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Hydrodynamic behavior near dynamical criticality of a facilitated conservative lattice gas
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We investigate a 2d-conservative lattice gas exhibiting a dynamical active-absorbing phase transition with
critical density ρc. We derive the hydrodynamic equation for this model, showing that all critical exponents
governing the large scale behavior near criticality can be obtained from two independent ones. We show that as
the supercritical density approaches criticality, distinct length scales naturally appear. Remarkably, this behavior
is different from the subcritical one. Numerical simulations support the critical relations and the scale separation.
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Introduction. Models displaying dynamical phase transi-
tions have attracted increasing scrutiny in recent years. Such
models are tightly related to “self-organized criticality,” and
may also illustrate how hyperuniform structures [1] emerge in
nature [2,3]. Their complexity prevents from building a uni-
versal framework, and this is why some paradigmatic models
are currently under deep mathematical and physical investi-
gation (as for instance sandpiles [4], or random organization
models [5]). Open systems dynamically adjust their density in
order to reach a critical state at density ρc, often displaying
nontrivial scaling properties. This phenomenon manifests it-
self, in a closed system, as a dynamical phase transition: below
ρc, the system reaches an absorbing state, while above ρc, it
remains in a quasistationary active state.

A fundamental example of such a model is the constrained
conservative lattice gas (CLG) [6], also referred to as facili-
tated exclusion process in the recent literature. It is defined as
an exclusion particle system (i.e., any system site cannot con-
tain more than one particle) on a d-dimensional lattice, where
so-called active particles jump randomly at rate one to each
empty nearest neighbor [7]. As represented in Fig. 1, a particle
is considered active if at least one of its neighboring sites is
also occupied, and the total number of particles is conserved.
Related models featuring an absorbing phase transition have
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generated an intense research activity, like for instance the
paradigm Manna sandpile model [8–11]. In particular, many
of these models, including the CLG, exhibit a hyperuni-
form critical state [12,13], for which we still have a limited
knowledge. The CLG has been investigated numerically in
[6,12–14] when d � 2, and theoretically in [15–21] when
d = 1. We focus here on the two-dimensional case, and recall
some previous results already obtained in the one-dimensional
case. While we expect to see the same general picture in
higher dimensions, numerical studies of the model become
more complicated. Some critical exponents in d = 3 are found
in [12], and we expect the critical relations laid out in this
paper to hold (though we do not provide verification).

Clearly, this system remains active whenever ρ > 1/2, and
could reach an absorbing state whenever ρ � 1/2. It appears,
however, that in dimension d � 2, the dynamical critical den-
sity ρc is strictly smaller than 1/2. That is, in the regime
(ρc, 1/2], even though an absorbing state will be ultimately
reached in any finite system, on physically relevant timescales
a quasistationary active state is observed. In order to illustrate
this phenomenon, the average absorption time is numerically
represented in Fig. 2 in both subcritical and supercritical
regimes.

The CLG is reflection symmetric and isotropic, and there-
fore its macroscopic density profile ρ, taken in the diffusive
space-time scaling limit, is expected to be a solution to
the parabolic equation ∂tρ = div(D(ρ)∇ρ) with scalar dif-
fusion coefficient D(ρ). In the subcritical regime ρ < ρc the
particles become blocked in subdiffusive time scales [see
Fig. 2(a)], therefore, D(ρ) = 0. When the initial profile has
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FIG. 1. Blue circle particles are active, red square particles are
frozen. As an example, the active particle highlighted with � can
jump to one of its three neighbors indicated with X. The dashed
region corresponds to the frozen phase.

FIG. 2. Median absorption time in a closed box, of size changing
from 5 to 100. In the subcritical phase (a), ρ = 0.279, the absorption
time grows sublinearly with the system size. In the supercritical
phase (b), ρ = 0.334, it grows exponentially fast at large L. In
fact, the figure illustrates nicely that at ρ = 0.334 the geometric
correlation length, which separates the absorbing regime from the
quasistationary regime, is roughly ξ ≈ 20, which is the approxima-
tive point where the exponential growth begins.

both subcritical and supercritical regions, the supercritical
phase progressively invades the subcritical “frozen” areas.
That is, one should interpret the above hydrodynamic equa-
tion as a Stefan problem. In dimension one this result is
established mathematically in [19], and exploits the explicit
expression of the stationary states, a feature that is lost in
higher dimensions.

In this Letter we explore the scaling properties of the
two-dimensional model, with a particular focus on the active
phase. We study the critical exponents for all relevant macro-
scopic quantities, both theoretically and numerically, as it has
been done for other models, for instance in [22]. We are able to
deduce relationships between those critical exponents, which
are of independent interest, and check them by simulations.

Macroscopic observables. Of particular interest are the
critical and near criticality behavior of the model. It has been
noted in [12] that the CLG could have two separate length
scales near criticality. While in their simulations these two
scales seem to coincide, we will see here that in the super-
critical phase they differ. Let us define the following.

(i) The geometric correlation length ξ⊥: this is the scale
which is mostly used in the literature [[23], Sec. 3.3], and is
the one discussed in [6]. It describes the spread of activity.
More precisely, to sustain activity, particle clusters must self-
activate, i.e., a particle activates its neighbor, which further
activates its neighbors, until closing a cycle and reactivating
the particle we started with. The diameter of this self-activated
structure is described by the geometric correlation length ξ⊥.

This means that, for a finite system of size L, if L � ξ⊥,
then there is no quasistationary state, and in that case, activity
will decay until dying out. On the other hand, if L � ξ⊥, then
the activity behaves in the same manner as L = ∞.

(ii) The two-point correlation length ξ×(ρ): This is the
length over which the two-point correlation function decays.
This scale is referred to as the crossover length in [12],
where the authors show, in the subcritical phase, that below
ξ× the absorbing state is hyperuniform [1,24]; above ξ× it is
Poissonlike.

Both length scales diverge when approaching criticality,
as ξ⊥ ∼ (ρ − ρc)−ν⊥ and ξ× ∼ (ρ − ρc)−ν× , for some critical
exponents ν⊥ and ν×, which we now investigate.

In [6,12], several other critical exponents are determined.
Notably, in the latter the authors show that the CLG’s absorb-
ing state is hyperuniform, i.e. the number of particles N in
a ball or radius R has standard deviations of order Rζ , for ζ

smaller than d/2.
We are interested in the hydrodynamic behavior of the

CLG, whose diffusion coefficient D(ρ) behaves, close to ρc,
as (ρ − ρc)α for some exponent α. In order to understand
the noise’s amplitude, we also consider the compressibility
χ (ρ) ∼ (ρ − ρc)γ , defined as the sum of the two-point cor-
relation function over the infinite lattice. For the CLG, the
dominant parameter for the system is the density of active
particles, ρa(ρ). However, the notion of active particles is in
fact ambiguous, since one may or may not count as active
particles who are fully surrounded by other particles (and
therefore cannot move). For this reason, we distinguish be-
tween ρa(ρ) ∼ (ρ − ρc)β , the density of particles having at
least one occupied neighbor (which is the one considered in
[6]), and the activity a(ρ) ∼ (ρ − ρc)b � 3ρa, which counts
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FIG. 3. Nt as a function of t for different reservoir densities. See
Eq. (13).

the local number of possible jumps. We will see further that
in fact both exponents β and b coincide (Fig. 4). This means
that the perimeter of clusters of active particles is of the same
order as their volume.

Relations between critical exponents. By numerical sim-
ulations we are able to get all the critical exponents in the
case d = 2. In dimension d = 1, we have exact values, as
discussed below.

A number of relations can be derived between the relevant
critical exponents [23]. Most of them are standard, a detailed
derivation will be given in a companion article [25]. The first
one ties the compressibility to the particle fluctuations and the
activity correlation length, as

γ = ν×(d − 2ζ ). (1)

This relation can be obtained by considering the structure
factor Sρ (k) (see [[26], Sec. II.2.1]), which encapsulates the
two-point statistics of the distribution at a fixed time [24]. By
the scaling hypothesis, Sρ (k) can only depend on k via the
combination ξ×k. Moreover, Sρ (0) = χ (ρ), and at criticality
Sρc (k) ∼ C|k|d−2ζ when |k| is small. These three facts impose
the form

Sρ (k) = χ

(
1 + C

χξ
d−2ζ
×

|ξ×k|d−2ζ

)
, (2)

and hence χξ
d−2ζ
× remains of order one as ρ → ρc. This

implies Eq. (1).
A similar scaling relation can be obtained for the geometric

correlation length. Indeed, at scales smaller than ξ⊥ the system
looks critical, so that the critical density fluctuations are larger
than ρ − ρc, and “hide” the off criticality. The scale ξ⊥ is
therefore characterized by the relation ξ

ζ−d
⊥ ≈ ρ − ρc. This

yields the following relation:

ν⊥(d − ζ ) = 1. (3)

The next relation stems from Einstein’s relation D = σ/χ (see
[[26], (2.72), Sec. II.2.5]) and the fact that the noise amplitude
is determined by the number of possible particle jumps σ = a
(see [[26], Sec. II.2] for instance); this leads to

α = b − γ . (4)

FIG. 4. Simulating ρ(x), ρa(x), and a(x) in a system with reser-
voirs λl = 0, λr = 1. On the top we see as expected that ρa (the
bottom curve) is linear in x. We also observe the the fitted curve
0.3257 + Cx1.6004 is almost exactly covered by the measured values
of ρ.

Finally, the following relation is a consequence of a particular
property of the CLG, called gradient condition [26,27], which
relies on well-chosen jump rates for the system. Under this
condition,

∂t 〈ni〉 =
∑
j∼i

{〈na, j〉 − 〈na,i〉}, (5)

where 〈ni〉 (resp. 〈na,i〉) denotes the average number of parti-
cles (resp. active particles) at site i. At the macroscopic level,
this identity translates as

∂tρ = (ρa(ρ)), (6)

and yields in turn that D(ρ) = ρ ′
a(ρ). Near criticality, this

implies

α = β − 1. (7)

Note that Eqs. (4) and (7) give β − b = 1 − γ . As an inter-
esting consequence, the fact that β = b, i.e.. that clusters of
active particles have volume and perimeter of the same order,
implies γ = 1. In Table I we give all exponents in both d = 1
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TABLE I. Critical exponents related to observables, in d = 1
and d = 2. The one-dimensional exponents are exact, see below. In
the two-dimensional case, the first line is obtained either directly
from our simulation results, or extracted from scaling relations. The
second line contains simulation results taken from previous articles.
In our case, the exponents β and b are taken from the simulation of
Fig. 4(a). The exponent γ is simulated twice: the value 1 is obtained
from Fig. 4 and Eq. (4); the value 1.07 is obtained from Fig. 5. The
exponent ν× is extracted from the simulation of Fig. 5 and then ζ is
computed using (1) with γ = 1. The exponent α is calculated using
Eq. (7), ν⊥ from Eq. (3), and z from (11).

obs. D χ ξ⊥ ξ× Var(N ) ρa a

exp. α γ ν⊥ ν× ζ β b z
d = 1 0 1 1 1 0 1 1 2
d = 2 −0.38 1 and 1.07 0.77 1.8 0.72 0.62 0.62 1.51

0.78a 0.775b 0.63a 1.52a

aObtained in [6]
bObtained in [12]

and d = 2 cases. The former are exact values, while the latter
are numerically computed.

Hydrodynamics and scale invariance. Near criticality, we
are interested in the macroscopic evolution of u := ρ − ρc.
It evolves according to the fluctuating hydrodynamic equa-
tion (e.g., [[26], II.2.9])

∂t u = div(D∇u +
√

2DχW ). (8)

The noise W depends on the scale at which we look: at
distances above ξ×, correlations are small and W is white
noise, while for distances smaller than ξ× the noise W will
have nontrivial correlations

〈W (0, 0) · W (x, t )〉 =
{

δ(t )δ(x), |x| > ξ×,

δ(t )|x|−ϑ , |x| < ξ×,
(9)

for some exponent ϑ . In the regime below ξ×, the density
fluctuations are proportional to �ζ−d , hence Eq. (8) must be
invariant under the parameter rescaling

(u, x, t ) →
(

u

�d−ζ
,

x

�
,

t

�z

)
. (10)

This forces ϑ to be equal 1 − ζ/d , and

z = (ζ − d )(1 − β ) + 2. (11)

We emphasize that on a length above ξ× the scale invariance
is not the same, and in particular the dynamic exponent z
will change (see [25]). This scale separation has been noted
qualitatively in [6].

One-dimensional case. The one-dimensional case d = 1
has been recently under scrutiny, and its macroscopic evo-
lution is now quite well understood. It has been proved
rigorously [18,19] that the critical density is given by ρc =
1/2, and the diffusive supercritical phase progressively in-
vades the subcritical phase via flat interfaces, until either one
of the phases disappears. In this respect, a crucial feature
of the one-dimensional case lies in its explicit supercritical
grand canonical states πρ either parametrized by the density
ρ � 1/2 or the active density ρa(ρ) = (2ρ − 1)/ρ. These

grand canonical states can be defined sequentially, by filling
an arbitrary site with probability ρ, and then following each
empty site by a particle with probability one, but each particle
by another particle with probability ρa(ρ).

Precisely, the hydrodynamic limit in d = 1 is given by
∂tρ = ∂x(D(ρ)∂xρ), with diffusion coefficient

D(ρ) = ρ ′
a(ρ) = ρ−21{ρ>ρc} (12)

and critical exponent α = 0. The explicit construction
of the grand-canonical state πρ yields the other observ-
ables for ρ � ρc, as well as their critical exponent (see
[20]): namely the activity a(ρ) = ρ−1(1 − ρ)(2ρ − 1) with
b = 1, and the compressibility χ (ρ) = ρ(1 − ρ)(2ρ − 1),
with γ = 1. Moreover, the stationary measure can be seen as a
nearest-neighbor spin system with chemical potential μ, and
an interaction which gives infinite costs to two neighboring
empty sites. This can be solved using standard methods in-
volving the transfer matrix (see [[28], Chapter 6]), which here
is given by (

0 e−μ

1 e−μ

)
.

All the relevant quantities and exponents for the one-
dimensional model are listed in Table I.

Numerical simulations. We note that in finite systems the
critical density depends slightly on the geometry, so that in
the analysis of the simulated data we do not enforce a single
critical density for systems of different sizes or boundary con-
ditions. Rather, we leave ρc as a parameter for the regression.
Since L equals 300 in one simulation and 100 in the other,
it is not surprising that we obtain values of ρc who differ by
O(1/L).

In order to numerically derive the diffusion coefficient
and verify relation (7), we simulate a cylindrical system, i.e.,
periodic in the vertical direction, of size L put in contact at the
left and right boundaries with particle reservoirs with respec-
tive densities λl and λr . More specifically, at the boundary,
particles are removed at rate 1 − λl , 1 − λr , and empty sites
are filled at rate λl , λr . In our simulations, boundary particles
are always considered active.

When λl = λr = λ, the system reaches a quasistationary
state with density ρ(λ). For our particular choice of boundary
interactions, ρa(ρ(λ)) = λ, meaning that the reservoirs en-
force the density of active particles and not the total density of
particles. This relation is, however, not universal, and depends
on the exact boundary dynamics considered.

In order to estimate the diffusion coefficient, we fix λl = λ

and λr = λ + ε with small ε > 0. We measure the total net
number of particles Nt crossing the system up to time t . In
general, we expect the current to be proportional to ε,

Nt

t
= K (λ)ε, (13)

where K (λ) = D(ρ)ρ ′(λ). Since our system is gradient and
for our specific choice of reservoirs, we should obtain K = 1,
which is verified by our simulation, see Fig. 3. In particular,
this shows that α = β − 1.

In more general models (for instance when the gradient
property is not satisfied) we do not necessarily expect K to
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FIG. 5. We show here a collapse of Sρ (k) for different val-
ues of ρ. The parameters C1 = 0.03,C2 = 0.71, ρc = 0.3361, ν× =
1.77, γ = 1.07 are adjusted to best fit Eq. (2). That is, we find
that χ (ρ ) = 0.61(ρ − 0.3361)−1.07 and ξ× = 0.03(ρ − 0.3361)−1.77.
Indeed, after this rescaling the curves Sρ (k) collapse as expressed
in Eq. (2). The fit (black curve) is given by Sρ (k) = 0.61(ρ −
0.3361)1.07 + 0.07|k|0.60.

be constant, but still of order 1 (namely, neither diverging nor
decaying as ρ → ρc).

The scaling exponents β and b can be found by simulating
the system with cylindrical geometry, maintaining one reser-
voir at density λl = 0 and the other one at density λr = 1. We
then measure, at each section x of the cylinder, ρ(x), ρa(x),
and a(x); see Fig. 4.

Thanks to the gradient property of the model and our
choice of reservoirs, ρa grows linearly with the horizontal
distance, from λl at x = 0 to λr at x = 1. This is verified in
our simulation (Fig. 4(a)). Thanks to this result, the relation
ρa ∝ (ρ − ρc)β can then be written as ρ ∼ ρc + x1/β . By fit-
ting ρ(x) in Fig. 4(a) we obtain β = 1.60−1 = 0.62. Finally,
noting that for small x the activity a is linear in x (Fig. 4(b)),
we conclude β = b.

In order to find the remaining exponents, we estimate the
structure factor Sρ (k) for different values of ρ. This is done
on a system with periodic boundaries (in both directions). By
fitting the data to Eq. (2), posing χ = Cχ (ρ − ρc)γ and ξ× =
C×(ρ − ρc)−ν× , we obtain the values in Table I; see Fig. 5.

All the simulations used in this article are open access,
available in Ref. [29].

Conclusion. In this article, we discussed the critical scal-
ing for the CLG. We saw that there are three independent
critical exponents, β, b, and ζ , that all other exponents
(α, γ , ν⊥, ν×, z) could be deduced from. Moreover, due to re-
pulsion, active cluster sizes are of order one, so their perimeter
is proportional to the volume, thus β = b and all scaling is
described by two independent exponents. In fact, we expect
the scaling relations stated here to hold in a much larger
generality than the two-dimensional CLG, and that γ = 1
should hold as well in repulsive 2D systems, see [22] for

similar relations and comparison to other models. Note that
we have used the gradient condition in order to derive Eqs. (4)
and (7). This condition is very sensitive to small changes in the
dynamics, but we believe that scaling exponents and relations
are universal, and depend much less on perturbations of the
dynamics. At the same time, it is worth noting that some
“highly nongradient” systems are known not to satisfy these
relations (e.g., the Kob-Andersen model, in which α = ∞
[30,31]), but this phenomenon is due to the formation of very
specific cooperative structures.

We numerically computed several critical exponents for
the 2d-CLG (see Table I), and confronted them both with
those critical relations, and the numerical values in [6] and
[12] for CLG with simultaneous jumps. We obtained very
good agreement between them, with the exception of ζ and
ν×. While our numerical values fit the theoretical relations
introduced above, they are different from those of [12]. The
reason seems to be that we approach the critical state from
ρ > ρc, while [12] do from ρ < ρc. Recently, [13,32] went
further investigating the approach to hyperuniformity from the
subcritical regime; on the contrary to [12], they find that the
critical exponent ν× (which [13] denote γ1) is different from
ν⊥. That is, a separation between two different length scales
is also present in the subcritical regime, but with an exponent
ν× different from the supercritical one.

We emphasize the existence of two distinct correlation
lengths, one characterizing the size of self-activating clusters,
and the other one characterizing the two-points correlation
decay. This distinction is a specific feature of the quasista-
tionary regime (ρc, 1/2), and for this reason does not exist in
one dimension. We conjecture that it is a common feature of
any dimension d � 2, because the rigid structure necessary
to reach a frozen state at density ρ = 1/2 − ε results in the
quasistationary regime.

Unlike in the one-dimensional case, the diffusion coef-
ficient D(ρ) has negative exponent (see Table I), and is
therefore discontinuous at ρc. We note that the diffusion term
operating in the supercritical phase instantly creates at the
boundary nonzero density gradients. Therefore, this discon-
tinuity does not create a quantitative different behavior than
the 1d-Stefan problem, which has a finite critical diffusion
coefficient (12). That is, subcritical regions are frozen while
particles in supercritical regions diffuse; and the interfaces
between them move as the supercritical regions invade the
subcritical ones. The divergence of D is balanced out by small
nonzero density gradients, resulting in a finite current. Hence,
as in dimension one, the interfaces move with finite speed.
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