
PHYSICAL REVIEW E 110, L033301 (2024)
Letter

Efficient machine learning approach for accurate free-energy profiles and kinetic rates

Timothée Devergne
Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR 7590 CNRS, Sorbonne Université,

Muséum National d’Histoire Naturelle - Paris 75005, France;
Atomistic Simulations, Italian Institute of Technology, 16142 Genoa, Italy;

and Computational Statistics and Machine Learning, Italian Institute of Technology, 16142 Genoa, Italy

Leon Huet , Fabio Pietrucci, and A. Marco Saitta
Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR 7590 CNRS, Sorbonne Université,

Muséum National d’Histoire Naturelle - Paris 75005, France

(Received 6 November 2023; accepted 1 August 2024; published 3 September 2024)

The computational exploration of reactive processes is challenging due to the requirement of thorough
sampling across the free energy landscape using accurate ab initio methods. To address these constraints,
machine learning potentials are employed, yet their training for this kind of problem is still a laborious and
tedious task. In this study, we present an efficient approach to train these potentials by cleverly using a single
batch of unbiased trajectories that avoid the pitfalls of trajectories artificially biased along a suboptimal collective
variable. This strategy, when integrated with current enhanced sampling techniques, allows to obtain free energy
profiles and kinetic rates of ab initio quality, yet dramatically reducing the computational cost.

DOI: 10.1103/PhysRevE.110.L033301

Introduction. Atomistic computational studies of chemical
reactions in solution are essential for gaining a compre-
hensive understanding of their complexity and underlying
microscopic mechanisms. The primary aim is to accurately
describe the reactive process, enabling the recovery of crucial
kinetic and thermodynamic information [1,2]. This informa-
tion can be compared with experimental data to enhance our
understanding of laboratory-observed reactions and provide
valuable guidance to experimentalists. To validate identified
mechanisms, computational results must be compared with
experimentally measured equilibrium constants and kinetic
rates. However, computing these quantities poses significant
challenges.

To address the challenge of time limitations in simulations
compared to experimental reaction times, several enhanced
sampling techniques are typically employed [3], such as meta-
dynamics [4] and umbrella sampling (US) [5]. In our previous
studies [6–8], metadynamics is used as an exploratory tool,
allowing for the exploration of the first transition trajectory
between two metastable states. We subsequently employ US
to sample the free energy landscape by projecting the reaction
mechanism onto a collective variable (CV), divided into nar-
row bins. From these calculations, we obtain the free energy
profile along the sampled path, thus providing crucial infor-
mation about the free energy difference between reactants
and products and the activation barrier. The free energy dif-
ference (�F 0) directly correlates to the equilibrium constant
(K) through an exponential relation at inverse temperature β :
K = exp(−β�F 0). However, accurately obtaining the kinetic
rate poses challenges and often relies on the reactive flux
formalism [9], demanding significant statistical sampling, or
on less-accurate transition state (TS) theory.

To perform the CV projection in a kinetically meaningful
way, a comprehensive understanding of the targeted mech-
anism is essential. Transition path sampling (TPS) and its
variants [10] serve as valuable techniques for gathering in-
formation about the mechanism. TPS samples the transition
path ensemble by performing numerous relaxation trajectories
starting from the top of the free energy barrier, faithfully
reproducing (at convergence) reactive trajectories that would
be observed in unbiased, unfeasibly long simulations. TPS has
been recently used to extract free-energy landscapes and rates
from optimal Langevin models [11], as well as to identify
optimal CVs [12–15]. In this work, we adopt the TPS variant
called “shooting from the top” [16]. Due to the considerable
number of trajectories needed to explore the transition path
ensemble and devise a CV, the use of ab initio molecular
dynamics (AIMD) calculations with this technique remains
limited, often favoring heuristic reaction-dependent CVs to
reduce computational costs. Moreover, obtaining high-quality
kinetics necessitates a vast number of transition trajectories.
Thus, achieving a balance between a good TPS-based CV,
accurate statistical sampling, and reliable kinetics poses a
challenge [13].

To address the computational cost problem associated with
reactive rare events, researchers have developed machine
learning interatomic potentials (MLIPs) [17–21]. MLIPs learn
the potential energy surface (PES) from ab initio atomic
configurations, energies, and forces, enabling AIMD-quality
molecular dynamics at a reduced computational cost. MLIPs
have shown great promise in expanding the reachable time and
length-scales of equilibrium systems [22] and reducing the
computational cost of simple systems [23]. However, building
MLIPs for reactive rare events is more challenging, as the
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FIG. 1. Computational protocol proposed in this study: first the system is equilibrated, then ab initio TPS simulations are run to train a
machine learning potential that is in the end used to compute free-energy landscapes (umbrella sampling) and kinetic rates (reactive flux).

training set must sample the entire reactive space, includ-
ing configurations where the system is out of equilibrium,
i.e., very unlikely and unstable configurations that are not
accessible using unbiased molecular dynamics alone. To over-
come this problem, researchers have devised methods to train
MLIPs from biased trajectories which requires the definition
of a CV and hence, the prior knowledge of the transition
mechanism [8,24–26], but the use of the MLIPs is often re-
stricted to one usage in the sampling protocol. On the other
hand, TPS simulations produce unbiased trajectories starting
from the top of the barrier and ending in the equilibrium
basins, i.e., including valuable information about the whole
reaction path. Even though a first reactive trajectory is needed
to initialize TPS, the algorithm subsequently finds automati-
cally, in an iterative way, the most probable transition states.
TPS thus avoids the negative effects of using a suboptimal CV
in biased methods, that potentially lead to reactive trajecto-
ries sampling unlikely configurations, different from unbiased
ones. This is why MLIPs in combination with unbiased TPS
data are a promising solution to the computational cost issue
as well as to the accuracy issue, facilitating predictions of
kinetics and thermodynamics at the ab initio level in reactive
systems.

Building on previous studies of relatively low-barrier pro-
cesses [27,28] relying on gas phase systems or long MD
simulations, in this work, we propose an approach, suited to
high-barrier reactive processes, that employs MLIPs trained
with unbiased TPS data, to accurately predict both thermody-
namic equilibrium constants and kinetic rates. In this method,
AIMD calculations are only required to build a training set,
all the rest being taken care of by the MLIP. Our method
incorporates several previously mentioned enhanced sampling
techniques, most notably metadynamics, TPS, and umbrella
sampling. The workflow is summarized in Fig. 1. In this
scheme, unlike previous works, our training method relies
solely on unbiased trajectories starting from the top of the
barrier, relaxing into the reactants and products basins. This
means that all the information necessary to describe a reactive
process is contained within the TPS simulations which is one
of the key results of this study. This allows CV tuning with-
out retraining the MLIPs. Furthermore, our MLIP training
does not demand detailed prior knowledge of the reaction
mechanism.

We demonstrate the effectiveness of our proposed ap-
proach by applying it to the extensively studied SN 2 substi-
tution reaction, where a chlorine atom in the methyl-chlorine
molecule is substituted by a chloride ion previously solvated
[29–31]. The composition of the simulation box can be found
in the Supplemental Material [32]. Comparing our MLIP-
generated free energy profiles with ab initio calculations
reveals excellent agreement. Furthermore, we employ the
Bennett-Chandler formalism to compute exact kinetic rates,
accounting for recrossing events not captured by transition
state theory (TST).

Generation of the dataset and training the models. In order
to run TPS shootings, a first transition trajectory is obtained
using metadynamics. To measure the progress of the reaction,
we use a path CV (indicated with s2) defined only on two
references (the reactants and the products) [33,34], employing
as metric the square of the Euclidean distance between the co-
ordination patterns of the reactive atoms of the current frame
and the reference ones (see the Supplemental Material [32] for
more information). This includes solvent effects, and has al-
ready been successfully used in many studies [7,35,36]. After
obtaining an approximate free energy landscape, this vari-
able is used to locate the barrier-top region in the “shooting
from top scheme.” At convergence, the unbiased mechanism–
possibly different from the first guess–is sampled. For this
specific reaction, a simple CV is often used in the literature
[13,29–31]: the difference between the two chlorine-carbon
distances, indicated with d1 − d2. We will also consider it in
this work to compare with previous studies.

Using TPS, 220 unbiased trajectories bridging reactants
and products are generated. This gives us a variety of tran-
sition paths and TS that describe well the transition path
ensemble. We used the 54 accepted trajectories as a training
set. In Fig. 2 the TPS trajectories are projected on the two
aforementioned CVs: d1 − d2 and s2.

These trajectories contain different unbiased reactive paths,
which, as we will demonstrate, grasp the whole diversity of
the atomic environment of the reactive atoms and the solvent
during the reaction. This is the key to training a MLIP which
relies on the representation of local atomic environments.
Therefore, we used these TPS trajectories as training data
along with the method we devised in a recent work [8]. To
do so, we use the DEEPMD smooth-edition package [37,38]
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FIG. 2. TPS training trajectories projected on different CVs:
(a) the difference between the two chlorine-carbon distances, d1 −
d2, and (b) the path CV s2 defined over the two reference states
represented by reactants and products.

which is based on a Behler-Parrinello [17] structure. In these
models, the total energy of the system is expressed as a sum
of individual atomic contributions, each of these is computed
using a separate neural network, with the condition that the
neural networks associated to atoms of the same species have
the same weights to ensure permutation invariance. The input
of each neural network must respect the symmetries of the
system, which is why descriptors are used. In this package,
they are computed using an embedding neural network [37].
To deal with the heterogeneity of the system, that is intrinsic
to reactions in solution, and to avoid water molecules to have
an overwhelming weight in the training of the potential, we
use a custom loss function to optimize the neural networks
weights, which is defined by Eq. (1):

L(w) = 1

|B|
∑
l∈B

[
pE

∣∣El − Ew
l

∣∣2

+ p f
1

Nelem

N∑
i=1

1

ni

∣∣Fl,i − Fw
l,i

∣∣2

]
, (1)

where ni is the number of atoms of the same element as atom
i in the system, Nelem is the number of different elements in
the system, El and Fl,i denote the DFT energies and forces of
the training set, while Ew

l and F w
l are the forces and energies

computed by the MLIP, and B is the batch size (i.e., the num-
ber of trajectory frames). w denotes the set of parameters of
the neural networks. By weighting with n−1

i the force-related
terms, we ensure that each atomic species has the same weight
in the training process.

Umbrella sampling simulations and validation of the model.
As explained above, in order to obtain the full free energy pro-
file along a RC, US simulations are preformed. In this method,
the space is divided into bins called windows, in which a
quadratic potential is introduced to force the system to stay
within the vicinity of the center of the window. Then, all the
statistics from all the simulations are gathered to get the free
energy profile using the weighted histogram analysis method
(WHAM). In the rest of this work, we use 60 windows with a

spring constant defined by k = kBT/(�s/2.5)2, where �s is
the space between the center of two adjacent windows. All the
molecular dynamics simulations were performed using code
LAMMPS [39] patched with plumed 2.5 [40,41]. A timestep
of 0.5 fs was used along with a Nosé-Hoover chain thermo-
stat with a target temperature of 300 K. At the end of the
process, the data points are carefully examined to avoid any
hysteresis effect in the transition. All the free energy profiles
are computed with the WHAM algorithm implemented in the
Grossfield code [42]. In order to assess uncertainty in the FES
estimation, the simulations are sliced in four, the two first
are discarded as equilibration while the free energy is com-
puted independently on the last two. The difference between
these two profiles provides us the statistical uncertainty. The
free energies were computed using 150 bins and a tolerance
of 10−7.

At first, we assess the quality of the training set by quan-
tifying the ability of our MLIP to recover thermodynamics
data. To do so, we perform US simulations on the d1 − d2 CV
with different training sets. For each training set, we train a
committee of four neural networks [43] that differ only on
the random seeds that are employed for training. During a
simulation, at time t , we use the following disagreement on
the prediction of the forces as a metric for the accuracy of the
prediction:

σmax(t ) = max
i∈[1,Natoms]

√√√√ NC∑
k=1

∣∣F(k)
i,t − Fi,t

∣∣2
, (2)

where NC = 4 is the size of the committee, F(k)
i,t is the force

predicted for atom i by committee member k, and Fi,t is the
average prediction of the committee. As explained in Ref. [8],
σmax is also used to perform a “mirror reflection” keeping
the simulation within the region in which MLIP forces are
reliably estimated. The results obtained with the different
MLIPs are presented in Fig. 3. The free energy obtained
with an insufficient number of training trajectories is quite far
from the reference AIMD one, but, as the number of train-
ing TPS trajectories increases, the MLIP gives a better and
better approximation of the reference free energy. In the end,
we kept the MLIP with 60 training trajectories as it seemed
convergence had been reached, in the sense that adding more
configurations in the training set did not increase the accuracy
of the predictions. In the following of this work, we use this
MLIP, which satisfactorily reproduces the ab initio results
for a significantly lesser computational cost. The difference
between the barrier found with ab initio and MLIP calculation
might be explained by the fact that more simulations were
perfomed with the MLIP. This hypothesis is also supported
by the free-energy difference between the reactants and the
products: since the reaction is symmetric, it should be zero,
while it is not in the AIMD case due to insufficient sampling.

Committor analysis. A crucial point in the atomistic study
of chemical reactions and structural transformation is the
analysis of transition pathways and TS. A rigorous method
for identifying TS relies on committor analysis. This involves
initiating a large number of unbiased trajectories from a
presumed TS configuration with initial velocities randomly
picked from the Maxwell-Boltzmann distribution. By doing
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FIG. 3. Free energy along the d1 − d2 collective variable for a
training set made of 18 (blue), 24 (orange), 30 (green), and 60 (red)
training trajectories compared with the reference ab initio free energy
(black).

so, the probability of transitioning from this configuration to
the product state can be calculated by determining the ratio
of trajectories reaching the products to the total number of
trajectories. This computation yields the committor probabil-
ity, denoted as q, and a TS is defined as a configuration with
q = 0.5. However, in the majority of ab initio studies, the
computational demands of such techniques are so substantial
that the selection of candidate configurations is minimized,
and frequently, the number of shooting trajectories is limited
to around ten [7,44]. In contrast, using our MLIP, we initiated
500 trajectories from a total of 1196 configurations in the
training set, each with random initial velocities. The resulting
analysis is presented in Fig. 4, displaying the calculated q
values along the d1 − d2 collective variable. This approach
provides a clear understanding of the transition mechanism

FIG. 4. Empirical committor function q as a function of d1 − d2

computed on configurations from the training set. Data points were
put into bins, the error bars correspond to the standard deviation of
the empirical committor within each bin.

FIG. 5. (a) Free-energy landscape based on MLIP-US simula-
tions along a path CV devised with MLIP-TPS reference frames
(s12,ML). (b) The corresponding landscape obtained using ab initio
US along a path CV devised with ab initio TPS reference frames
(s12,ab init io).

along this collective variable and, as expected, we observe that
the point where q=0.5 corresponds to d1 − d2 = 0.0.

Thanks to the unbiased nature of the training set, the
MLIP can be used in combination with another CV without
retraining. Moreover, it can also be used to perform additional
TPS shootings. We thus expanded the ab initio dataset, and
from these trajectories, frames were chosen according to the
protocol defined in Ref. [13] to define a more detailed path
CV [33], s12,ML. We then performed new US simulation along
this path CV.

The results, presented in Fig. 5, indicate that the MLIP-
based free-energy profile along s12,ML compares well with the
corresponding ab initio one, as well as with the one computed
along the heuristic CV d1 − d2.

We have thus demonstrated that MLIP-driven free-energy
profiles comparable to ab initio ones can be obtained for a sig-
nificantly lesser computational cost: 60 MLIP-US simulations
(20 ps per window) required 12 000 CPU.h on Intel Cascade
Lake 6248 processors, while ab initio ones required 864 000
CPU.h. The most expensive part of the ML protocol (140 000
CPU.h) is the generation of the ab initio training set.

Computation of the rate constant. A major challenge in
the study of chemical reactions is the calculation of realistic
rate constants. Indeed, they are seldom computed in ab initio
studies taking into account recrossing events, because of the
formidable computational burden.

In principle, a well-known approach is the reactive-flux
definition of the rate [9,45], employing unbiased trajecto-
ries started close to the barrier top, q(0) = q∗ (with q the
chosen CV):

kRF (t ) = 〈q̇(0)δ(q(0) − q∗)hB(q(t ))〉
〈hA〉 , (3)

where q̇(0) is the value of the CV derivative at the start of the
simulation, q∗ is the value of the CV at the TS, and hB,A are
indicator function of reactants A and products B, respectively.
This correlation function should reach a plateau for times
larger than the typical molecular time scale. The rate can be
evaluated by generating N trajectories starting close to the
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TABLE I. Transmission coefficient κ obtained from ab initio
TPS (500 shootings) or MLIP-based TPS (5475 shootings). As the
reaction is symmetric, we took the average over forward/backward
transitions, and the uncertainty was assessed as the deviation between
the two directions.

Machine learning Ab intio

κ for d1 − d2 0.498 ± 0.009 0.54 ± 0.05
κ for s12,ML 0.25 ± 0.02 0.25 ± 0.08

barrier top, knowing the free-energy profile F (q):

kRF (t ) =
∑N

i=1 q̇i(0)hB(qi(t ))

N

e−βF (q∗ )∫
�A

e−βF (q)dq
, (4)

where �A is the reactants domain. The first term is extremely
expensive to compute, as it typically needs 103–105 trajecto-
ries to reach statistical convergence (this is the main reason
why less-accurate TST is often used instead). In the latter for-
mula, the barrier term and the trajectory average term are both
potential sources of error for the MLIP rate. Hence, to validate
the calculation of kinetic rates using MLIPs, we will first com-
pute the transmission coefficient κ , which also characterizes
the deviation of the system from transition state theory

κ = kRF

kT ST
=

∑N
i=1 q̇i(0)hB(qi(t ))∑N

i=1 θ (q − q∗)q̇i(0)
. (5)

It is commonly considered that better reaction coordinates
(i.e., close to the committor, ideal coordinate) have a relatively
large κ , while poor CVs have a smaller κ [46]. To compute the
rate constant, and the transmission coefficient, we performed
5475 MLIP-TPS shootings. The ab initio values are computed
using 500 shootings. The values of κ are reported in Table I:
MLIP and ab initio results are similar within error bars.
This means that the kinetic information obtained with the
MLIP is consistent with the ab initio behavior. Moreover, the
values obtained here are close to the ones given in Ref. [31]
of 0.39 ± 0.07 for d1 − d2, thus supporting the validity and
strength of our method. The values of κ also allow us to
compare the quality of the CV. Here, κ is almost twice as high
for d1 − d2 than for s12,ML which means that d1 − d2 should
be a better collective variable than the path CV. This is also
the conclusion we reached in Ref. [13] by using a criterion
based on the committor.

Using all the methods listed above, we report the most
important, experimentally measurable quantities in Table II.
The small difference (1–2 kcal/mol, i.e., 2–3 kBT ) between
ab initio and MLIP barriers is enough to explain the dis-
crepancy between the corresponding rate values (due to their
exponential relation). The difference between the values re-
ported in this work and the ones from other numerical

TABLE II. Relevant thermodynamic and kinetic quantities: the
equilibrium constant Keq, the barrier height �F ‡, and the kinetic
rate k. For the estimation of �F ‡ and k, the free energy profile
was symmetrized, since reactants and products are the same species
(giving a theoretical Keq = 1).

Machine learning Ab initio

Keq for d1 − d2 0.8 ± 0.6 0.06 ± 0.07
Keq for s12 0.7 ± 0.4 0.03 ± 0.04
�F ‡ for d1 − d2 20.0 ± 0.6 kcal/mol 22.5 ± 0.2 kcal/mol
�F ‡ for s12 23.0 ± 0.4 kcal/mol 23.6 ± 0.7
κ for d1 − d2 (6 ± 2) × 10−3 s−1 (3 ± 4) × 10−4 s−1

κ for s12,ML (1.0 ± 0.7) × 10−5 s−1 (3 ± 2) × 10−5 s−1

studies [31] could probably be explained by the difference
in electronic structure calculation methods, particularly the
difference in the exchange-correlation functional used or the
QM/MM method.

The reaction being symmetric, it is experimentally hard to
characterize the activation barrier, it was, however, indirectly
computed by interpolating the activation barrier of nonsym-
metric reactions of the same type and the value commonly
accepted is 26.5 kcal/mol [47,48]. The discrepancy observed
between this work and the experimental value is likely to
be due to DFT inaccuracy rather than a MLIP error, since it
was also observed with DFT calculations. Overall, with the
MLIP we performed two sets of US simulations and 5475 TPS
shootings, for a total of 3.5 ns of simulations and a cost of 167
400 CPU.h (including the training set generation). If this study
was performed fully ab inito, the total CPU time used would
be 2 448 000 CPU.h.

Conclusion. In conclusion, this Letter demonstrates the
remarkable capability of MLIPs, trained by using one batch
of short, out-of-equilibrium, and computationally affordable
trajectories, originating from the TS of rare events. Lever-
aging US and TPS simulations, we have proven that this
MLIP is highly effective in computing experimentally relevant
quantities, such as free energies and kinetic rates.

The breakthrough achieved in this study paves the way
for the description of intricate and elusive phenomena, such
as more complex chemical reactions in solutions, crystal nu-
cleation, or structural phase transitions, with ab initio level
accuracy, while significantly reducing computational costs,
opening up new avenues for ML-based research in compu-
tational condensed matter and materials science.
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