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The optional public goods game (OPGG) is a three-strategy model in which individuals can cooperate, defect,
or not participate. Despite its simplicity, this model effectively captures various social dilemmas, including those
involving public services, environmental sustainability, and broader societal issues. In this study, we investigate
how the reward (r) and group size of potential players (S) of public goods games influence the steady-state
coexistence of these strategies or the alternation of their dominance in a rock-paper-scissors dynamic. The OPGG
is simulated using Monte Carlo in a nonspatial scenario, meaning there is no topology connecting the agents,
allowing any player to interact with any other player. We show that under sufficiently noisy conditions, the system
consistently evolves to an absorbing state, with the prevailing strategy determined by the values of r and S. In
the range 2 � r � S, the system shows multiple stable absorbing states, with groups of size S = 4 exhibiting
more pronounced and transient rock-paper-scissors dynamics with longer average absorbing times. We present a
thorough analysis of our results in terms of the fraction of time the system spends in rock-paper-scissor cycles, the
number of cycles, and the average probability that the system relaxes to each possible absorbing state, including
scenarios where the system does not reach an absorbing state at all.
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I. INTRODUCTION

The natural emergence of cooperative behavior among
independent individuals has been a major focus of both bi-
ological and social research [1,2]. This interest is driven by
humanity’s pressing challenges—such as resource depletion,
pandemics, and global warming—that rely on cooperative
efforts for resolution. To address these challenges, researchers
seek to uncover the fundamental mechanisms within systems
of interacting agents that foster cooperation.

A key focus in this field is to understand how agents
perceive their roles and gains within a system. For example,
studies have shown that an agent’s perception of fairness
can determine whether a system evolves toward full coop-
eration or complete defection under specific conditions [3].
Additional research has explored various factors influenc-
ing cooperation, including individual absolute and relative
gains [4], payoff-based learning [5], cost- and benefits-based
learning [6], conditional cooperation [7–9], conditional
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defection [10], behavioral strategies and reputation [11],
among others [12–14].

A significant portion of researchers strive to understand
not only what causes cooperation to emerge but also what
enables it to persist over time [15–19]. This effort is driven by
the nearly inevitable emergence of free riding [7,20]—where
individuals exploit the collective effort of others for personal
gain, even when universal cooperation would result in greater
benefits for everyone. While mechanisms such as central pun-
ishment [21–23], peer-to-peer punishment [24], and rewards
[25] can foster cooperative behavior, they often rely on the
ability to identify and target individuals effectively [26].

To understand the promotion of cooperation in various
systems, several mechanisms in different topologies have been
proposed, such as information sharing between players [27],
agents’ spatial diffusion on lattices [28], punishment and
adaptation in regular graph social dilemmas [29], conditional
dissociation of defectors [14], and higher-order interactions
between players in complex networks [30]. For instance, Ma
et al. demonstrated that cycles of cooperation and free riding
can emerge in social systems, with free riders and cooperators
varying periodically depending on the community size and
individual costs of cooperation and defection [31].

Among the standard game-theoretic models used to de-
scribe social dilemmas [32], where private and collective
interests appear to conflict, is the public goods game (PGG).
The PGG is defined as a game where players are given the
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opportunity to invest their money in a shared fund, with profits
or gains of any kind distributed equally among all participants,
regardless of individual contributions. Ideally, it might seem
fair for individuals with similar financial means to contribute
equally to these projects. However, people differ in their social
and financial circumstances, meaning that some can afford to
invest more than others. One possible reason purely rational
players choose to invest nothing is that they may not be fully
aware of others’ contributions, leading them to defect for
short-term gain, even though this behavior ultimately con-
tributes to collective economic decline.

Among the various approaches to the PGG, one of the
earliest involves studying a single pool where players interact
and contribute to a shared public good. The dynamics of
this system are shaped by motivation, as modeled by some
authors [33–36]. This approach became widely known in the
context of evolutionary computing as the public investment
game (see, for example, Ref. [33]). In contrast, other authors
propose scenarios where agents participate in multiple groups
or contribute to separate pools [37], introducing more com-
plex interaction dynamics.

An important contribution to the PGG model was made
by Hauert et al., where the authors showed that voluntary
participation in the PGG introduces abstention as a stabiliz-
ing mechanism, allowing cooperators and defectors to coexist
[38]. This variation is denoted as optional public goods game
(OPGG) and serves as a valuable model for understanding
social conflicts and activities where cooperation is essential
but voluntary, allowing players that do not want to be ex-
ploited to opt out. A real-life example where a type of OPGG
can be observed is in the context of voluntary climate action
and sustainability efforts, where cooperators are those who
actively participate in sustainable practices, such as recycling
or reducing emissions, to benefit the environment. Defectors
choose not to contribute but still enjoy the cleaner environ-
ment that cooperators help create. Meanwhile, other players
neither contribute to nor benefit from these efforts, often
isolating themselves from environmental initiatives. In the
OPGG, players who choose to abstain from participating in
the game, receive a fixed payment, and become the so-called
loners.

The coexistence of the three strategies: cooperators (C), de-
fectors (D), and loners (L), as well as the cyclical dominance
[39] among them [i.e., rock-paper-scissors (RPS) dynamics],
has been identified as a possible outcome of the OPGG
when analyzed using mean-field replicator dynamics [40,41].
These findings are significant, as both equilibrium and cyclic
dominance scenarios suggest the spontaneous emergence of
cooperation.

However, these results were demonstrated to emerge only
for specific parameter ranges. A comprehensive analysis
across a broader set of parameters that promote cooperation
has yet to be conducted and warrants further investigation.
Questions about the statistics of the number, size, and du-
ration of cycles are essential for a complete understanding
of the problem. Therefore, an alternative numerical study of
the OPGG model is necessary, along with numerical sim-
ulations that relax the assumptions used in the mean-field
regime.

Two critical factors influencing public goods games are
the multiplication factor of the common pool and the size of
sample groups of potential players. The multiplication factor
has consistently been shown to enhance cooperation (e.g.,
Refs. [42,43]), whereas the impact of group size remains
debated. Larger groups are sometimes seen as less cooperative
due to coordination challenges [44,45], while others suggest
that they foster cooperation through increased diversity and
resource pooling [46,47]. Despite extensive studies of group
size effects in public goods games, both experimentally [47]
and theoretically [46,48], there remains limited understanding
of how these factors influence the OPGG.

In this paper, we present a comprehensive analysis of
the OPGG through simulations, exploring conditions for the
emergence of spontaneous cooperation. We examine whether
cooperation arises as coexistence in steady equilibrium states
or as alternating dominance among strategies in a rock-paper-
scissors manner. Our analysis focuses on the simultaneous
effects of the multiplication factor (r) and sample group size
(S) on the outcomes of the OPGG, addressing gaps in the
literature and shedding light on how these two key param-
eters influence the dynamics of spontaneous cooperation in
communities with no topological structure. In Sec. II, we
describe the model and the results are presented in Sec. III.
The summaries and conclusions are given in Sec. IV.

II. MODEL

We consider a population of N agents that can be found in
one of three possible states: C (cooperator), D (defector), or L
(loner). The OPGG evolves as follows:

(i) Two different agents, here denoted as i and j, are ran-
domly chosen from the population.

(ii) For each of the chosen agents, a set of S − 1 distinct
agents are randomly selected (uniform distribution) from the
N − 1 agents left giving rise to two groups: Si and S j . Both
groups can share one or more agents.

(iii) Each cooperator in a group contributes to the common
pool with a unit of wealth. Defectors participate, but without
contribution, while loners stay out of the game and expect a
fixed payoff σ of his/hers unit of wealth invested.

(iv) Payoffs are then calculated for the three strategies:

P =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

rNC
(NC+ND ) − 1 ; C

rNC
(NC+ND ) ; D

σ ; L

, (1)

where r is the multiplication factor of the public good, NC , ND,
and NL are the numbers of cooperators, defectors, and loners,
respectively, in the local configuration.

(v) With complete knowledge of Si and S j payoff informa-
tion, agent i chooses to switch to player j strategy according
to a transition probability only inspired by Glauber dynamics
(or Fermi-Dirac rule as referenced by other authors in the
literature), within the context of spin systems:

Pi→ j = 1

1 + e−(Pj−Pi )/k
, (2)
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where k is a parameter that measures the level of randomness
in the strategy-switching dynamics [49,50].

(vi) The steps above are repeated N times to make one
Monte Carlo step.

The sequential strategy imitation approach, adhering to the
transition probabilities described in Eq. (2), was chosen, as in
Refs. [50,51], for its flexibility in capturing a wide spectrum
of stochastic behaviors across two distinct scenarios: agent’s
deterministic change of strategy and purely random strategy
switching with intermediate level randomness in between,
which was shown to be important to promote cooperation [9].

In the limit k → 0, player i adopts the strategy of player
j if Pi < Pj and retains his or her own strategy otherwise.
In this regime, randomness arises only in the case where
Pi = Pj , with player i changing strategies with a probability of
1/2. On the other hand, when k → ∞, players exhibit a 1/2
probability of changing or retaining their strategy, irrespective
of the payoff differences between them.

Between these two extremes, the sequential strategy imi-
tation mechanism provides a continuum of stochastic levels,
offering varied levels of randomness and adaptability. To in-
vestigate the collective dynamical behavior of the system,
we follow the state of the system by measuring the fraction
(or density) of individuals in the three possible strategies,

ρ
(l )
C ≡ N (l )

C
N , ρ

(l )
D ≡ N (l )

D
N , and ρ

(l )
L ≡ N (l )

L
N , cooperators, defectors,

and loners, respectively, at a given time step l .
Under specific conditions, the system can exhibit a dy-

namic state where the dominant strategy changes in a steady,
cyclic manner, commonly referred to as rock-paper-scissors
(RPS) cycles. In our case, the cooperator-defector-loner
(CDL) cycle is a more suitable descriptor (or equivalently,
LCD, or DLC). We will use the terms RPS and CDL
interchangeably to describe instances of cyclic switching
strategies. We will denote the number of complete cycles
within a specified time frame by λ. Another important variable
for measuring the occurrence of RPS cycles was proposed in
Ref. [28], and it is defined as:

α ≡ 1

t f

∑
j

t j, (3)

where t j is the duration of the jth RPS cycle. The quantity
α measures the time fraction of the RPS cycles within the
evolution time frame t f .

To better understand how λ and α are measured, we re-
call that during a cooperator-defector-loner (CDL) cycle, one
strategy (X ) prevails over the others. This is expressed as
ρ

(l )
X > ρ

(l )
Y,Z (the density of agents using strategy X is greater

than the density of agents using the other two strategies at time
step l). Thus, if, within a given time interval, the dominant
strategies follow the sequence:

CDDLLL-CCDDLL-CDDLLLLL-DL,

where the last prevalent strategy in the sequence is L shown
in bold, then the number of complete RPS cycles is λ = 3 and
the time fraction with RPS cycle occurrence within the given
timeframe is α = (6 + 6 + 8)/22 ≈ 0.91. As one might think,
λ scales with time, while α does not.

In the next section, we present the main results obtained via
Monte Carlo simulations. For clarity, in this work, we only

studied initial conditions where all strategies were equally
likely to happen, i.e., ρ

(0)
C = ρ

(0)
D = ρ

(0)
L = 1/3. We also con-

sidered the payoff of the loner strategy to have a fixed value
of σ = 1, so there is no further reference to it in this work.

III. NUMERICAL SIMULATIONS

We first show four typical behaviors of the OPGG model
by presenting the evolution of the fraction of cooperators,
defectors, and loners for different values of the multiplication
factor r, while keeping the other parameters fixed at S = 5
(group size) and k = 0.1 (noise). Figure 1(a) shows that after
a few MC steps, the system reaches an absorbing state where
all agents adopt the loner strategy (ρL = 1) for r = 1; this is
expected because, with r = 1, the loner’s payoff is always
greater than that of the other strategies. In contrast, for r =
2.5, Fig. 1(b) shows that the evolution reaches a steady state
where all strategies coexist, with small fluctuations around
their mean values. Then, for r = 3.5, the three strategies still
coexist, but the collective behavior of the system changes
drastically, as can be seen in Fig. 1(c). The dynamics now
present large oscillations, with the prevalent strategy changing
cyclically corresponding to the emergence of RPS cycles.
Finally, in Fig. 1(d) we show that for a sufficiently large
return, i.e., r = 5, the system presents major fluctuations as
cooperators and defectors endures in a struggling dynamics
before reaching an absorbing state where all players defect. As
noted in Ref. [40], full cooperation is expected to happen for
r > S, once there is no more social dilemma, however, there is
a transition for r = S, where cooperators and defectors coexist
for longer as the payoff of both strategies tend to equality.

The presence of RPS cycles shown in Fig. 1(c) for the
specific set of parameters is in agreement with the results
obtained by Hauert et al. [40], using replicator dynamics.
To further investigate the presence of RPS cycles, we con-
ducted three independent runs (with different random seeds),
as presented in Fig. 2, using parameters N = 104, r = 3.5,
and k = 1. We observe that all three runs exhibit RPS cycles
with large oscillations but with different durations until the
absorbing state of defection is reached.

The absorbing time, denoted as τ , is the time at which
the system reaches an absorbing state (ρ (l )

X = 1) and remains
fixed as all other strategies become extinct. We infer that τ ,
along with the RPS cycle time fraction (α), the number of
RPS cycles (λ), and the final absorbing state, are random vari-
ables whose expected values (and higher moments) probably
depend on the parameters r, S, and k that govern the dynamics.

To better characterize the situation described above, we
define estimators for the probabilities of the system reaching
each of the three possible strategies as an absorbing state, as
well as not reaching an absorbing state at all. Here, we denote
the estimator to reach a strategy X as πX , where X = C, D, or
L, and define it as

πX ≡ 1

Nrun

∑
i

ξ
(i)
X , (4)

where

ξ
(i)
X =

{
1, if simulation reached absorbing state X ,
0, else. (5)
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FIG. 1. Evolution of the fraction of cooperators, defectors, and loners for (a) r = 1, (b) r = 2.5, (c) r = 3.5, and (d) r = 5. Each time
series was obtained with N = 104 (total population size), S = 5 (group size), and k = 0.1 (noise level).

The estimator [Eq. (4)] is calculated by summing the runs
(with different seeds) that resulted in an absorbing state of
the strategy X , divided by the total number, Nrun. If τ → ∞,
it indicates a nonabsorbing steady state, which is not com-
putationally feasible. To overcome this, we set a maximum
simulation time of tmax = 105 MC steps. If the system does
not reach an absorbing state by then, we consider ξ = 0.
This scenario contributes to the nonabsorbing state, where the
estimator is given by:

π ≡ 1 −
∑

X

πX . (6)

FIG. 2. Evolution of the strategies densities for r = 3.5 of three
runs with the same parameters N = 104 (system size), S = 5 (group
size), and k = 1 (noise level) but different initial random seeds.

In such cases, we do not compute a value for τ , but we do
measure α, which is straightforward to define as t f = tmax [see
Eq. (3)].

A. Population size effects (N)

A key aspect of our analysis is to determine the finite-size
scaling of the dynamics. In the mean-field approach in Ref.
[40], the population from which groups of agents are sampled
and invited to participate in a public goods game must be
sufficiently large and well mixed. Thus, for S = 8 and k = 1,
we investigate how different population sizes (N) affect the
average absorbing times (τ ), the occurrence of RPS cycles (α
and λ), and the probability of reaching each possible steady
state. We studied the expected values and standard deviation
of τ , α, λ, and π as a function of r in the range r ∈ [1, 10],
where each point was obtained from Nrun = 104 samples (time
series with identical parameters but different seeds). We fixed
the maximum simulation time at tmax = 105 MC steps, as
previously stated, which means that the simulation ends if no
absorbing state was reached until then.

In Fig. 3, we show the results for 〈τ 〉 [Fig. 3(a)], 〈α〉
[Fig. 3(b)], and 〈λ〉 [Fig. 3(c)]. In Fig. 4, we show the re-
sults for the steady-state estimators where we use the symbol
π (without bar or subscript) to indicate the probability of
reaching any possible steady state (absorbing or not). The first
thing we notice in Figs. (3a)–3(c) is that the results become
more prominent as larger systems are considered. Similarly,
in Fig. 4, we observe a finite-size scaling through π as the
boundaries of the region where 2 � r � 8 show an abrupt
crossover of loners to cooperators at r ≈ 2 and defectors to
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FIG. 3. Study of the system size considering a fixed sample
group size S = 8. We show (a) the average absorbing time, (b) the
average time fraction with RPS cycles, and (c) the average number
of cycles within the simulation time spam as functions of r. Each
point was obtained from a sample size of Nrun = 104.

cooperators when r = 8. As another general remark, within
this region, we can identify a range of mixed dynamics with
multistability of the absorbing state occurring in more narrow
intervals of the vicinity of r = 3 as larger systems are consid-
ered.

Additionally, for r � 2.5 we start to observe the emergence
of RPS cycles as larger populations are taken into account, as
shown in Figs. 3(b) and 3(c), suggesting that larger systems

FIG. 4. Probabilities of reaching an absorbing state (or not) as
a function of r, for different system sizes (a) N = 24, (b) N = 26,
(c) N = 28, (d) N = 210, and (e) N = 212 for fixed S = 8. Each point
was obtained by averaging over 104 runs.

provide a more favorable environment for the occurrence of
RPS cycles. The maximum peak of 〈α〉 shifts slightly from
r ≈ 3.5 to r ≈ 3 as the population increases from N = 26 to
N = 212, as we can see in Fig. 3(b). Furthermore, it can be
observed in Fig. 3(a) that RPS cycles are sustained for longer
periods in larger systems. For instance, when comparing N =
210 and N = 212, the peak of the average number of cycles
(〈λ〉) increases approximately by a factor of 3, while 〈τ 〉
increases approximately by a factor of 10 at its peak. Again,
the increase in the average RPS time fraction from 〈α〉 ≈ 0.8
to 〈α〉 ≈ 0.9 reinforces the conclusion that RPS cycles persist
for extended durations in larger systems.

In parallel, we note that the estimators π present a more
complex scenario within the region 2 � r � 8 than the results
of Fig. 3 might suggest. Studying the case of N = 212, we
begin by looking at the vicinity of r = 2, we observe that the
system crosses over abruptly from a certain absorbing state of
loners (πL = 1) to a certain steady state of cooperators, main-
taining this cooperative trend until r ≈ 2.5. Beyond this point,
multistability emerges as the other two strategies gradually be-
come more likely absorbing states, reaching a regime around
r ≈ 3 where the system is almost equally probable to relax to
cooperator, loner, or defector. Interestingly, every single run
in the sample reached an absorbing state for the parameters
studied, as shown by the green curves in Fig. 4 (π = 0). This
suggests that the stochasticity level of the strategy-switching
dynamics (k) is seemingly high enough to prevent the system
from resting in a steady state of coexistence.
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Finally, when r ≈ 8, we observe in Fig. 4 that the sys-
tem presents another abrupt crossover by switching from the
known defector’s economic stalemate as free riders take over
the dynamics to a scenario where the public goods game re-
ward (r) is sufficiently high to allow the cooperation to be the
most profitable strategy even if free riding is still a valid strat-
egy. This crossover is also reflected in the average absorbing
time (〈τ 〉), which shows a peak for r ≈ 8 as we can observe in
Fig. 3(a). This specific finding aligns remarkably well with the
results of the replicator dynamics approach discussed in Ref.
[40]. In the next section, we discuss the underlying reasons
behind this alignment as we present our study results on the
influence of sample group sizes (S).

B. Sample group size effects (S)

We now show the sample group size study and show how
it affects the emergence of RPS cycles and the overall sys-
tem dynamics. In this analysis, we fixed the population at
N = 213 and the noise parameter at k = 1, and studied how
the measurements 〈τ 〉, 〈α〉, 〈λ〉, and π change as a function
of r for different sample group sizes. In Fig. 5(a), we show
the average time to reach the absorbing state. We observe
that the system transitions from a regime with short absorbing
times for S = 2, where the absorbing time does not depend
on the OPGG reward r, to a sharp increase beginning around
r ≈ 2 for S = 22. For this group size, at r � 3, the system
reaches a maximum average time of approximately 25 × 103

MC steps to reach an absorbing state. Interestingly, for larger
sample groups, such as S � 23, 〈τ 〉 decreases compared to
S = 22, indicating that some mechanism in smaller groups is
responsible for sustaining the dynamics for much longer.

The longer duration of the evolution towards an absorbing
state occurs because the RPS cycles are more likely to occur
with smaller groups, as we can see in Fig. 5(b), where we
show the average fraction time with RPS cycles. Cooperation
seems to persist longer within RPS cycles in contrast to Ref.
[52]. We observe that in the same manner that 〈τ 〉 shows
a spike for S = 22, 〈α〉 also has a maximum value for the
same group size, but 〈τ 〉 shows its peak at r ≈ 2.5, while
〈α〉 shows to be maximum at r ≈ 2.8. However, for larger
group sizes such as S = 23 and S = 24, we observe that the
RPS cycles are kept for higher values of r, even if it is for
shorter times, as shown in Fig. 5(a). As a complementary
result, we show in Fig. 5(c), that the average number of RPS
cycles also shows rapid growth in the interval 2 � r � 3 when
considering sample groups of size S = 24.

Finally, in Fig. 6, we present the probabilities of the system
reaching or not reaching an absorbing state, that is, π , as a
function of r for sample group sizes (a) S = 2, (b) S = 22, (c)
S = 23, and (d) S = 24 using the same set of parameters as in
the previous results.

As an overview, the system shows the clear behavioral
pattern divided into three distinct regions as previously seen in
Fig. 4. Here, however, it has a more pronounced dependence
on S. For values of r � 2, the system settles consistently in an
absorbing state dominated by loners. When r � S, the system
relaxes into a stable state of cooperators. In the intermediate
range, where 2 < r < S, changes in the likelihood of the sys-
tem reaching a specific steady state become more abrupt for

FIG. 5. Effect of the group size of the game on (a) the average
time to reach an absorbing state, (b) the average time fraction with
RPS cycles, and (c) the average number of cycles within the simula-
tion time span as functions of r. Each point was obtained for a system
of size N = 8192, averaging over 104 runs.

smaller sample sizes (S). Specifically, for S = 2, the system
undergoes an abrupt crossover in the absorbing strategy from
loner to cooperator, without any intermediate multistable state
for the increment of the 	r used. For S � 22, there is a narrow
region where cooperators remain the most likely absorbing
state for 2 < r < 2.5. However, near r ≈ 2.5, the average
absorbing time increases to approximately 〈τ 〉 = 7 × 104 MC
steps, as shown in Fig. 5(a), with nearly half of the runs taking
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FIG. 6. Probabilities of reaching an absorbing state (or not) as
functions of r for (a) S = 2, (b) S = 22, (c) S = 23, and (d) S = 24.
Each point was obtained for a system of size N = 8192, averaging
over 104 runs.

even longer, i.e. π ≈ 0.5. When r � 2.5, defectors become the
most likely absorbing state, coinciding with the peak of tran-
sient RPS cycles, which persist until r ≈ 3.9 near where the
expected abrupt crossover defector-cooperator occurs (r ≈ S).
After this value of r the RPS cycles vanish.

Finally, for S � 23 [see Figs. 6(c), 6(d)], the multistabil-
ity of the absorbing states in the region 2 < r < S becomes
smoother as the sizes of the sample groups increases. Specifi-
cally, when S = 23, the dynamics show cooperators decaying
as absorbing strategy for 2.5 < r < 4, with loners and defec-
tors emerging as compelling strategies. Although for S = 23,
loners have a peak at r ≈ 3, defectors take over as the steady
state strategy up until r ≈ S. For S = 24, loners appear as the
most likely absorbing strategy in the range of 3 � r � 5.5.
Additionally, larger sample groups exhibit a smoother transi-
tion in absorbing states.

Hauert et al. [40] have previously pointed to the fact that
cooperation prevails when r � S, however, a more thorough
explanation of this phenomenon is warranted. To understand
the scenario in which voluntary cooperation becomes the pre-
vailing strategy when the OPGG multiplication factor (r) is
equal to the sampled group size (S), we first must realize that
for this value of r, the loner strategy quickly disappears after
a few MC steps. As a result, the sample group S reflects the
participants in the public goods game.

Thus, let us consider two groups, A and B, each of size S.
Group A consists of n defectors and S − n cooperators, while
group B is entirely made up of cooperators. So, the payoff for

a defector in group A is

(S − n)r

S
,

while the payoff of cooperators in B is r − 1. If a defector in
the group A compares its payoff with any participant in the
group B, it will shift to cooperation when the relation

(S − n)r

S
< r − 1

is satisfied. That is, if nr > S. So, the critical situation for any
number of defectors n occurs when r = S.

IV. CONCLUSION

We have conducted a detailed study of the conditions under
which cooperation emerges in an optional public goods game
(OPGG), demonstrating the emergence of cyclical dynamics
akin to rock-paper-scissors interactions among the three pos-
sible strategies of the system. Our analysis reveals nonlinear,
oscillatory behavior in the dynamics of cooperation, where
each strategy dominates in turn within certain regions of key
parameters, rather than the system settling into a fixed point.
These transient cycles suggest that the conditions for the
emergence and stabilization of cooperation are complex, with
significant implications for understanding collective action in
biological, social, and economic contexts.

Previous studies have attributed the emergence of cycles in
OPGG to the inclusion of the third strategy, opting out of the
game (loners), which introduces cyclic dominance. However,
our findings demonstrate that while the inclusion of loners
is necessary for this behavior, it is not sufficient on its own.
For the spontaneous emergence of cycles, several nontrivial
conditions must be met, which we summarize as follows:

(i) There are specific values of the parameter r that trigger
rock-paper-scissors dynamics.

(ii) The group size S of participating players must be sig-
nificantly smaller than the total population size (S 
 N).

(iii) The composition of each group changes at every iter-
ation, ensuring no fixed interaction pattern. This setup mirrors
the conditions of the social experiment reported in Ref. [20].

(iv) The absence of a local interaction structure, i.e., the
possibility for any agent to interact with any other within a
fixed group size, makes the setup analogous to a mean-field
approach, leading to the observed oscillations in strategy dom-
inance.

It should be noted that additional mechanisms are also able
to induce RPS cycles. In Ref. [28], the authors demonstrate
that dilution and mobility in two-dimensional square lattices
can also trigger this phenomenon. As a result, PGG, and even
more so OPGG, are compelling protocols in game theory,
and their theoretical investigations and applications warrant
further exploration.

Some limitations of this study warrant further exploration.
For instance, the multiplicative factor r could be modeled
as a more elaborate function that accounts for seasonality,
resource limitations, and the influence of noise over time.
Future studies should also incorporate parameters that govern
the evolution of other moral behaviors, such as truth telling
[53], or more specifically, the dynamics of lying in mixed pop-
ulations, gossip, and the development of trustworthiness [54].
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Another important avenue for future research is the
introduction of mechanisms involving fake cooperators to
sustain cooperation within society. These agents, potentially
introduced by governmental institutions, could help maintain
cooperation levels and enhance the implementation of public
goods.

Additionally, the study of goods with mixed capital—
public and private—merits attention to improve the efficiency
of public projects. This could include exploring tax exemp-
tions or other mechanisms that facilitate the development and
execution of such initiatives.
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