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Extreme fractal dimension at periodicity cascades in parameter spaces
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In the parameter spaces of nonlinear dynamical systems, we investigate the boundaries between periodicity
and chaos and unveil the existence of fractal sets characterized by a singular fractal dimension that deviates
greatly from the fractal sets in their vicinity. This extreme fractal dimension stands out from the typical value
previously considered universal for these parameter boundaries. We show that such singular fractal sets dwell
along parameter curves, called extreme curves, that intersect periodicity cascades at their centers of stability
across all scales of parameter spaces. The results reported here are generally demonstrated for the class of
one-dimensional maps with at least two control parameters. Generalizations to other classes of systems are
possible.
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Introduction. In nonlinear systems, order and chaos are two
profoundly contrasting dynamics, yet they often intricately
intertwine within the system’s parameter spaces. Although the
domains of parameter sets corresponding to chaotic attractors
are generally not continuous, they are dense enough to present
a positive Lebesgue measure [1]. Arbitrarily close to these sets
there are continuous periodic windows with stable periodic
behavior [2]. Consequently, the parameters that lead to chaotic
attractors form fat fractal sets, and chaotic dynamics can be
replaced by stable periodic behavior through an arbitrarily
small variation of the system parameters [3]. Moreover, since
periodic windows occur across various scales of the parameter
space, they give rise to periodicity cascades, an infinite set
of self-similar periodic windows, densely distributed in the
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parameter space. Along cascades, the distribution of periodic
windows can be governed by scaling rules related to their size
[4], period [5], and other topological measures associated with
their periodic orbits [6,7].

In the literature, considerable efforts have been ded-
icated to characterizing the complexity arising from the
self-similarity of periodic windows within the context of one-
dimensional maps, where only a single bifurcation parameter
is available. Grebogi et al. developed an approach to de-
termine the “exterior dimension” [8] of these sets through
an estimation of the so-called “uncertainty exponent” [9].
They estimated this exponent for the periodic windows of the
quadratic map, finding it to be α = 0.413(5). Additionally,
Farmer proposed an alternative approach to also characterize
the intertwined structure of periodicity and chaos, finding
scaling exponents to be β = 0.45(4) for the quadratic and
sine maps [10]. He conjectured that this exponent could be
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universal among one-dimensional maps up to a certain order
of their maxima. Subsequently, Hunt et al. [3] theoretically
and numerically estimated the uncertainty exponent solely for
“large” chaotic attractors of the quadratic map, i.e., excluding
the “small” chaotic attractor appearing via the Feigenbaum
scenario. This approach yields a different value for the uncer-
tainty exponent, γ = 0.51(3). Such a discrepancy between γ

and α has been addressed by Joglekar et al., who demonstrated
a relationship between these exponents and conjectured that
both values are universal for one-dimensional maps with a
quadratic maximum [11].

In planar parameter spaces, where two bifurcation pa-
rameters are available, cascades of self-similar periodic
windows can manifest in two main ways: (i) aligned towards
specific directions in two-parameter spaces, giving rise to
periodicity cascades that accumulate in a parameter region
corresponding to periodic behavior [7,12,13], and (ii) peri-
odicity hubs, characterized by infinitely many spiral-shaped
sequences emanating from a single point in the parameter
space, corresponding to a homoclinic bifurcation [14–16].
Such a nontrivial organization of periodic windows has
been observed in two-parameter spaces of several classes of
dynamical systems, both in computational [17–25] and in
laboratory experiments [26–28]. In this context, Medeiros
et al. estimated the uncertainty exponent α for three differ-
ent continuous-time systems exhibiting periodicity cascades
in their planar parameter spaces [29]. They found that the
values of α for all systems fell within the interval α = 0.40(4),
supporting the conjectured universality of this exponent even
in another class of dynamical systems [29].

Here, we present evidence challenging the longstanding
belief in this universality. To this end, we consider the class of
one-dimensional maps generically governed by the following
equation,

xn+1 = f (xn, a), (1)

where f is sufficiently smooth and at least bimodal, the vari-
able x ∈ R represents the states of the system, and the vector
a ∈ RN accounts for the N � 2 control parameters. In these
high-dimensional parameter spaces, we first specify param-
eter curves, called extreme curves, that intersect periodicity
cascades at their centers of stability. Subsequently, we esti-
mate the uncertainty exponents along the extreme curves and
obtain α ∼ 0.23. Interestingly, we find that the transition from
these values to those previously reported in the literature oc-
curs abruptly in the vicinity of the extreme curves. Moreover,
by considering the uncertainty exponent as an approximation
of the exterior codimension, we obtain the singular fractal
dimension of the parameter sets residing at the boundaries of
periodicity cascades and chaos, which we term the extreme
fractal dimension.

Extreme curves. Since our proposed extreme fractal sets
exist in the multidimensional parameter space of mappings
given by Eq. (1), we now specify the location of such frac-
tal objects. In general, starting from an initial condition
x0, the successive iterates of Eq. (1) produce trajectories
that, depending on the parameters a, eventually approach
an asymptotic solution such as a fixed point, a periodic or-
bit, or a chaotic attractor. However, even before converging,
such trajectories may include sequences of critical points

FIG. 1. (a) Periodicity cascade in the parameter plane � along
the green extreme curves e23

1 and e32
2 . Dark shading represents peri-

odic dynamics (λ < 0), while yellow-blue shadings indicate chaotic
behavior (λ > 0). (b) Emphasis on e23

1 crossing the cascade through
all superstability locus, sequence (Si )∞i=1.

{x∗
1, x∗

2, . . . , x∗
i , . . . }, each satisfying f ′(x∗

i ) = 0, which are
associated to extreme points (local maxima or minima) of
the mapping in Eq. (1). Naturally, any pair of critical points
x∗

i and x∗
j may be connected by k successive iterates of the

mapping, i.e., x∗
j = f k (x∗

i ), where k ∈ N, f 0 is the identity,
and f ≡ f 1. Such trajectories of length k connecting crit-
ical points in the state space of the mapping are referred
to as k-extreme orbits and their corresponding parameters
ei j

k = {a ∈ RN |x∗
j = f k (x∗

i , a)} constitute codimensional one
sets known as extreme curves in planar parameter spaces [30].
The extreme curves host the extreme and singular fractal sets
of interest in this Letter.

Now, we consider an explicit one-dimensional mapping
with two or more control parameters to demonstrate the ex-
istence of extreme curves in its parameter space. For this
purpose, we use the logistic-Gauss map, defined by the fol-
lowing function [31],

f (x, a1, a2, a3) = exp {−a1[x(1 − xa2 )]2} + a3, (2)

with a2 ∈ R∗
+. To investigate the fractal dimension of sets

along the extreme curves ei j
k , we define a two-dimensional

cross section � = R × R∗
+, by keeping a3 = 0.1 constant.

Hence, from Eq. (2), we first obtain the sequence of critical
points:

x∗
1 = 0, x∗

2 = (1 + a2)−
1

a2 , and x∗
3 = 1. (3)

If a2 is a rational number with an even numerator, two addi-
tional critical points emerge, x4 = −x2 and x5 = −x3. Next,
by solving the equation x∗

3 = f (x∗
2, a), we obtain the extreme

curve e23
1 :

a1 = − ln(0.9)(a2 + 1)2+2/a2

a2
2

. (4)

Similarly, we obtain the function of e32
2 :

a1 = − ln
[
(1 + a2)−

1
a2 − 0.1

]
1.21(1 − 1.1a2 )2

. (5)

To associate the extreme curves with the periodicity cascades
occurring in �, we estimate the Lyapunov exponent of the
mapping defined in Eq. (2) for each parameter pair (a1, a2)
using λ = limn→∞ 1

n

∑n
i=1 ln | f ′(xi )|. In Fig. 1, we display �

with a color code representing the amplitude of λ. Darker
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shadings indicate periodic (λ < 0), while yellow-blue shad-
ings indicate chaotic dynamics (λ > 0). The extreme curves
e23

1 and e32
2 are traced in green in Fig. 1(a). In Fig. 1(b), we

highlight a cascade of periodic windows relative to e23
1 . Note

that this curve crosses over all periodic windows intersecting
points corresponding to the superstability locus, where two
white superstable curves are crossing [32,33]. Notably, if a
stable periodic orbit contains extreme orbits in its extension, it
automatically fits the criteria for a superstability locus. These
extreme and superstable orbits1 populate the superstability
locus S1, S2, . . . , S∞ along the extreme curve e23

1 throughout
this sequence of periodic windows. Moreover, the curve e23

1
also intersects the superstability locus of periodic windows,
forming smaller sequences that accumulate at each periodic
window. The infinitely many sequences of periodic windows,
occurring at all scales of cross section � and traversed by the
curve e23

1 , constitute the periodicity cascade. The same applies
to e32

2 .
Exterior dimension. The self-similar organization of the

periodicity cascades visualized in Fig. 1 suggests the presence
of fractal sets embedded in the parameter cross section �.
However, since the parameter sets leading to either chaotic or
periodic behavior possess nonzero volume, their dimension is
the same as the Euclidean dimension of the embedding space,
i.e., an integer. To characterize the scaling of the cascades,
different approaches have been proposed in the literature
[3,8,10]. We focus on the framework of exterior dimension
presented in Ref. [8], in which the scaling observed in Fig. 1
is attributed to the fractal geometry of the boundaries between
the parameters sets leading to periodic or chaotic behavior. In
our discussion, this fractality reflects the exterior dimension
of fat fractal sets, formed by the parameters leading to chaotic
behavior along specific curves. To introduce this concept more
clearly, consider a region B of the parameter set associated
with chaotic behavior and extend this region by an arbitrarily
small amount ε. Call this extended region as B(ε). The exte-
rior dimension dx is given by [8]

dx = D − lim
ε→0

ln V [B(ε) − B]

ln ε
, (6)

where D is the unitary dimension of the curves and V [B(ε) −
B] is the remaining (exterior) volume excluding the volume of
the original set B. In accordance with Ref. [8], V [B(ε) − B]
can be estimated by computing the fraction of parameters
f (ε) that are uncertain over ε-size perturbations along spe-
cific curves of the cross section �. More specifically, we first
choose a point ϕ = (a1, a2) at random on the extreme curve
of interest [Eqs. (4) or (5)] and perturb ϕ by considering an
distance ε in both directions of the curve to obtain the points
ϕ− and ϕ+. Subsequently, we evaluate the Lyapunov exponent
λ for each parameter value ϕ−, ϕ, and ϕ+. If in these three
parameter we identify chaotic (λ > 0) and periodic (λ < 0)
attractors we record the central parameter ϕ as “uncertain” for
the particular value of the perturbation ε. Otherwise, ϕ is said
to be “certain” and is disregarded. We repeat this procedure

1By superstability, we mean the parameter set in which stable
periodic orbits exhibit a faster attraction to nearby trajectories, i.e.,
when x∗

i is part of a periodic orbit.

FIG. 2. Fraction of uncertain parameters f (ε) as a function of
the perturbation ε. A power-law regression f (ε) = Aeα (red curve)
provides the uncertainty exponent α along the extreme curve e23

1

(a) and e32
2 (b).

for a large number of ϕ values and calculate the fraction
of uncertain parameters f (ε) for each perturbation ε in the
interval 10−12 � ε � 10−3. The fraction f (ε) is known to
depend on the perturbation ε as a power law, f (ε) ∼ εα , which
the exponent α is simply α = limε→0

ln f (ε)
ln ε

. Therefore, since
f (ε) approaches to V [B(ε) − B] while ε → 0, the exterior
dimension dx in Eq. (6) is determined as

dx = D − α, (7)

where α is the uncertainty exponent, also known as the exte-
rior codimension, that can be estimated from log-log plots of
f (ε) as a function of ε [8].

Extreme fractal dimension. Now, we demonstrate the ex-
istence of singular fractal sets along periodicity cascades in
the parameter space of the map given by Eq. (2). To achieve
this, we start by estimating the uncertainty exponent α of
periodicity cascades along the extreme curves e23

1 and e32
2 .

In Fig. 2, we present the fraction of uncertain parameters
f (ε) as a function of ε for parameters along the curves e23

1
[Fig. 2(a)] and e32

2 [Fig. 2(b)]. By fitting a power-law function
to the data shown in these figures, we find α = 0.232(2) and
α = 0.235(1) for the extreme curves e23

1 and e32
2 , respectively.

These values of the uncertainty exponent are significantly
different from the ones observed previously in the literature
for one-dimensional maps in general (α ≈ 0.41) [8,10,11], or
considering only the uncertainty of large attractors (β ≈ 0.51)
[3,11], and continuous-time flows (α ≈ 0.41) [29]. Interest-
ingly, the values of α found here challenge the belief that these
values are universal for one-dimensional maps with a given
order of their maxima [10,11]. Furthermore, the lower values
of α observed along the extreme curves indicate a higher
sensitivity to small changes in the parameters on these curves.

Given the significant difference between the uncertainty
exponent along the extreme curves and the values typically
observed in the literature, we investigate the values of this
exponent in the vicinity of the extreme curves, seeking transi-
tions towards the typical values of α. In Fig. 3, we calculate α

along parallel curves to the extreme curves. For this purpose,
since the axes of the parameter spaces in Figs. 3(a) and 3(b)
have different sizes, we apply the following spatial transfor-
mation to normalize these spaces,

T : R2 −→ [0, 1] × [0, 1],

(x, y) 
−→
(

x − xm

	x
,

y − ym

	y

)
,
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FIG. 3. (a) and (b) Parameter plane � illustrating the extreme
curve e23

1 and e32
2 (green) and parallel curves distant positive (blue)

and negative (pink) multiples of 	ã = 0.025. (c) and (e) show the
uncertainty exponent α and (d) and (f) present the exterior dimension
dx estimated along the parallel curves within 	ã from the curve e23

1

and e32
2 . Red markers show the singularities at 	ã = 0 and the sur-

rounded black markers are at 	ã = ±10−2, ±10−3, ±10−4, ±10−5,
±10−6, and ±10−7.

where xm and xM are, respectively, the x minimum and max-
imum values in the abscissa axis with size 	x = xM − xm.
The same applies to the y axis in the ordinate. By apply-
ing T (a1, a2) in Eqs. (4) and (5), we represent the extreme
curves e23

1 and e32
2 in the normalized space [0, 1] × [0, 1]

and determine parallel curves distant 	ã from the extreme
curve. Applying the inverse of the transformation T −1 to those
parallel curves, we recover the original coordinate system, as
shown in Figs. 3(a) and 3(b).

Following these definitions, we now consider parallel dis-
tances 	ã ∈ [−0.1, 0.1] centered on the extreme curves e23

1
and e32

2 . Within this interval, we obtain the uncertainty ex-
ponent along curves displaced from e23

1 [Fig. 3(c)] and e32
2

[Fig. 3(e)]. In addition, we employ Eq. (7) to calculate the
exterior fractal dimension dx of the sets dwelling along the
curves analyzed within 	ã [see Figs. 3(d) and 3(f)]. In the
interval surrounding both extreme curves e23

1 and e32
2 , we

observe that the uncertainty exponent α, and consequently the
exterior dimension dx, undergo abrupt transitions assuming
singular values exclusively along the extreme curves located
at 	ã = 0 (red markers). For the other curves within the
interval, α and dx assume the typical values previously found
in the literature. The results presented in Fig. 3 demonstrate
that periodicity cascades exhibit distinct features along the
extreme curves, which give rise to the observed singularities.
To elucidate these features, we first recall that the extreme
curves intersect the periodic windows at all scales along the
periodicity cascade in their superstability locus [as seen in
the sequence (Si )∞i=1 in Fig. 1]. Since these superstability loci

FIG. 4. (a)–(c) Bifurcation diagrams along curves at 	ã =
−0.02, 	ã = 0 (extreme curve e32

2 ), and 	ã = 0.02, respectively.
(d)–(f) Respective magnification of the bifurcation diagrams shown
in the first column. (g)–(i) Lyapunov exponents corresponding to the
bifurcation diagrams of the middle column. Colored curves corre-
spond to the x value of the kth iteration of the critical point x∗ = 0,
f k (0), at each parameter. k = 5 (pink), 6 (green), 11 (yellow), and 13
(cyan).

serve as the structural foundation for the periodic windows,
organizing their extension, it is guaranteed that the extreme
curves intersect each window within the periodicity cascades.
Conversely, any displaced curve, even though very close to
the extreme one, may eventually bypass periodic windows
at smaller scales within the parameter space. As a result,
the increased density of periodic windows along the extreme
curves signifies a more intricate relationship between param-
eters associated with periodic and chaotic behavior, leading
to a decrease in the uncertainty exponent α. Furthermore, the
heightened density of periodic windows also populates the
one-dimensional curve more densely at a given scale, resulting
in the fractal dimension of the boundaries being closer to
unity. To better illustrate the increased density of periodic
windows, in Fig. 4, we present the bifurcation diagrams of
the state variable x in Eq. (2) along with their corresponding
Lyapunov exponent.

In the bifurcation diagrams of Figs. 4(a)–4(c), the dynam-
ics of x along the extreme curve e32

2 [Fig. 4(b)] appear similar
to those of the displaced curves in Figs. 4(a) and 4(c). How-
ever, upon closer inspection at a finer scale, as demonstrated in
the magnified bifurcation diagrams in Figs. 4(d)–4(f), the in-
creased density of periodic windows along the extreme curve
becomes evident. This higher density of periodic windows can
be easily visualized by examining the Lyapunov exponents in
Figs. 4(g)–4(i). Notably, the Lyapunov exponents along the
extreme curve [Fig. 4(h)] assume negative values very often,
in contrast to the displaced curves. The colored curves in
all bifurcation diagrams of Fig. 4 establish a correspondence
between the parameter intervals used for the extreme and dis-
placed curves in the magnifications, ensuring comparability
among the rows in this figure. These curves correspond to the
kth iterate of the critical point x∗ = 0, denoted as f k (0) at each
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parameter. In the pink, green, yellow, and cyan curves, k takes
the values of 5, 6, 11, and 13, respectively.

Summary. We consider a class of one-dimensional maps
to explore the boundaries between parameters corresponding
to self-similar structures of periodic behavior, periodicity cas-
cades, and parameters that lead to chaos, forming fat fractal
sets. In two-dimensional parameter spaces of these maps, we
estimate the uncertainty exponent and exterior fractal dimen-
sion along parameter curves referred to as extreme curves.
We observe that both measures assume values along these
curves that differ significantly from those previously reported
in the literature for arbitrary parameter curves, which were
believed to be universal. We attribute this difference to a
higher density of periodic windows along the extreme curves,
which modifies the geometry of the fat fractal sets. Further-
more, in our attempt to identify the transition from the values
observed along the extreme curves to the typical ones reported

in the literature, we discovered that these transitions occur
abruptly near the extreme curves. Based on this observation,
we propose that the uncertainty exponent and, consequently,
the exterior fractal dimension exhibit singular values along the
extreme curves, which we term the extreme fractal dimension.
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[23] F. Hegedűs, W. Lauterborn, U. Parlitz, and R. Mettin, Nonlinear

Dyn. 94, 273 (2018).
[24] B. Raphaldini, E. S. Medeiros, D. Ciro, D. R. Franco, and

R. I. F. Trindade, Phys. Rev. Res. 3, 013158 (2021).
[25] L. Hallier, E. S. Medeiros, A. Mihara, R. O. Medrano-T, and A.

Zakharova, Europhys. Lett. 138, 21001 (2022).
[26] D. M. Maranhao, M. S. Baptista, J. C. Sartorelli, and I. L.

Caldas, Phys. Rev. E 77, 037202 (2008).
[27] R. Stoop, P. Benner, and Y. Uwate, Phys. Rev. Lett. 105, 074102

(2010).
[28] E. R. Viana, R. M. Rubinger, H. A. Albuquerque, A. G. de

Oliveira, and G. M. Ribeiro, Chaos 20, 023110 (2010).
[29] E. S. Medeiros, I. L. Caldas, and M. S. Baptista, Chaos, Solitons

Fractals 99, 16 (2017).
[30] D. R. Da Costa, M. Hansen, G. Guarise, R. O. Medrano-T, and

E. D. Leonel, Phys. Lett. A 380, 1610 (2016).
[31] D. R. da Costa, J. G. Rocha, L. S. de Paiva, and R. O. Medrano-

T, Chaos, Solitons Fractals 144, 110688 (2021).
[32] E. Barreto, B. R. Hunt, C. Grebogi, and J. A. Yorke, Phys. Rev.

Lett. 78, 4561 (1997).
[33] W. Façanha, B. Oldeman, and L. Glass, Phys. Lett. A 377, 1264

(2013).

L032201-5

https://doi.org/10.1007/BF01941800
https://doi.org/10.2307/2951831
https://doi.org/10.1088/0305-4470/30/20/012
https://doi.org/10.1103/PhysRevLett.54.1095
https://doi.org/10.1143/PTP.68.669
https://doi.org/10.1103/PhysRevA.44.916
https://doi.org/10.1016/j.physleta.2013.01.004
https://doi.org/10.1016/0375-9601(85)90220-8
https://doi.org/10.1016/0375-9601(83)90945-3
https://doi.org/10.1103/PhysRevLett.55.351
https://doi.org/10.1103/PhysRevLett.113.084101
https://doi.org/10.1103/PhysRevE.75.055204
https://doi.org/10.1098/rsta.2007.2107
https://doi.org/10.1103/PhysRevE.84.016216
https://doi.org/10.1103/PhysRevE.84.035201
https://doi.org/10.1103/PhysRevLett.108.214102
https://doi.org/10.1103/PhysRevLett.70.2714
https://doi.org/10.1103/PhysRevLett.95.143905
https://doi.org/10.1142/S0218127412300327
https://doi.org/10.1142/S0218127414300250
https://doi.org/10.1142/S0218127415300372
https://doi.org/10.1016/j.physleta.2016.07.059
https://doi.org/10.1007/s11071-018-4358-z
https://doi.org/10.1103/PhysRevResearch.3.013158
https://doi.org/10.1209/0295-5075/ac6134
https://doi.org/10.1103/PhysRevE.77.037202
https://doi.org/10.1103/PhysRevLett.105.074102
https://doi.org/10.1063/1.3407482
https://doi.org/10.1016/j.chaos.2017.03.043
https://doi.org/10.1016/j.physleta.2016.02.049
https://doi.org/10.1016/j.chaos.2021.110688
https://doi.org/10.1103/PhysRevLett.78.4561
https://doi.org/10.1016/j.physleta.2013.03.025

