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Energy exchange statistics and fluctuation theorem for nonthermal asymptotic states
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Energy exchange statistics between two bodies at different thermal equilibria obey the Jarzynski-Wójcik fluc-
tuation theorem. The corresponding energy scale factor is the difference of the inverse temperatures associated to
the bodies at equilibrium. In this work, we consider a dissipative quantum dynamics leading the quantum system
towards a possibly nonthermal, asymptotic state. To generalize the Jarzynski-Wójcik theorem to nonthermal
states, we identify a sufficient condition I for the existence of an energy scale factor η∗ that is unique, finite, and
time independent, such that the characteristic function of the energy exchange distribution becomes identically
equal to 1 for any time. This η∗ plays the role of the difference of inverse temperatures. We discuss the physical
interpretation of the condition I, showing that it amounts to an almost complete memory loss of the initial state.
The robustness of our results against quantifiable deviations from the validity of I is evaluated by experimental
studies on a single nitrogen-vacancy center subjected to a sequence of laser pulses and dissipation.
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I. INTRODUCTION

The probability distribution of a random variable defined
at two times generally depends on the details of the sys-
tem’s dynamical process. A key example is provided by the
internal energy variation �E (t ). According to the formal-
ism of stochastic thermodynamics [1–6], in a single quantum
trajectory the value of �E (t ) in the time interval [t0, t] is
defined as the difference of eigenvalues of the quantum sys-
tem Hamiltonian H(t ) evaluated at the times t0 and t . The
fluctuations can be analyzed by means of the probability
distribution P(�E (t ), t ), or its characteristic function G(u, t ),
with u a complex number, given by the Fourier transform of
P(�E (t ), t ).

Fluctuation theorems can connect nonequilibrium quanti-
ties to equilibrium properties of the dynamical system [7,8].
In the following we are going to address energy exchange
fluctuation theorems for dissipative quantum systems. In the
original formulation of exchange fluctuation theorems [9],
two bodies A and B with finite dimension are prepared
in two equilibrium states at temperatures TA ≡ 1/(kBβA)
and TB ≡ 1/(kBβB ), respectively, and then placed in thermal

*These authors contributed equally to this work.

contact for a given time interval. Fluctuation theorems address
the question whether there exists a (single) value of u = jη
such that the characteristic function (for the separated system)
becomes independent of time and equal to 1. Then, such a
value acts as an effective "macroscopic" rescaling at all times
of the heat exchange fluctuations between the two bodies.
Once they are divided again, the question was to understand
whether there exists a single "macroscopic" quantity able to
rescale at any time the statistics (thus, the fluctuations) of
the heat exchange between the two bodies. In Ref. [9], under
the assumption of weak interaction between the two bodies,
it was shown that for any time t after physical operation of
decoupling the systems it is

〈e−�β Q〉t = 1, (1)

where Q is the stochastic value of the heat exchanged by the
two bodies, and the average 〈·〉 is performed over the ex-
changed heat distribution. In Eq. (1), �β ≡ βB − βA denotes
the energy scale factor that normalizes the heat fluctuations.
The exchanged heat equality discussed above is valid [10] also
by taking an initial thermal state and employing the so-called
two-point measurement (TPM) scheme [11,12], where quan-
tum measurements are performed at the initial and final times.
The TPM scheme is a convenient way to access fluctuations,
as experimentally shown in Refs. [13–19]. Recent activity
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focused on how energy exchange statistics could be recon-
structed using schemes beyond the TPM scheme [20–27],
when quantum coherences in the initial state are taken into
account.

Noticeably, Eq. (1) is valid also when a (finite-
dimensional) body A, initially in the equilibrium state at
temperature TA, is put at a certain time t∗ in contact with a
thermal bath B at temperature TB [28]. The detailed balance
condition (DBC) is a sufficient condition for the validity of
a Crook fluctuation relation [29]; the converse, instead, is
not necessarily valid [28]. Independently of the microscopic
details of the coupling between A and B, Eq. (1) is valid at any
time later than t∗ [28]. This shows that �β plays the role of
a macroscopic quantity that fully characterizes fluctuations of
the energy exchanged at any time, and it is solely determined
by the knowledge of the initial and final equilibrium states
of the thermodynamic process. In general, this symmetry in
the exchanged heat statistics is not present. As an example,
in Ref. [30], Eq. (1) is generalized to the case that the initial
states of the two bodies A and B are nonthermal as an effect of
classical correlations. However, the derivation of a fluctuation
relation as Eq. (1) in closed form for such a case requires
the complete knowledge of both bodies and full access to
their whole dynamics. Whether and when one can determine
a counterpart of �β for nonthermal initial and final states is
an open question.

In this paper, we present a fluctuation theorem for the
energy exchanged by a quantum system with a dissipa-
tive environment, not necessarily at thermal equilibrium.
We introduce a sufficient condition for the existence of a
unique, finite, and constant (time-independent) energy scale
factor η∗ such that the characteristic function G(u, t ) ≡∫

P(�E , t )e ju�E d�E obeys the relation

G( jη∗, t ) = 〈e−η∗�E 〉t = 1 for t � t∗. (2)

In Eq. (2), j denotes the imaginary unit. In general, if the
energy scale factor is chosen without a specific criterion, then
G( jη, t ), with η ∈ R, is not equal to 1 and its value depends
on the choice of both the initial state and the whole dynamical
process for any time t∗.

The energy exchange fluctuation theorem (2) for nonther-
mal asymptotic states and the discussion of the sufficient
condition making it valid are the main results of the paper.
This sufficient condition contains the DBC under two working
hypotheses, namely, evaluating fluctuations by means of the
TPM scheme, thanks to which a quantum-classical corre-
spondence is possible [31,32], and a dynamical process that
asymptotically leads the system into an asymptotic state. A
key point of the sufficient condition is related to the memory
loss of the exchanged energy from the initial quantum state.
For this reason, we motivate the statement of the sufficient
condition by making use of Stern-Gerlach protocols [33–35],
where the memory loss is induced by quantum measurements.
In this way, we can better illustrate the assumptions behind the
fluctuation theorem and its physical interpretation.

Equation (2) can find application also to quantum systems
under dissipation that do not reach an equilibrium but admit a
nonequilibrium steady state. As an example, one may consider
the case of time evolutions along isoenergetic trajectories,

whereby asymptotically the probabilities to measure the en-
ergy values of the system depend neither on time nor on the
initial state.

Finally, the robustness of the fluctuation theorem (2) is
tested under exemplary experimental conditions where the
validity (or not) of the fluctuation theorem’s assumption, as
well as of the DBC, can be controlled. We also discuss how η∗
depends on the values taken by the parameters of the Hamil-
tonian. Here, the used platform is an autonomous dissipative
Maxwell demon formed by a nitrogen-vacancy (NV) center in
diamond at room temperature, introduced in Ref. [36].

II. ENERGY SCALE FACTOR
IN THE ASYMPTOTIC REGIME

Let us discuss the working hypotheses that will be used in
the rest of the paper.

We consider a quantum system with finite-dimensional
Hilbert space (having dimension n) subjected to a Hamilto-
nian with time-independent eigenvalues, and at the same time
under the effect of dissipation. We assume that the dynamics is
determined by a completely positive trace-preserving (CPTP)
map �t that for large times leads the system to an asymptotic,
possibly nonequilibrium, state of the form

lim
t→∞ �t [ρ0] =

n∑
f =1

Pf (∞)� f (∞) + χ [ρ0, t] (3)

that contains fixed values on the diagonal with respect to the
energy basis {E f }, with � f ≡ |E f 〉〈E f |, and possibly time-
dependent off-diagonal terms χ . The probabilities Pf (∞),
for f ∈ {1, . . . , n}, are independent of both the time and the
generic initial state ρ0, while χ can depend on ρ0 even in the
asymptotic regime.

Exchange energy fluctuations are accessed by employing
the TPM scheme. We recall that the TPM scheme pro-
vides complete energy exchange statistics in terms of correct
marginals and linearity in the state, for any initial state that is
diagonal in the system Hamiltonian [37].

In order to demonstrate the existence of a unique, finite,
time-independent energy scale factor η∗ obeying the fluctua-
tion theorem (2), as a first step we prove the following lemma
that is valid in the asymptotic limit:

Lemma 1 (Uniqueness of a nontrivial energy scale factor
in the asymptotic limit). For a quantum system with a Hamil-
tonian with time-independent eigenvalues and subjected to a
dissipative map, the equality G( jη, t ) = 1 is fulfilled asymp-
totically for t → ∞ only for two distinct values of η at most,
namely, η = 0 (trivial solution) and η = η∗, with η∗ ∈ R
a finite real number depending only on the initial and the
asymptotic states.

As shown in Appendix A, this result holds as the charac-
teristic function

G( jη, t ) =
∑
i, f

PiPf |i(t )e−η�Ei, f (4)

is analytic and convex in η [38,39]. In Eq. (4), Pi is the
probability of measuring Ei at the beginning of the protocol,
Pf |i(t ) is the conditional probability to get E f at time t after
having initially measured Ei, and �Ei, f ≡ E f − Ei.

We can now establish the following:
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Corollary 1 (Application of Lemma 1 to unital quantum
maps). If the initial state is thermal at inverse temperature β

and the open quantum dynamics is such that the asymptotic
state is the completely mixed state, then the nontrivial solution
of G( jη∗, t ) = 1 at t → ∞ is η∗ = β.

The validity of Corollary 1 can be verified by making the
substitution η∗ = β and Pf (∞) = 1/n in limt→∞ G( jη∗, t ),
where Pf (∞) is the probability to measure the f th energy
value of the system in the correspondence of the asymptotic
state.

III. MEMORY LOSS ASSUMPTIONS

In this section we present a discussion of assumptions un-
der which Eq. (2) is valid, not only asymptotically (t → ∞),
but for t � t∗ � 0, still using η∗ as the energy scale factor.
The main motivation in understanding whether and how to
rescale energy exchange fluctuations over time with η∗, which
we recall depends only on the initial and the asymptotic
states, lies within the objective to generalize the Jarzynski-
Wójcik fluctuation theorem to a generic dissipative quantum
system. In these terms, η∗ can be considered as a macro-
scopic quantity that effectively acts as the proxy of an inverse
temperature [40].

One would like to determine necessary and sufficient con-
ditions for having G( jη∗, t ) = 〈e−η∗�E 〉t = 1 for t � t∗; see
also Eq. (2). Even finding a necessary condition is a very com-
plicated task in the general case, where no specifications on
the (thermo)dynamic process under scrutiny are provided. So,
we are going to introduce a sufficient condition that guaran-
tees the validity of Eq. (2) depending on properties (specified
below) of the energy exchange statistics. In particular, we will
focus on dynamics where memory of the initial state is par-
tially lost, which generalizes the case of thermalizing quantum
dynamics [28]. In doing this, we are led by the requirement to
work within a dynamical regime that (i) can be associated to
paradigmatic models with a clear physical meaning and (ii)
can be tested in meaningful experimental scenarios.

Regarding point (i), we are going to consider a generaliza-
tion of Stern-Gerlach protocols where a series of projective
measurements is performed sequentially, and among the mea-
surements a dynamical quantum map is included. Moreover,
we also give the possibility that each measurement does occur
(or fails) with a given probability. For point (ii), concerning
an experimental scenario where our findings can be tested, we
will consider a dissipative quantum Maxwell demon. Thus,
our theory will be experimentally tested on a single NV center
in diamond at room temperature that is subjected to a se-
quence of laser pulses, each of which acts as a combination of
a quantum measurement and a dissipative channel. Deviations
of the theoretical assumption enabling Eq. (2) from experi-
mental data are analyzed in Sec. V.

A. Generalized Stern-Gerlach protocols

In order to find a sufficient condition for Eq. (2), we start
by observing that Eq. (2) is implied by the loss of memory,
starting from a time t∗, of the chosen initial state. This is
what occurs in the Stern-Gerlach experiment and its variations
[41], when a measurement of a certain observable is followed

by other measurements of noncommuting observables, so that
the later measurements cancel the information about the initial
state. Motivated by this observation, here we will consider a
Stern-Gerlach protocol in which the first and last measure-
ments are projective measurements and their outcomes are
collected, as in the usual Stern-Gerlach protocol. Instead, the
second measurement is replaced by a sequence of quantum
measurements that all refer to the same observable and take
place with a probability pm < 1. We will also study the cases
with unitary and dissipative dynamics in between the quan-
tum measurements. We refer to this protocol as a generalized
Stern-Gerlach protocol.

We start by considering the simplest Stern-Gerlach pro-
tocol for our purposes, namely, the sequential measurement
(via projective measurements) of a two-level quantum system
(e.g., a spin- 1

2 ) with respect to three observables: the first and
the third, the Hamiltonian H of the system (say, the Pauli
matrix σx), and the intermediate observable an operator that
is maximally noncommuting with H (say, σz). Only the out-
comes of the first and third measurements are collected, giving
origin to the joint probability PiPf |i(t ). For this paradigmatic
example, where the probability to measure σz (at time t∗)
is equal to 1, the conditional probabilities Pf |i(t ) = 1/2 are
independent on i, for any f and t � t∗. In fact, whatever is
the initial state, consecutively measuring the Pauli matrices
σx and σz leads to a complete destruction of the information
contained in the initial state [41].

We would be then tempted to set as a sufficient condition
for Eq. (2) the following hypothesis:

Hypothesis 1 (Complete memory loss of the initial energy
statistics from a time t∗). For any final state f , Pf |i(t ) is
independent of all initial states i for t > t∗.

However, we will argue that the hypothesis 1 is unnec-
essarily too restrictive, and possibly unfeasible for quantum
systems with dimension larger than 2. Sequential mea-
surements over maximally noncommuting observables lead
to complete memory loss, irrespective of the system di-
mension. In general, determining maximally noncommuting
observables that are also experimentally implementable is a
nontrivial task. In quantum systems whose dimension is a
prime number, or powers of a prime number, two maximally
noncommuting observables can be obtained from mutually
unbiased bases [42–44]. Whether or not such observables
are experimentally implementable depends on the platform.
Orthogonal observables, such as the angular momentum op-
erators easily obtained in experimental routines, can provide
a readily accessible noncommuting set, albeit no maximal
noncommuting. For example, the orthogonal angular momen-
tum operators Sx and Sz are not maximally noncommuting
even for a qutrit, a system of relevance to our experiments.
Consequently, alternating measurements of Sx and Sz (e.g.,
measuring Sx, Sz, and Sx) do not completely erase the infor-
mation about the initial state, and the condition of complete
memory loss is no longer valid since Pf |i(t ) still depends on
i. The need of finding maximally noncommuting observables
can be overcome by introducing a dynamical evolution given
by a map �t interspersed by consecutive measurements, so as
to scramble the state of the system and induce memory loss.

Let us further analyze these cases. Consider a protocol in
which the first and last measurements are the same as before—
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FIG. 1. Energy jump conditional probability Pf |i associated with the Stern-Gerlach-like experiment where the Hamiltonian of the three-
level system, H ∝ Sx , is measured once at the beginning of the protocol and once at the end. In between these measurements, a set of quantum
measurements of the observable Sz is considered, and we assume that the system is projectively measured with finite probability (p = 0.35).
The x axis indicates the number of these intermediate measurements applied to the system. The states 0 and 2 correspond to the eigenstates
of Sx with positive and negative eigenvalues, respectively, while the state 1 refers to the eigenstate with associated eigenvalue equal to zero.
(a) No dynamics in between measurements. The state of the system in the case the probability of absorption is equal to 1 is indicated by the
dot-dashed lines. (b) Unitary evolution in between measurements leading to complete memory loss. The unitary evolution affects the state of
the system and, after a series of quantum measurements, it becomes impossible to retrieve information about the initial system’s state. The
asymptotic state is a completely mixed state, which is denoted by the black dashed lines. [(c) and (d)] Same as (a) and (b), respectively, but
with dissipation conditioned on the measurements. The system eventually loses information of the initial state, but the asymptotic state is
not completely mixed. In (c), the dissipation pumps the system into the Sz eigenstate with mS = 0 (black dashed lines). In (d), the system is
pumped into an out-of-equilibrium steady state indicated by the dot-dashed lines.

projective measurements of the Hamiltonian (e.g., the angular
momentum operator Sx)—and we still consider the case where
only the outcomes of the first and last measurements are
collected. Instead, the second measurement (Sz) is replaced
by a sequence of quantum measurements that all refer to the
same observable (e.g., Sz) and take place with a probability
pm < 1. From an operational point of view, this means that,
with periodicity τ , the system is subjected to a projective mea-
surement with probability pm, thus making the system’s wave
function collapse (in our example into one of the eigenstates
of Sz), while it remains unaltered with probability 1 − pm.
This specific kind of quantum measurement—occurring af-
ter any time interval τ—can be described using the positive
operator-valued measure (POVM) formalism. We will focus
our attention on the behavior of the energy jump conditional
probability Pf |i(t ) for this Stern-Gerlach-like experiment.

If we consider no evolution between consecutive measure-
ments, i.e., the unitary operator describing the evolution of
the system is the identity, then the complete memory loss
is not attained. This is shown in Fig. 1(a). In this case, the
state of the system asymptotically approaches the state that
one would get if we perform a single intermediate projective
measurement taking place with probability equal to 1, which
corresponds to the Stern-Gerlach experiment for a three-level
system with the measurements Sx, Sz, and Sx. The dot-dashed

lines in Fig. 1(a) denote the results of this Stern-Gerlach
experiment with a three-level system, such that Pf |i(t →
∞) = ∑3

j=1 | 〈x f |z j〉 |2| 〈z j |xi〉 |2, where |αk〉 is the kth eigen-
state of Sα . As explained before, this case does not represent a
complete loss of memory because Sz and Sx are not maximally
noncommuting observables.

Complete memory loss is reintroduced if we modify the
protocol by including a unitary evolution of the system be-
tween the measurements. In such a case, shown in Fig. 1(b),
there exists a time t∗ (or a finite number of intermediate mea-
surements) after which all the conditional probabilities Pf |i(t )
tend to 1/n, with n the dimension of the quantum system
(n = 3 in this example). The number of different trajectories
increases as the power of n + 1 with respect to the number
of measurements; in our example, four outcomes are possible
from each measurement: project into one of the eigenstates of
Sz or remain unaltered. With this large number of trajectories
affected by the unitary evolution in between measurements,
eventually it is impossible to retrieve information about the
initial state of the system. This represents a complete loss
of memory, thereby fulfilling hypothesis 1, where Pf |i(t ) is
independent of i for any f , for t � t∗. Such a behavior is
in agreement with previously known results where dynamics
leading to infinite-temperature thermalization (i.e., the state
of the system converges towards a completely mixed state)
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can be induced by a sequence of projective measurements
under specific conditions [45,46]. Notice that an exception
occurs when the unitary operator U describing the evolu-
tion between measurements commutes with the operators of
the intermediate POVMs (in our case when [U, Sz] = 0).
Such an exceptional case falls back to the case depicted in
Fig. 1(a).

We are now in the position to analyze the behavior of the
conditional probabilities Pf |i(t ) in Stern-Gerlach-like experi-
ments that also include dissipation. We consider a sequence
of intermediate projective measurements of Sz interspersed
by unitary operators U not commuting with Sz. As before,
the first and the last energy measurements are performed
along the basis of Sx, and their outcomes are collected. We
still consider that, with periodicity τ , the quantum system is
projectively measured with probability pm, but in this case if
the measurement occurs then the state of the system collapses
and changes due to a dissipative channel. The system still
remains unaffected with probability 1 − pm. We will consider
a dissipative channel that pumps the state of the system into
one of the eigenstates of the observable Sz (in this particular
example, into the mS = 0 state). This case is particularly in-
teresting since it can be used to interpret the effect of optical
pumping with short excitation pulses in realistic experimen-
tal scenarios, where the probability of light absorption is
smaller than 1. An example of this is the implementation of
Maxwell’s demon on an NV center via a train of short laser
pulses [36].

In analogy to the case without dissipation, we will first
consider the case where the unitary operator U describing
the evolution between measurements is equal to the identity,
and then we will consider the case where [U, Sz] 
= 0. In
the former case, the effect of the dissipation builds up as
the number of measurements increases, and eventually the
system is pumped into the fixed point of the dissipation, the
mS = 0 state. This is shown in Fig. 1(c), where the dashed
line represents the projection of the mS = 0 state in the Sx

basis. In contrast, when [U, Sz] 
= 0, the combination of pro-
jective measurements and dissipation, together with unitary
evolutions, results in a map with a fixed point that is an
out-of-equilibrium steady state. Also in this case the system
is pumped into the fixed point, as shown in Fig. 1(d). The
fixed point, denoted by the dot-dashed lines in Fig. 1(d), is
determined by a nontrivial combination of the probability
pm, the strength of the dissipation, and the strength (Rabi
frequency) of the unitary driving U . Further details can be
found in Sec. V and in Ref. [36].

In these Stern-Gerlach-like experiments with dissipation,
shown in Figs. 1(c) and 1(d), the system eventually loses
information of the initial state, but the asymptotic state is
not completely mixed. Therefore, these cases correspond to
nonunital maps. Moreover, the hypothesis of complete de-
struction of information is not fulfilled, but a less stringent
one holds, which still maintains a symmetry in the indexes
of the measurement outcomes. Formally, if the dissipation is
present, the following hypothesis, which will be extensively
considered in the remainder of the paper, is valid:

Hypothesis 2 (Almost complete memory loss of the initial
energy statistics). For any f and t � t∗, the conditional prob-
abilities Pf |i(t ) are independent on all i with i 
= f .

Clearly, hypothesis 1 implies hypothesis 2, but not vice
versa.

IV. FLUCTUATION THEOREM

We can now provide the statement of the fluctuation the-
orem formalizing Eq. (2). For this purpose, we express the
conditional probabilities Pf |i(t ) as a function of the prob-
abilities Pf (∞) in the asymptotic limit (assumed to exist).
Specifically, for i 
= f , one is always allowed to write the con-
ditional probabilities Pf |i(t ) as Pf |i(t ) = Fi, f (t )Pf (∞) with
Fi, f (t ) a generic bounded real function depending on the in-
dices i, f , such that Fi, f (t0) = 0 and limt→∞ Fi, f (t ) = 1 ∀ i, f .
Thus,

Theorem 1 (Fluctuation theorem for dissipative quan-
tum dynamics). Under the validity of both the hypothesis
2 and the detailed balance condition, implying Pf |i(t ) =
F (t )Pf (∞) ∀ i, f , t � t∗ with i 
= f and F (t ) a time-
dependent real function, then

G( jη∗) = 1 at t → ∞ ⇐⇒ G( jη∗, t ) = 1 ∀t � t∗.

(5)

The proof of Theorem 1 is in Appendix B. It is worth
noting that the assumption of Theorem 1 includes the DBC

Pf |i(t )

Pi| f (t )
= Pf (∞)

Pi(∞)
(6)

that is obeyed by any reversible Markov process. Moreover,
since hypothesis 2 is implied by the complete destruction of
information, then also assuming the latter leads to the validity
of the theorem’s thesis. Theorem 1 provides a sufficient condi-
tion such that G( jη∗, t ) = 1 for t � t∗ using the energy scale
factor η∗ that only depends on the initial and asymptotic states.
Theorem 1 holds independently of the Hamiltonian, as long as
its eigenvalues are time independent, and of the dimension of
the system. Moreover, Theorem 1 does not require a specific
initial state, provided, however, the TPM scheme is applied.

A. Thermal states

Let us discuss a meaningful limit case. When the initial and
asymptotic states are thermal with inverse temperatures β and
β∞, respectively, the energy scale factor η∗ = �β = β − β∞.
Hence, Eq. (2) reduces to the exchange fluctuation relation
that is valid for a quantum system under thermalizing dynam-
ics [9,28], or under an effective thermalizing quantum map
[15] as it occurs in two-level quantum systems. In the high-
temperature limit (β∞ = 0), η∗ = β. Notice that for two-level
quantum systems there always exists an effective temperature
such that the elements of any mixed state can be sampled from
a Boltzmann distribution. On the contrary, higher-dimensional
quantum systems (as in the present paper) provide genuinely
quantum states that cannot be mapped into thermal states.

B. Energy extraction power

We conclude this section by showing that the sign of η∗
determines whether energy is injected or can be extracted
from a dissipative system:
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FIG. 2. (a) Sketch of the experimental protocol: The NV spin qutrit (Sz = [0,±1]) is initialized in an eigenstate of the Hamiltonian H,
and evolves under a map M given by the combination of H and short laser pulses [36]. After the evolution for a time t , the spin energy is
measured according to the TPM scheme. (b) The map M operates on the NV through a unitary evolution (generated by H) and a combination
of POVMs and dissipation towards the spin state |0〉 (via laser pulses), sketched in the left and right panels, respectively.

Corollary 2 (η∗ as a measure of the energy extraction
power). At t large (t � t∗), when the quantum system under
dissipation has reached the asymptotic state, the necessary and
sufficient condition for energy extraction is η∗ < 0.

Corollary 2 is obtained by applying the Jensen inequality
to Eq. (2) that thus implies η∗〈�E〉 � 0. As a result, energy is
extracted from the system when η∗ < 0, and is transferred to
the system otherwise (η∗ > 0).

V. EXPERIMENTAL SCENARIO: DISSIPATIVE
QUANTUM MAXWELL DEMONS

In this section, we introduce an experimental testbed very
relevant for our purposes: the dissipative quantum Maxwell
demon, originally introduced in Ref. [36]. The quantum maps
realized in this physical platform admit a nonequilibrium
steady state that is induced by a sequence of measure-
ments followed by feedback actions. With this setup we
test the validity of Theorem 1’s assumptions, as well as its
thesis.

The experimental platform is based on single NV centers,
where the NV electronic spin S = 1 is optically initialized and
read out, and manipulated with a Hamiltonian H via a mi-
crowave radiation. A detailed discussion of the apparatus, as
well as the experimental realization (TPM scheme included)
is reported in Ref. [36]. Here we give a summary of the
protocol. The NV bare Hamiltonian commutes with the spin
operator Sz (with eigenstates |0〉, |±1〉). In the presence of a
near-resonance microwave field, the system Hamiltonian H
can be written in a rotating frame as a time-independent linear
combination of the operators Sx, Sy, and Sz. During the unitary
evolution determined by this Hamiltonian, the NV spin state,
represented by the density operator ρ, is subjected to a series
of short laser pulses, inducing POVMs and dissipation (see
Fig. 2). In the terminology used in Sec. III, in the presence
of a single laser pulse the NV spin remains unaltered with a
probability 1 − pm, and it is subjected to a projective measure-
ment (Sz) and dissipation towards mS = 0 with a probability
pm. A formal model of the NV photodynamics involves ra-
diative and nonradiative transitions, including fast phononic
relaxation, whose details will not be covered here since they
are thoroughly explained in Ref. [36]. The combination of
unitary evolution under the Hamiltonian H and short laser
pulses give rise to the CPTP map M. Notably, the quantum
dynamical map M, applied to the H eigenstates, leads the sys-
tem to a nonequilibrium steady state originated by a nontrivial

interplay between quantum measurements and dissipation.
The described experiment embodies the right tool to demon-
strate the robustness of the theorem presented in this work. In
fact, the possibility to design different Hamiltonian operators
for the unitary evolution of the spin qutrit allows us to imple-
ment various protocols where the DBC may be fulfilled or not.

We would stress that this case study is appropriate for the
test of the fluctuation theorem introduced in Sec. IV, since
the Hamiltonian of this quantum system can be controlled
such that the hypothesis 2 of Theorem 1 as well as the DBC,
leading to the assumption Pf |i(t ) = F (t )Pf (∞) for t � t∗, are
valid. Specifically, when [H, Sz] = 0, Theorem 1 is fulfilled.
In contrast, when H ∝ Sx, hypothesis 2 is only approximately
valid, but still G( jη∗) � 1 within experimental precision for
t � t∗. Even in this case where Theorem 1’s assumption
Pf |i(t ) = F (t )Pf (∞) holds only approximately or is even not
valid, we can experimentally explore the deviations from the
predictions of Theorem 1.

A. Robustness analysis

This section is devoted to investigating how much
G( jη∗, t ) deviates from 1 in case the assumptions of Theorem
1 are not fulfilled. A possible cause for such a condition
is that DBC (6) does not hold, which in our case study
occurs by setting H = ωSx. Here, Sx is the spin operator
orthogonal to the natural NV quantization axis z, and ω

is the driving Rabi frequency. The energy eigenstates are
|E〉 f ∈ {|−ω〉 , |∅〉 , |+ω〉}, with | ± ω〉 ≡ (|−1〉 ± √

2 |0〉 +
|1〉)/2 and |∅〉 ≡ (|−1〉 − |1〉)/

√
2. In Fig. 3(a) we report

the conditional probabilities Pf |+ω of measuring |E〉 f as final
states of the TPM scheme (at time t , after NL laser pulses)
once the NV spin is initialized in |+ω〉. First, we find a good
agreement between the experimental data (colored dots) and
theoretical simulations of the evolution under the quantum
dissipative model (dashed lines). More interestingly, by im-
posing

Pf |i(t ) = Pf (∞)(1 − e−t/τD ) + δi, f e−t/τD (7)

with δi, f denoting the Kronecker delta between i and f ,
τD a decay time, and i = +ω in Fig. 3, it is possible to
approximate the time evolution of the system to a case
where the assumption Pf |i(t ) = F (t )Pf (∞) holds. Although
the validity of this assumption is based on a quite differ-
ent physical scenario, the agreement between the simulations
[solid lines in Fig. 3(a)] and experiments is still valid. Then,
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FIG. 3. (a) Conditional probabilities of measuring |E〉 f ∈
{|−ω〉 , |∅〉 , |+ω〉} while initializing the qutrit in |+ω〉, as a function
of the number of laser pulses, NL = t/τ , with t equal to M duration
and τ the time interval between pulses. Colored scatters and dashed
lines correspond to experimental data and numerical simulations,
respectively, of the NV spin evolution under the map M, with
H = ωSx . Solid lines represent the approximated model ensuring the
DBC, obtained by fitting the numerical results using the function
Pf |+ω(t ) = Pf (∞)(1 − e−t/τD ) + δ+ω, f e−t/τD , with δ+ω, f the Kro-
necker delta and τD = 3.11τ . (b) Characteristic function G( jη∗, t )
as a function of the number of laser pulses, NL = t/τ . G( jη∗, t ) is
evaluated from theoretical simulations (main plot) and experimental
data (inset) by considering all the possible combinations Pf |i(t ), with
i, f ∈ {−ω, 0, +ω} (see Ref. [36]). The comparison between the
approximated model with the DBC (in red) and the original one of
Ref. [36] (blue) highlights a discrepancy, as expected from Theorem
1. The characteristic function for the original model can be approx-
imated by 1 + e−t/τa − e−t/τb , which is given by the blue dashed
line. The fitted parameters τa = 3.07τ and τb = 3.26τ depend on the
decay rate of the conditional probabilities. In the limit the DBC is
valid, one obtains τa = τb.

by comparing the characteristic functions of the two mod-
els for the corresponding η∗ value [Fig. 3(b)], we observe
that G( jη∗) = 1 for any time only for the detailed balanced
case, as expected from Theorem 1. On the other hand, their
difference is much smaller than our experimental uncertainty
[see inset of Fig. 3(b)], proving the robustness of the fluctua-
tion relation (2) against the possible experimental invalidation
of the assumptions.

B. Dependence of η∗ on the values
of the Hamiltonian parameters

We consider now an experimental case where the assump-
tions used to obtain Theorem 1 hold. This is obtained by
turning off the microwave radiation and using the natural NV
spin Hamiltonian

H = �S2
z + γeBSz, (8)

FIG. 4. Ratio between the energy scale factor η∗ and the initial
temperature T as a function of γeB. Lines are obtained by directly
solving the characteristic function G (as discussed in detail in Ap-
pendix C) through a standard optimization routine. At the |−1〉 ↔
|0〉 energy crossing (γeB = �) we find a discontinuity in η∗.

with � the zero-field splitting, γe the electronic gyromagnetic
ratio, and B a bias external magnetic field aligned with the
NV quantization axis. Here, the effect of the laser pulse train,
always pumping the NV spin in |0〉, is to make the qutrit
collapse in one of the energy eigenstates. This allows us to find
a simplified analytical solution to the characteristic function G
with respect to the values of the Hamiltonian parameters (see
Appendix C).

We can now distinguish two different regimes: γeB <

� and γeB > �, shown in Fig. 4. Here, for the sake of
simplicity, we considered initial thermal states, with Pi =
e−βEi/

∑
k e−βEk , k = 1, . . . , n. In the first regime, the energy

dissipation leads the system in the state corresponding to the
energy minimum E|0〉 = 0. This means that the asymptotic
energy level is related to a thermal state at zero temperature,
β∞ = ∞. As a consequence, there is only a trivial solution
solving the fluctuation theorem, that is, η∗ = 0.

In the second case (γeB > �), the eigenstate associated to
the minimum energy of the system is |−1〉, and we observe
a nonlinear relation of η∗ as a function of β, meaning that
the quantity η∗ − β in general cannot be associated with an
inverse temperature. Notably, instead, for a magnetic field
B → ∞ the value of η∗ becomes constant and is equal to
2β. In this way, by knowing the temperature of the initial
thermal state, i.e., the partition function at time t = 0, we can
evaluate η∗ and reconstruct the whole dynamics of the system.
This is equivalent to the case with symmetric energy levels,
whose analytic solution is studied in Appendix C. Finally, the
special condition γeB → �+ leads to a degeneracy of |0〉 and
|−1〉 eigenstates. In this case, η∗ shows a discontinuity at −∞
that occurs in correspondence of the energy crossing between
E|−1〉 and E|0〉 (see Appendix C for more details).

VI. CONCLUSIONS

In this paper, we discussed how to characterize energy
exchange statistics in open quantum dynamics (both unital
and nonunital) exhibiting dissipation that brings the system
towards an asymptotic state not necessarily thermal. In doing
this, we derive a quantum fluctuation theorem for a family of
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parametrized dynamics that go beyond thermalizing dynam-
ics, hence extending the results by Jarzynski and Wójcik [9].
First of all, we show that in the asymptotic limit (t → ∞)
the characteristic function G( jη) of the exchanged energy
distribution is independent of the process details and is equal
to 1 for a unique, constant (time-independent), nontrivial en-
ergy scale factor η = η∗. In addition, we show a sufficient
condition under which G( jη∗, t ) = 1 is valid for any time
t � t∗, thus providing us a true fluctuation theorem even for
the quantum dissipative case.

The condition that allows for G( jη∗, t ) = 1 for t � t∗
is Pf |i(t ) = F (t )Pf (∞), which is implied by the validity of
hypothesis 2 and the detailed balance condition (DBC). As
shown in Sec. III, hypothesis 2 is related to the almost com-
plete memory loss of the initial energy statistics, and can be
obtained (and thus tested) in dissipative instances of Stern-
Gerlach protocols. According to hypothesis 2, the conditional
probabilities of the exchanged energy distribution have to be
uniquely determined by the asymptotic probabilities Pf (∞)
that enter the nonequilibrium state limt→∞ �t [ρ0] reached
asymptotically by a quantum system under dissipation. Also
the DBC is a necessary requirement for Pf |i(t ) = F (t )Pf (∞).
In fact, as shown in Appendix B, given Pf |i(t ) = F̂f (t )Pf (∞)
(implied by hypothesis 2), then the DBC entails F̂f (t ) = F (t ).

Experimentally, we took advantage of a platform based on
single NV centers to test the robustness of Theorem 1 against
the fulfillment of its assumptions. While numerical simula-
tions show a discrepancy between the cases with or without
the DBC, the experimental outcomes cannot distinguish them
within our statistical uncertainty. This means that, within the
error bars of our experimental measurements, the thesis of
the fluctuation theorem results are verified approximately,
albeit in a strict mathematical sense the theorem may not
hold. Moreover, by exploring the behavior of η∗ depending
on the value of γeB, we observe a nonlinear dependence of η∗

from the initial state, and the presence of a discontinuity in
correspondence of an energy level crossing.

As an outlook, studies on the energy statistics and tests
of the fluctuation theorem at the NV ground state level anti-
crossing (γeB = �) would highlight the relationship between
the thermodynamic properties of the system and its physical
counterparts, such as the NV photoluminescence [47]. It is
also worth investigating a tighter condition (still sufficient in
case) under which the fluctuation theorem [Eq. (2)] is valid,
as well as determining a formal relation with the Hatano-Sasa
fluctuation theorem [48]. Moreover, one could test the idea
that η∗ can be seen as an effective inverse temperature by
weakly connecting two systems and using one of the two to
estimate the value of η∗ associated to the other, in analogy
with standard thermometry routines of a macroscopic bath.
In such a case, the probing system should be assumed to be
fully known and maintained at a steady-state solution of its
dynamics. Furthermore, we think it could be interesting to
explore if and how the quantity η∗〈�E〉, and its integral along
a path on the parameters’ space, can be put in relation with the
average entropy production that one would determine at the
steady state for a reversible thermodynamic transformation.

Our work opens the possibility to evaluate the energet-
ics of stabilizing a qubit by means of a dissipative protocol

[49] even with other experimental platforms, or to asso-
ciate a unique energy scale factor to quantum many-body
phases embodied in the local energy statistics of an ar-
ray of qubits [50,51]. An important application of that
would be the dissipative charging of a (many-body) quan-
tum battery [52,53]. Finally, in the case the initial state
and the Hamiltonian are not commuting, other protocols
than the TPM scheme can be used to characterize en-
ergy fluctuations in the quantum regime [20,21,27,37,54–58].
By applying these methodologies, our results might be no
longer valid and some "quantum corrections" may be needed
as in Ref. [59]. One would thus extend some results in Ref.
[60] that concern the interplay of quantum and classical infor-
mation processes in dissipative dynamics.
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APPENDIX A: PROOF OF LEMMA 1

The characteristic function G( jη, t ) of the distribution for
the internal energy variation is convex with respect to the scal-
ing factor η [38,39]. Moreover, being given by the finite sum
of analytical functions (exponentials), for finite-dimensional
systems G( jη, t ) is also a twice differentiable real-valued
function with positive concavity. As the first step of the proof,
our aim is to demonstrate that, at the asymptotic limit t → ∞,
the equality G( jη,∞) = 1 holds only for η0 = 0 (trivial, con-
stant solution) and for another energy scale factor η∗ that is a
real number. For the sake of simplicity, from here on in this
appendix, we will denote G( jη,∞) with G( jη). In the second
step of the proof, we will demonstrate that η∗ depends only on
the initial and the asymptotic states.

Let us start by defining h(η, α) ≡ G( jη) − α, with α being
a real and positive number not necessarily equal to 1. We want
the roots of h(η, α) to be also the solutions of G( jη) = 1.
This is only achieved for α = 1, because η0 = 0 represents
the trivial solution [see Eq. (2)]. Therefore, we want to find
the roots of g(η) ≡ h(η, 1) = G( jη) − 1. Given that g(η) is a
convex function with positive concavity as well as G( jη), then
it can only have a maximum of two roots in the parameter η.
But we already know that η0 = 0 is a trivial root of g(η); hence
g(η) is only allowed to have at most another root different
from zero. This means that there always exist a real number η∗
such that g(η∗) = 0. In general, η∗ 
= 0, except for the specific
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case where η0 = 0 is the only root of g(η). This concludes the
first part of the proof, but before moving on to the second part
of the proof, let us study the singular case in which η0 = 0 is
the only root of g(η).

The number of roots is determined by the value of the
unique minimum of g(η). Given that η0 = 0 is always a root
of g(η), then there are only two possible scenarios under
which g(η) has not a second root: either minη g(η) = 0 or
minη g(η) < 0 but η∗ → ±∞. If we assume that minη g(η) =
0, then minη g(η) = g(η0) = 0. This happens if and only if
the derivative ∂g(η)/∂η = ∂G( jη)/∂η evaluated in η0 = 0 is
equal to zero for any value of the system parameters. Notice
also that Eqs. (2) and (4) imply that

∂g(η)

∂η

∣∣∣∣
η=0

= −〈E∞〉 + 〈Ein〉, (A1)

where 〈Ein〉 ≡ ∑
i PiEi and 〈E∞〉 = limt→∞

∑
f Pf (t )E f =∑

f Pf (∞)E f with Pf (t ) = ∑
i Pf |i(t )Pi. Hence, the case

minη g(η) = 0 is true if and only if 〈E∞〉 = 〈Ein〉, namely,
if the initial and asymptotic values of energy are the same.
This can occur, e.g., when the asymptotic state reached by the
system is stationary thermal with the same temperature β∞ as
the initial thermal state, i.e., β∞ = β. On the other hand, the
case minη g(η) < 0 with η∗ → ±∞ is only valid when g(η) is
equal to a sum of exponential functions all with the same sign
(either negative or positive) in the exponent, as opposed to the
usual sum of exponential functions with opposite signs [see
Eq. (4)]. This is a quite particular case, but it is not impossible.
As an example, we consider the dissipative quantum Maxwell
demon addressed in the main text. For the case where H ∝ Sz,
the characteristic function G reduces to Eq. (C7). Thus, by
initializing the quantum system in a state where either P|+1〉
or P|−1〉 is equal to zero, the left-hand side of Eq. (C7) is a
simple exponential function. As a consequence, η0 = 0 turns
out to be the only solution for G = 1.

Let us now focus on the second step of the proof. We
want to show that if the probabilities to measure the ener-
gies (eigenvalues of the Hamiltonian) of the system do not
depend on time, nor on the initial state ρ0, then the unique
finite zero of g(η) = G( jη) − 1 only depends on the initial
and asymptotic states. Such assumption is attained when the
state of the quantum system, the solution of the dynamical
equation of motion, has constant energy. This is the case,
for example, for the asymptotic state considered in the main
text [see Eq. (3)]. This condition can be easily translated in a
property of the characteristic function G( jη). For this purpose,
note that, in correspondence with the asymptotic state, the
conditional probabilities Pf |i(∞) are invariant with respect to
the index i, resulting in

Pf |1(∞) = Pf |2(∞) = · · · = Pf |n(∞) ≡ Pf (∞) (A2)

for any f , with n denoting the dimension of the system.
Thus, by assuming the validity of Eq. (A2), G( jη) admits the
decomposition

G( jη) =
∑

i

Pie
ηEi

∑
f

Pf (∞)e−ηE f

= Tr[eηHρ0]Tr[e−ηHρ∞], (A3)

where ρ∞ is the asymptotic state of the quantum system. From
the decomposition of Eq. (A3), it can be observed that η∗
depends only on the set of probabilities {Pi} and {Pf (∞)},
corresponding respectively to the initial and asymptotic states,
and on the initial and final energies of the system.

APPENDIX B: PROOF OF THEOREM 1

Let us set the context for the proof. We consider a dis-
sipative quantum system, whose time evolution is governed
by a generic open quantum map �t that admits at least one
(nonthermal) map fixed point. Then, the Hamiltonian H =∑

k Ek�k of the system is such that the eigenvalues Ek are
time independent. Thus, for t → ∞ the probabilities to mea-
sure the energies (eigenvalues of H) of the system do not
depend on time (they are indeed constant values) or on the
initial state ρ0. We denote such probabilities as Pf (∞). More-
over, the fluctuations of energy variations are evaluated by
means of the two-point measurement (TPM) scheme. Finally,
for our convenience we express the conditional probabilities
of the TPM distribution for the internal energy variation as a
function of the asymptotic probabilities Pf (∞). Specifically,
for i 
= f (i and f denote, respectively, the indices over the
initial and final energies, where the latter are measured at
time t where the TPM scheme is stopped), the conditional
probabilities Pf |i(t ) can be written as

Pf |i(t ) = Fi, f (t )Pf (∞), (B1)

where Fi, f (t ) is a generic bounded real function depending on
the indices i, f such that Fi, f (t = 0) = 0 and Fi, f (t → ∞) =
1 ∀ i, f . We note that, since Pi|i(t ) = 1 − ∑

f 
=i Pf |i(t ) = 1 −∑
f 
=i Fi, f (t )Pf (∞) (valid for any i), we can generally write

Pf |i(t ) = Fi, f (t )Pf (∞)(1 − δi, f )

+
⎛
⎝1 −

∑
f 
=i

Fi, f (t )Pf (∞)

⎞
⎠δi, f , (B2)

where δi, f denotes the Kronecker delta. Equation (B2) holds
for any pair (i, f ) of indices and time t .

We are now in the position to carry out the proof of Theo-
rem 1. For this purpose, we take the characteristic function of
the statistics for the energy variations (obtained from applying
the TPM scheme):

G( jη, t ) =
∑
i, f

e−η(E f −Ei )Pi Pf |i(t ), (B3)

where Pi ≡ Tr[ρ0�i], Pf |i(t ) ≡ Tr[� f �t [�i]]. By using the
identity

∑
f Pf |i(t ) = 1 for any t such that Pi|i(t ) = 1 −∑

f 
=i Pf |i(t ), we obtain

G( jη, t ) =
∑

i

⎡
⎣Pi

⎛
⎝1 −

∑
f 
=i

Pf |i(t )

⎞
⎠

+
∑
f 
=i

Pi Pf |i(t ) e−η(E f −Ei )

⎤
⎦

= 1 +
∑

i

∑
f 
=i

Pi Pf |i(t )(e−η(E f −Ei ) − 1). (B4)
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Hence, by substituting Eq. (B1) in Eq. (B4), we find that

G( jη, t ) = 1 +
∑

i

∑
f 
=i

Fi, f (t ) Pi Pf (∞)(e−η(E f −Ei ) − 1).

(B5)
Then, let us apply the assumptions of Theorem 1, namely,

the validity of both hypothesis 2 and the detailed balance
equation. The first hypothesis means that the functions Fi, f (t )
do not depend on the index i for f 
= i and t � t∗, i.e.,

Pf |i(t ) = F̂f (t )Pf (∞), (B6)

which, together with the detailed balance condition

Pf |i(t )

Pi| f (t )
= Pf (∞)

Pi(∞)
, (B7)

implies that

Pf |i(t ) = F (t )Pf (∞) (B8)

∀ i, f with f 
= i and t � t∗, where F (t ) is a time-dependent
real function. As a result,

G( jη, t ) = 1 + F (t )
∑

i

∑
f 
=i

Pi Pf (∞)(e−η(E f −Ei ) − 1).

(B9)

Concerning assumption (B8), notice that detailed balance
equation (B7) is obeyed by any reversible Markov process,
where reversibility here has to be meant with respect to the
space of events that define the Markov process of energy
outcomes. Instead, hypothesis 2 [i.e., assumption (B6)] stems
from the almost complete loss of memory of the initial state,
as discussed in the main text in Sec. III.

The last step of the proof is to recall the definition of η∗
from Lemma 1’s thesis. From Lemma 1, indeed, we already
know that η∗ is defined as the energy scale factor at t → ∞
such that

lim
t→∞G( jη∗, t ) = 1 ⇐⇒

∑
i

∑
f 
=i

Pi Pf (∞)(e−η∗(E f −Ei ) − 1) = 0. (B10)

As a direct consequence, by substituting Eq. (B10) in Eq.
(B9), we determine G( jη∗, t ) = 1 for t � t∗. This concludes
the proof of the thesis of Theorem 1 in the main text.

APPENDIX C: DISSIPATIVE MAXWELL DEMON

Let us consider a generic finite-dimensional quantum sys-
tem. By diagonalizing the system Hamiltonian at time t = 0
as H = ∑

k Ek|Ek〉〈Ek|, the initial state can be written as ρ0 =∑
k,� ρk�|Ek〉〈E�|, where ρk� ≡ 〈Ek|ρ0|E�〉.
Then, we take again the characteristic function of

the TPM probability distribution P(�E , t ), i.e., G( jη, t ) =
〈exp(−η�E )〉t = ∑

i, f PiPf |i(t )e−η(E f −Ei ), which depends on
the energy scale factor η. In the following, we provide the
theoretical analysis carried out to test the validity of Theo-
rem 1 in some meaningful cases of the dissipative quantum
Maxwell demon shown in the main text. First, we consider a
case study with symmetric energy levels of a qutrit, which is
applicable to the NV center case for H ∝ Sz and a value of
the magnetic field inducing a Zeeman shift γeB much larger

than the so-called ground state level anticrossing (GSLAC).
Notably, this can describe also other exemplary cases, e.g., the
ground state of a 87Rb atom with F = 1. Second, we explicitly
study the case of a NV center relaxing the assumption of
γeB � �, while maintaining H ∝ Sz.

We consider that the qutrit has reached the asymptotic
regime such that Pf |i(t ) = Pf (∞). Hence, the expression of
G( jη∗, t ) = 1 at t → ∞ for a generic qutrit is

P1P3(∞)e−η∗(E3−E1 ) + P1P2(∞)e−η∗(E2−E1 )

+ P1P1(∞) + P2P3(∞)e−η∗(E3−E2 )

+ P2P2(∞) + P2P1(∞)e−η∗(E1−E2 ) + P3P3(∞)

+ P3P2(∞)e−η∗(E2−E3 ) + P3P1(∞)e−η∗(E1−E3 ) = 1, (C1)

where Pi and Pf (∞) are the initial and final asymptotic prob-
abilities, respectively. Thus, if we assume that E1 = 0, then

P1P3(∞)e−η∗E3 + P1P2(∞)e−η∗E2 + P1P1(∞)

+ P2P3(∞)e−η∗(E3−E2 ) + P2P2(∞) + P2P1(∞)eη∗E2

+ P3P3(∞) + P3P2(∞)e−η∗(E2−E3 ) + P3P1(∞)eη∗E3 = 1.

(C2)

1. Qutrit with symmetric energies

Assuming that the energy values of the qutrit are symmetric
around zero, we define E1 = 0, E2 = −E , and E3 = E with
E = h̄ω/2. In this way, by means of the substitution

x ≡ e−η∗E ⇐⇒ η∗ = − 1

E
ln x, (C3)

the equation
∑

i, f PiPf (∞)e−η∗(E f −Ei ) = 1 can be rewritten as
a polynomial equation in x. For a qutrit [see Eq. (C1)] the
polynomial equation is

(x − 1)[P2P3(∞) x3 + (P1P3(∞) + P2P1(∞) + P2P3(∞))x2

− (P1P2(∞) + P3P1(∞) + P3P2(∞))x − P3P2(∞)] = 0.

Clearly, the whole equation contains the trivial solution x = 1,
i.e., η∗ = 0, while solving the third-order algebraic equation

P2P3(∞) x3 + (P1P3(∞) + P2P1(∞) + P2P3(∞))x2

− (P1P2(∞) + P3P1(∞) + P3P2(∞))x = P3P2(∞) (C4)

provides us the other value of η∗ 
= 0 that obeys the fluctuation
relation limt→∞ G( jη∗, t ) = 1. In this regard, by applying
the Routh-Hurwitz criterion to polynomial (C4), we can also
prove that only one root of Eq. (C4) has a positive real part
different from 1. In fact, according to the Routh-Hurwitz
criterion, we recall that each variation (permanence) of the
sign of the coefficients of the first column of the Routh ta-
ble corresponds to a root of the polynomial with a positive
(negative) real part. In our case, there are always two sign
permanences and only one variation, for any possible value
of the probabilities Pi and Pf (∞). Being η∗ ∝ − ln x, only the
unique solution x 
= 1 with positive real part is physical, thus
returning the unique nontrivial energy scale factor η∗ such that
the fluctuation relation is valid.
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2. NV center with H ∝ Sz subjected to dissipation

As in the main text, for the case H ∝ Sz, we con-
sider {|0〉 , |±1〉} and {E0, E±1} as the three eigenstates and
eigenvalues of the qutrit. Thus, assuming that P±1(∞) = 0
and P0(∞) = 1, one gets

P0 + P1eη∗E1 + P−1eη∗E−1 = 1 (C5)

⇒ 1 − P1 − P−1 + P1eη∗E1 + P−1eη∗E−1 = 1 (C6)

⇒ P1(eη∗E1 − 1) + P−1(eη∗E−1 − 1) = 0. (C7)

Low field, γeB < �

E1 > 0 and E−1 > 0 imply η∗ = 0 as the only possible
solution.

As a proof, we can show that, by considering η∗ 
= 0,
Eq. (C7) is not satisfied:

If η∗ < 0 ⇒ eη∗E1 − 1 < 0 and eη∗E−1 − 1 < 0

⇒ P1(eη∗E1 − 1) + P−1(eη∗E−1 − 1) < 0. (C8)

If η∗ > 0 ⇒ eη∗E1 − 1 > 0 and eη∗E−1 − 1 > 0

⇒ P1(eη∗E1 − 1) + P−1(eη∗E−1 − 1) > 0. (C9)

High field, γeB > �

Recalling that E±1 = � ± γeB, in the limit of γeB � �,
Eq. (C7) reduces to

P1eη∗γeB(1 − e−η∗γeB) + P−1(e−η∗γeB − 1) = 0 (C10)

⇒ (P1eη∗γeB − P−1)(1 − e−η∗γeB) = 0. (C11)

The second part of the left-hand side leads to the trivial
solution η∗ = 0. Instead, by putting together the conditions
(P1eη∗γeB − P−1) = 0 [from Eq. (C11)] and Pi = e−βEi/Z , with
the Z partition function valid for any initial thermal state, we
obtain

P−1

P1
= eη∗γeB (C12)

⇒ η∗ = 1

γeB
ln [e−β(E−1−E+1 )] (C13)

⇒ η∗ = 2γeBβ

γeB
= 2β. (C14)

This result is confirmed by numerical simulations to evalu-
ate η∗, shown in Fig. 4 of the main text. Simulations are
obtained by setting the initial inverse temperature β, and
solving the condition G = 0 for the characteristic function
in the high-field limit. In addition, for each selected initial
temperature, we have iteratively derived η∗ while changing
B for γeB → �+ by using each solution as an initial guess for
the subsequent simulation run.
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