1)

j · S(1)
j + S(2)

j · s(2)
j + S(1)

j · s(1)
j+1 + s(2)

j · S(2)
j+1

]

+ J⊥
Nc∑
j=1

[
s(1)

j · S(2)
j + S(1)

j · s(2)
j

] − hSz, (1)

where s(α)
j , S(α)

j are the spins of the unit cell j and leg α, with
α = 1, 2 and j = 1, 2, · · · Nc, where Nc is the total number
of unit cells. The total spin quantum numbers of s(α)

j and

S(α)
j are s and S (S > s), respectively: [S(α)

j ]2 = S(S + 1) and

[s(α)
j ]2 = s(s + 1). The superexchange coupling along a leg is

J and defines the energy unit, J ≡ 1, while J⊥ is the coupling
between the two legs. Sz is the z component of the total spin,

and we define gμB ≡ 1, where g is the g factor and μB is the
Bohr magneton.

We can adopt a spatial representation of the Hamiltonian
(1), illustrated in Fig. 1(a), which is more convenient for
any analytical approach exploiting the translation symmetry,
such as spin-wave calculations, and that features two spins
per unit cell. The Hamiltonian (1) has a unit cell of size
2u, where u is the separation between two nearest-neighbor
dimers [s(1)

j , S(2)
j ]. The unit cell has four spins, two of size

s and two of size S, that is, four magnon bands, and a first
Brillouin zone of size �k = 2π/(2u), where k is the lattice
wave vector. However, we also note that the Hamiltonian is
invariant under a glide reflection operation [47–49], which is
the composite operation of a translation by u, followed by the
exchange of the ladder leg labels, 1 ↔ 2. This suggests that
we can choose a spatial representation such that the Hamilto-
nian has a reduced unit cell containing the two spins s and S,
of a dimer, thus two magnon bands, and a first Brillouin zone
of size �k = 2π/u. The Brillouin zone of size 2π/(2u), and
a unit cell with four spins, is called the folded Brillouin zone
(FBZ), while the Brillouin zone of size 2π/u, and a reduced
unit cell with two spins, is the unfolded Brillouin zone (UBZ).
In fact, by rearranging the spin indexes of the Hamiltonian (1)
as illustrated in Fig. 1(b), we arrive at a Hamiltonian with a
period of u and with two spins per unit cell:

H =
L∑

l=1

(sl · Sl+1 + Sl · sl+1) + J⊥
L∑

l=1

sl · Sl − hSz, (2)

where L = 2Nc is the number of dimers (sl , Sl ) of the ladder.
The magnon bands of the Hamiltonian (2) are calculated

in Sec. IV, while the magnon bands of (1) are obtained in
Appendix. As an example, in Fig. 1(c) we show the noninter-
acting magnon bands of the (1/2, 1) chain for J⊥ = −0.5 in a
system with 20 dimers and periodic boundary conditions: the
four bands of the Hamiltonian (1), the FBZ case, and the two
bands of the Hamiltonian (2), the UBZ case, both considering
the fully polarized (FP) state as a vacuum.

The spin-wave calculation is helpful in determining the
critical field of the FP plateau and the general properties of
other regions of the phase diagram for any value of s and S.
To obtain precise results for any value of h and J⊥, we use
the DMRG implementation of the ITensor library [50] for
the alternating ladder (s = 1/2, S = 1) with open boundary
conditions. In the DMRG calculations, we consider a max-
imum discarded weight of 1 × 10−10 and a maximum bond
dimension of 700.

III. PHASE DIAGRAM

In Fig. 2, we present the phase diagram for the alter-
nating ladder with s = 1/2 and S = 1. For J⊥ = 0, the two
alternating (1/2, 1) chains are decoupled and have unit cells
of size 2u; see Fig. 1(a). The ground state has a total spin
of 1/2 per unit cell (1/3 of the fully polarized magnetiza-
tion), as expected by the Lieb-Mattis theorem [25], and the
ground state displays a ferrimagnetic long-range order [26].
The ground state has a gap � ≈ 1.76 [30–34] for excita-
tions increasing the spin, whereas it is gapless for excitations
lowering the spin, due to the spontaneously broken rotation
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FIG. 2. DMRG results for the magnetic field h versus rung cou-
pling J⊥ phase diagram for the (1/2, 1) alternating ladder. The
thermodynamic-limit transition lines are estimated from finite-size
scale analysis of the magnetization m per dimer as a function of h.
The color code is the value of m for a system of size L = 100 dimers.
The phase diagram highlights the fully polarized (FP) plateau, the 1/3
plateau, gapless Luttinger liquid phases, and the Kosterlitz-Thouless
(KT) transition point. For J⊥ = 0.0, the (1/2, 1) alternating upper
and lower chains are decoupled.

symmetry. Thus, in the presence of a magnetic field, the
chains exhibit a plateau at magnetization sz = (S − s) = 1/2
per unit cell, with extreme critical fields h−(J⊥ = 0) = 0 and
h+(J⊥ = 0) = �, where h± is given by

h± = |E [sz = (S − s) ± 1, h = 0]

− E [sz = (S − s), h = 0]|, (3)

for s = 1/2 and S = 1, the plateau occurs at 1/3 of the
fully polarized magnetization. The thermodynamic-limit crit-
ical lines h−(J⊥) and h+(J⊥) shown in Fig. 2 were obtained
through DMRG and finite-size scaling analysis.

For J⊥ < 0, the exchange couplings do not satisfy the
requirements of the Lieb-Mattis theorem. In this case, the
ladder exhibits a singlet ground state, SGS = 0, for h = 0.
However, the 1/3 magnetization plateau persists in the region
J⊥ < 0, but with h− > 0, and closes at the Kosterlitz-Thouless
transition point, at which h− = h+, in the thermodynamic
limit.

The gapless phases are in the Luttinger liquid universal-
ity class. The critical line hFP, bounding the fully polarized
plateau, is calculated precisely through the linear spin-wave

theory in Sec. IV, while the Kosterlitz-Thouless transition
point is carefully determined from DMRG data in Sec. VI.
We also discuss in Sec. VI the short-range magnetic order in
the gapped and gapless phases.

IV. SPIN-WAVE THEORY FROM THE FULLY
POLARIZED STATE

We use linear spin-wave theory from the fully polarized
state to determine the critical field hFP(J⊥). The Hamilto-
nian (2) is rewritten in terms of bosonic operators, using
the Holstein-Primakoff transformations [45], such that the z
component of the dimer spins sl and Sl is given by

sz
l = s − a†

l al = s − nal , (4)

Sz
l = S − b†

l bl = S − nbl , (5)

where a†
l (al ) and b†

l (bl ) are bosonic creation (annihilation)
operators associated with the spins s and S, respectively, of
the dimer l . Furthermore, the leading-order terms of the ladder
operators are given by

s+
l = (2s)1/2

(√
1 − nal

4s

)
al ≈ (2s)1/2al ,

s−
l = (2s)1/2a†

l

√
1 − nal

4s
≈ (2s)1/2a†

l ,

S+
l = (2S)1/2

(
1 − nbl

4S

)
bl ≈ (2S)1/2bl ,

S−
l = (2S)1/2b†

l

(
1 − nbl

4S

)
≈ (2S)1/2b†

l . (6)

We arrive at the spin-wave Hamiltonian by rewriting the
Hamiltonian (2) in terms of bosonic operators, discarding
constant terms, and Fourier transforming:

H =
∑

k

tkk (a†
kbk + b†

kak ) + (εbnbk + εanak ), (7)

with tkk = √
sS(J⊥ + 2 cos ku), and the local potentials

εb = −s(J⊥ + 2), (8)

εa = −S(J⊥ + 2). (9)

After diagonalization, we obtain the dispersion relations

ω(±)(k) = εa + εb

2
± 1

2

√
(εa − εb)2 + 4t2

kk, (10)

= − s + S

2
(J⊥ + 2)

± 1

2

√
(S − s)2(J⊥ + 2)2 + 4sS(J⊥ + 2 cos ku)2.

(11)

In Fig. 3 we present the two bands for the alternating ladder
(1/2, 1).
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FIG. 3. Lower [ω−(k)] and upper [ω+(k)] free spin-wave
magnon bands from the classical ferromagnetic vacuum for the mag-
netic field h = 0. In each set, J⊥ ranges from −1.0 to 1.0 with a
spacing of 0.2.

In the presence of a magnetic field h, the bands for that
chain are given by

ω
(±)
h (k) = − 3

4 (J⊥ + 2)

± 1
2

√
1
4 (J⊥ + 2)2 + 2(J⊥ + 2 cos ku)2 + h.

(12)

The fully polarized state is stable for h higher than the mini-
mum of the lower band. Since the minimum of ω− occurs at
k = 0 for J⊥ > 0 and at k = π for J⊥ < 0, the exact critical
field of the fully polarized plateau is given by

hFP(J⊥) = −ω
(−)
h=hFP

(0) = 3
2 (J⊥ + 2), for J⊥ > 0, (13)

hFP(J⊥) = −ω
(−)
h=hFP

(π

u

)
= 3

4
(J⊥ + 2)

+1

4

√
(J⊥ + 2)2 + 8(J⊥ − 2)2, for J⊥ < 0.

(14)

In a first approximation for a many-magnon state, we can
consider the magnons as hard-core bosons, with the magnon
bands being filled following a spinless fermion restriction.
Since the total number of states in the lower band equals the
total number of dimers (1/2, 1) in the system, the 1/3 plateau
magnetization (one spin flip per dimer from the FP state) is
reached when the lower band is full. Thus, the dispersion
relations imply the existence of the 1/3 plateau shown in phase
diagram in Fig. 2, since the 1/3 plateau size corresponds to the
gap between the lower and upper bands. However, there is no
quantitative agreement with the DMRG data, with the critical
fields of the plateau, h− and h+, far from the exact values. In
particular, the gap closes (h− = h+) at the point J⊥ = −2 and
h = 0, which is very different from the numerical value shown
in Fig. 2: J⊥,KT = −1.32 and hKT = 1.02.

FIG. 4. Average magnetizations of spin-1/2 and spin-1 sites, and
average dimer magnetization calculated with DMRG from h scans
for (a) J⊥ = 0.25 and (b) J⊥ = −0.25. (c) Critical fields estimated
from h scans compared with their values obtained from a finite-size
scaling analysis of the magnetization per dimer curves.

V. MAGNETIC ORDER

A. Magnetizations

In Fig. 4(a), we show the magnetizations of the spin-1/2
and spin-1 sites and the dimer (1/2, 1) for J⊥ = −0.25 and
J⊥ = 0.25. We obtained the data in this figure by performing
an h-scan calculation [46]. Within this approach, we use a
ladder chain with a fixed value of J⊥ at all dimers but with a
magnetic field that increases linearly from h = 0 to h ≈ 3.39
from the left boundary to the right boundary. In particular,
we note that hFP agrees with the expressions (13) and (14):
hFP(J⊥ = −0.25) = 2.96 and hFP(J⊥ = 0.25) = 3.38. In
addition, there is a ferrimagnetic orientation between the spin-
1/2 and spin-1 sites in the 1/3 plateau magnetization for both
values of J⊥.

Furthermore, the data in Fig. 4(a) show that the magnon
average occupancy of the spin-1/2 sites, 〈na〉 = 0.5 − 〈Sz

a〉,
is higher than the magnon occupancy of the spin-1 sites,
〈nb〉 = 1 − 〈Sz

b〉, for dimer magnetization between full po-
larization and m = 1/2. This tendency is related to the
difference between the local potential terms (13) and (14):
�ε = εa − εb = −3(J⊥ + 2J )/2, which favors the occupancy
of the spin-1/2 sites by the magnons. Moreover, since �ε

is lower for J⊥ = −0.25 than for J⊥ = 0.25, we notice
that this imbalance is lower for J⊥ = −0.25, compared to
J⊥ = 0.25. However, this behavior changes for J⊥ = −0.25
and 0 < m < 0.5. For that parameter regime, the data show
an abrupt magnon occupation of the spin-1 sites, accom-
panied by a decrease in the magnon occupancy of the
spin-1/2 sites. Since in this regime the average magnon
occupancy of a dimer, 〈ndimer〉 = 1.5 − m, is greater than
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Jc (h = 1.35)

Jc (h = 0.45)

1/3 - plateau

1/3 - plateau

FIG. 5. Average dimer magnetization calculated with DMRG
from a J⊥ scan for h = 0.45, main figure, and h = 0.45, 1.35, and 2.5,
inset. The critical transition points Jc to the 1/3 plateau for h = 0.45
and 1.35 are indicated.

1, interaction effects become more relevant than the local
potential terms.

In Fig. 4(b), we compare the estimates from the finite-size
scaling analysis with the h scan of the critical fields h− and h+
for the 1/3 plateau. We can obtain better results by centering
the magnetic field range in the approximate critical fields
while reducing the minimum and maximum values of h in the
h-scan calculation [46]. We notice the remarkable agreement
between the two procedures, although the distinction between
h− and h+ becomes more difficult for the h-scan approach as
the gap closes in the J⊥ < 0 region.

In Fig. 5, we also present the dimer magnetizations in J⊥-
scan calculations [46]. In these cases, the magnetic field is the
same for all spins, while the value of J⊥ changes linearly from
the left to the right boundary. The main figure shows excellent
agreement between the magnetization values calculated from
a uniform ladder (crosses at J⊥ = −0.4 and −0.25) and the
J⊥ scan for h = 0.45. Furthermore, the critical point of the 1/3
plateau shows a tiny departure from the estimated thermody-
namic limit value, while boundary effects are observed. In the
inset of Fig. 5, we show the dimer magnetization for three J⊥-
scan calculations. For h = 2.5, the magnetization decreases
monotonically and does not reach the 1/3 plateau (m = 0.5) in
the J⊥ interval exhibited, as expected from the phase diagram
Fig. 2. On the other hand, the 1/3 plateau magnetization is
observed for h = 1.35 and 0.45. The comparison between the
corresponding critical values of J⊥ in the phase diagram in
Fig. 2 enforces a good agreement between the two method-
ologies. Furthermore, we notice that for h = 0.45, the
magnetization of the 1/3 plateau is reached from lower values
of m, while for h = 1.35, the magnetizations are higher than
0.5 for J⊥ below the critical field.

B. Correlations

In Fig. 6 we show the transverse spin correlation functions
between the spin-1/2 and the spin-1 at the same dimer, and the
correlation functions along the chain for two typical values
of J⊥ in the regions J⊥ < 0 and J⊥ > 0. The transverse spin

1/3 - plateau

1/3 - plateau

FP

m = 0.25

m = 0.25 m = 1.25

(1/3 - plateau)
m = 0.5

m = 0.5

m = 1.25m = 0.5

(b)

(c)

(a)

m = 1.25

FIG. 6. (a) DMRG results for the transverse spin correlation
function between spins 1/2 and 1 at the same dimer for J⊥ = −0.25
and J⊥ = 0.25 in an h-scan calculation for L = 128. The triangles
on both curves mark a local extreme point. (b) DMRG results
for the transverse spin correlation function �(r) for the indicated
magnetization per dimer values m and J⊥ for L = 128. (c) Illus-
tration of the short-range magnetic order for the indicated values
of m and J⊥.

correlation function is defined by

Ci j = 1
2 〈S+

i S−
j + S+

j S−
i 〉, (15)

where i and j label the ladder sites. In Fig. 6(a), we ob-
serve that for J⊥ < 0, the transverse correlation function is
positive from h = 0 to the saturation field. In a semiclassi-
cal picture, the spin-1/2 and spin-1 in the same dimer have
projections in the xy plane that are oriented in the same
direction, as sketched in Fig. 6(c). On the other hand, for
J⊥ > 0, the dimer spin projections in the xy plane have op-
posite orientations, as also sketched in Fig. 6(c). In both
cases shown in Fig. 6(a), the correlation does not change
in the plateau regions, as expected. Furthermore, we no-
tice that the local extremes of the correlation, marked with
a triangle in both curves, are around the value of h for
which the magnetization of the spin-1/2 site, shown in
Fig. 4(a), is null.

The transverse spin correlation function along one of the
legs, shown in Fig. 6(b), is defined by

�leg(r)L = 〈Ci j〉|l (i)−l ( j)|=r , (16)

for a system of size L, where l (i) is the dimer index for
the site i, see Fig. 1(b). To minimize boundary effects, we
consider the spatial average for all pairs of sites in the same
leg separated by the distance r in Eq. (16). We notice that in
the gapless phases (m = 0.25 and m = 1.25) the correlation
function exhibits the power-law behavior of the Luttinger
liquid phase, except for the largest distances due to the open
boundaries. On the other hand, the correlation functions dis-
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(e)
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J⊥ = -1.4

J⊥ = -1.2

J⊥ = -1.2

J⊥, KT
 = -1.32 ± 0.02

(8 - 16)

(16 - 32)

(32 - 48)

(8 - 16)

(16 - 32)

(32 - 48)

FIG. 7. DMRG results for the transverse spin correlation func-
tion (−1)r�(r), where r is the distance along a leg, at m = 1/3 for
(a) J⊥ = −1.4 and (b) J⊥ = −1.2, and the indicated system sizes L.
Luttinger liquid exponent K for (c) J⊥ = −1.4 and (d) J⊥ = −1.2
calculated by fitting the transverse correlation function data to the
form 1/r1/2K through the intervals of distances 8 � r � 16, 16 �
r � 32, and 32 � r � 48. (e) Thermodynamic-limit value of K as
a function of J⊥ near the Kosterlitz-Thouless transition point. We
estimate the critical point as J⊥,KT = −1.32 ± 0.02.

play the exponential decay of a gapped phase for the m = 0.5
plateau magnetization. For both cases, J⊥ > 0 and J⊥ < 0,
the transverse spin correlations have an alternating sign along
one of the legs, as shown in Fig. 6(c). Finally, considering the
magnetization of the spin-1/2 and spin-1 sites shown in Fig. 4
can be used to complete the semiclassical picture shown in
Fig. 6(c).

VI. KOSTERLITZ-THOULESS TRANSITION

In the gapless phases, the asymptotic behavior of the trans-
verse spin correlation functions follows a power-law:

�(r) ∼ 1

r1/2K
, (17)

where K is the Luttinger parameter. In the 1/3 plateau, there
are 2 bosons per unit cell, thus an integer filling. In these
cases, K = 2 at the Kosterlitz-Thouless transition point [51].
To determine the Kosterlitz-Thouless transition point, J⊥,KT,
we can fix the magnetization at its value for the 1/3 plateau,
m = 1/2, and change the value of J⊥ to localize the point at
which K = 2.

The procedure is more complex for finite-size systems
[37,52,53], due to boundary effects and the exponentially
vanishing gap near the KT point. We calculate the correlation
through Eq. (17) in systems of size L = 128, 192, and
256 for a given range of J⊥ in the approximate vicinity of
the transition point, as exemplified in Figs. 7(a) and 7(b)
for J⊥ = −1.4 and J⊥ = −1.2, respectively. To estimate
the value of K in the thermodynamic limit, we arbitrarily

fix some intervals of distances r, in our case [8,16,32], and
[32,48], and fit the correlation data for each size L to the
expression in Eq. (17). The thus obtained values of K from
each interval are extrapolated to the thermodynamic limit, as
shown in Figs. 7(c) and 7(d), for J⊥ = −1.4 and J⊥ = −1.2,
respectively. We estimate the thermodynamic limit value of
K , and the error, by the interval of values of K obtained as
L → ∞, see Figs. 7(c) and 7(d).

We show in Fig. 7(e) K as a function of J⊥ near the KT tran-
sition. From this curve, we estimate J⊥,KT = −1.32 ± 0.02,
which is the point at which K crosses the line K = 2. Notice,
in particular, that this transition point is consistent with the
error bar behavior since the error increases in the gapped
phase due to the finite-size effects and becomes smaller than
the symbol size in the gapless phase.

VII. SUMMARY

This work uses linear spin wave theory and the density ma-
trix renormalization group to investigate alternating isotropic
mixed-spin ladder chains, particularly with alternating spin-
1/2 and spin-1. These chains exhibit glide symmetry and a
two-band k-space representation, considering two spins per
unit cell in real space or four bands when considering four
spins per unit cell. The phase diagram of the magnetic field
h versus interdimer coupling J⊥ presents two magnetization
plateaus: the fully polarized plateau and the 1/3 magnetization
plateau. In particular, the 1/3 plateau exists for negative values
of J⊥ and closes at J⊥ = −1.32 in a Kosterlitz-Thouless (KT)
type transition. The KT transition point was determined from
the transverse correlation function since, at the transition, the
Luttinger parameter is K = 2. The critical fields delimiting
the fully polarized plateau are calculated exactly through the
magnon dispersion relations, considering the fully polarized
state as a vacuum. However, the presence of the 1/3 plateau
is correctly predicted by assuming a hard-core boson approx-
imation and free-spin waves. However, the critical KT point
and the plateau sizes obtained from this approach significantly
deviate from the exact values. Finally, our results reinforce the
effectiveness of the h and J⊥ scans in determining the critical
fields of the magnetization plateaus by comparing their results
with those of the conventional approach using chains with
uniform couplings.

Interesting aspects that deserve further investigation in-
clude the effect of disorder [54], and the coupling between
legs in the edge states observed in (1/2,S) single chains [36],
particularly in the case of coupled ferrimagnetic alternating
ladder systems [55].
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APPENDIX: SPIN-WAVE THEORY FOR A FOUR-SPIN UNIT CELL

The Hamiltonian (1) can be rewritten up to O(S0) in terms of bosonic operators as

H̄0 =
Nc∑
j=1

{ ∑
α=1,2

(
εaa†(α)

j a(α)
j + εbb†(α)

j b(α)
j

) +
√

sS

[ ∑
α=1,2

(
a†(α)

j b(α)
j + a(α)

j b†(α)
j

) + b(1)
j a†(1)

j+1

+ b†(1)
j a(1)

j+1 + a(2)
j b†(2)

j+1 + a†(2)
j b(2)

j+1

]
+ J⊥

√
sS

[
a(1)

j b†(2)
j + a†(1)

j b(2)
j + b(1)

j a†(2)
j + b†(1)

j a(2)
j

]}
,

taking J = 1, dropping the constant term 2sS(J⊥ + 2) and making h = 0. The labels j are sketched in Fig. 1 and Nc is the number
of unit cells of size 2u, which we define as 2u ≡ 1 in the following.

The bosonic operators can be written in k space as

a(α)
j = 1√

Nc

∑
k

eik ja(α)
k , (A1)

b(α)
j = 1√

Nc

∑
k

eik jb(α)
k , (A2)

such that

H̄0 =
∑
k,α

[
εaa†(α)

k a(α)
k + εbb†(α)

k b(α)
k +

√
sSa(α)

k b†(α)
k +

√
sSa†(α)

k b(α)
k

]

+
√

sS
∑

k

[
e−ik

(
a†(1)

k b(1)
k + a(2)

k b†(2)
k

) + eik
(
a(1)

k b†(1)
k + a†(2)

k b(2)
k

)] +
√

sSJ⊥
[
a(1)

k b†(2)
k + b(1)

k a†(2)
k + a†(1)

k b(2)
k + b†(1)

k a(2)
k

]
,

which, in matrix form, can be written as

H̄0 =
[
a†(1)

k b†(1)
k b†(2)

k a†(2)
k

]
τk

⎡
⎢⎢⎢⎢⎢⎣

a(1)
k

b(1)
k

b(2)
k

a(2)
k

⎤
⎥⎥⎥⎥⎥⎦,

where τk is given by

τk =

⎡
⎢⎢⎢⎢⎢⎣

εa

√
sSγ (−k)

√
sSJ⊥ 0√

sSγ (k) εb 0
√

sSJ⊥√
sSJ⊥ 0 εb

√
sSγ (−k)

0
√

sSJ⊥
√

sSγ (k) εa

⎤
⎥⎥⎥⎥⎥⎦.

Diagonalizing the matrix τq, we obtain the four magnon bands shown in Fig. 1:

ω
a(1)
k = (εa + εb)

2
+ ω+

k

2
, (A3)

ω
b(1)
k = (εa + εb)

2
− ω+

k

2
, (A4)

ω
b(2)
k = (εa + εb)

2
+ ω−

k

2
, (A5)

ω
a(2)
k = (εa + εb)

2
− ω−

k

2
, (A6)

with

ω±
k =

√
(εa − εb)2 + 4sS[J⊥ ± 2 cos(k/2)]2, (A7)

while εa and εb are defined in Eq. (9).
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