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Reinforcement Learning offers a framework to learn to choose actions in order to control a system. However,
at small scales Brownian fluctuations limit the control of nanomachine actuation or nanonavigation and of the
molecular machinery of life. We analyze this regime using the general framework of Markov decision processes.
We show that at the nanoscale, while optimal control actions should bring an improvement proportional to the
small ratio of the applied force times a length scale over the temperature, the learned improvement is smaller
and proportional to the square of this small ratio. Consequently, the efficiency of learning, which compares the
learning improvement to the theoretical optimal improvement, drops to zero. Nevertheless, these limitations can
be circumvented by using actions learned at a lower temperature. These results are illustrated with simulations
of the control of the shape of small particle clusters.
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Reinforcement learning (RL), the process by which an
agent learns to choose actions on a dynamical system to max-
imize rewards from this system, is one of the main machine
learning paradigms [1]. Following its long established use for
games [2] and robotics [3,4], RL has recently paved the way
for many breakthroughs in the control of systems that are
constrained by various physical and biological environments.
A few examples include the control of fluid flows [5,6], bio-
logical and artificial navigation [7–16], organization of active
assemblies [17,18], and order and shape of colloidal clusters
[19].

Many of these systems involve objects with very small
sizes. However, the development of RL for micro and
nanometer scale objects faces challenging regimes where
thermal fluctuations lead to erratic Brownian motion that
dominates the dynamics, and actions then only produce a
small bias in stochastic rewards. For instance, nanomotors
must be actuated in a robust way within these fluctuating
environments [20–23]. Such noise could be detrimental for
learning, and indeed a large body of work has been devoted
to the robustness of learning in the presence of adverse noise
[24–28]. However, it is known that noise can also help learn-
ing by enhancing exploration of new states [29,30] or by
regularizing the learning process [31,32]. In addition, ex-
ternal fields to manipulate colloids and nanomachines must
be weak to achieve nanorobot navigation for drug delivery
or remote-controlled surgery [33–36] without damaging the
surrounding soft living environment. These systems and the
associated emerging technologies call for a better fundamental
understanding of the performance of RL when the actuation
forces are small as compared to thermal fluctuations.

Previous works on navigation in gridworlds (where space
is represented by a finite lattice) suggest that learning is more
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difficult when increasing temperature [9,37]. Temperature in-
deed has a strong effect on the speed of the dynamics, which is
usually faster at high temperatures and slower at low temper-
atures. This leads to difficulties in observation, as transitions
become too fast or too slow to be observed in experiments.
In the following, we show that beyond these difficulties in
observability, there are intrinsic physical constraints that make
the efficiency of RL vanish in the presence of strong thermal
fluctuations.

We investigate this question using simulations of a specific
problem that can be considered as a prototype of a nanorobot,
where the shape of a fluctuating few-particle cluster is con-
trolled with a macroscopic field [38]. The macroscopic field
biases the stochastic configurational changes of the cluster, as
expected for atomic or colloidal clusters in the presence, e.g.,
of an electric field [19,39–42] or light [43]. Our aim is to set
the macroscopic field as a function of the observed shape to
reach an arbitrary target shape in minimum time. The exper-
imental realization of this system when downscaling particle
sizes toward the atomic size is a challenge due to the weakness
of available driving forces such as electromigration [38]. This
problem can be formulated within the general framework of
Markov decision processes, i.e., a Markov chain where the
choice of an action—called the policy—is made as a function
of the observed state. Hence, our results can be transposed
to other RL problems and pertain to all systems that can
be modeled with Markov decision processes [1,9], including
for example actuation of molecular machines, navigation, and
controlled assembly.

In order to grasp the effect of temperature on learning,
we do not employ the most sophisticated and powerful RL
methods. Instead, we use two of the most elementary ones
[1]: Monte Carlo learning (MCL) and Q-learning (QL), which
are based on ε-greedy policies. These are standard methods to
deal with discrete sets of states and actions, which is our focus
in the following. We find that the amount of control achieved
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by RL depends crucially on the dimensionless ratio between
the work of the applied force during an elementary move and
the thermal energy. When this ratio is small, corresponding to
small forces, small scales, or high temperatures, the efficiency
of RL is proportional to it. However, this inefficiency of learn-
ing at high temperatures can be circumvented by using actions
learned at a lower temperature.

Our analysis is based on the comparison of RL to the
optimal solution of the control problem. This solution is
obtained with dynamic programming (DP) [1,38,44–46], a
model-based method that relies on the full knowledge of the
laws that govern the system, while RL is a model-free ap-
proach that only relies on the observation of the response of
the system to some actions without prior knowledge on the
governing laws.

a. Cluster model. The dynamics of a fluctuating few-
particle cluster are modeled using on-lattice edge-diffusion
dynamics [38,41,47,48]. Edge diffusion was observed in
metal atomic monolayer islands [49,50] and colloids [51].
Our approach can be readily applied to other types of dy-
namics for clusters or molecules that preserve the number
of particles, such as dislocation-induced events in metal
clusters, colloidal clusters, and Wigner crystals, detachment-
diffusion-reattachment dynamics inside vacancies in particle
monolayers [41,52], or dynamics of polymer and proteins
[53].

In this model, particles hop to nearest neighbor sites along
the cluster edge and cannot detach from the cluster or break
the cluster [38]. The particle hopping rate follows an Arrhe-
nius law [38,47,48]

γ = ν exp[−(nJ − F · ud )/kBT ], (1)

where J is the bond energy, n is the number of bonds of the
particle before hopping, kBT is the thermal energy, F is the
macroscopic force field, d is the lattice constant, and ud is
the vector from the initial to the saddle position of the moving
particle. For the sake of simplicity, we assume that the saddle
point of the diffusion energy landscape is halfway between the
initial and final positions [38].

b. RL algorithms. In the language of Markov decision
processes [1], the configuration or shape of the cluster is the
state s of the system. Moreover, we consider a discrete set
of actions labeled by the index a. For simplicity, we consider
only three possible actions a = −1, 0,+1, that respectively
correspond to setting the force to the left, to zero, or to the
right, i.e., F = aFex, where F > 0 and ex is the unit vector
along the (10) lattice direction.

The policy π (a|s) is the probability to choose action a in
state s, and the reward is minus the residence time r̂ = −t̂ in
this state. Here and in the following, a hat indicates a stochas-
tic variable. An episode is a sample of the dynamics consisting
of a list of states, actions, and rewards {ŝk−1, âk−1, r̂k ; k =
1, . . . , K}. The sum of all future rewards is ĝk = ∑K

p=k+1 r̂p.
Episodes terminate when the state s reaches the target state
s̄ or when k reaches the maximum allowed number of steps
M. Assuming that M is large enough for the target state s̄
to be reached with high probability before the end of the
episode, minus the average of ĝ is a good approximation of

FIG. 1. Schematic of the agent-environment interface in RL.

the expected first passage time τπ (s; s̄), i.e.,

τπ (s; s̄) ≈ −Eπ [ĝk|ŝk = s], (2)

where Eπ [·] is the expected value under the policy π .
The optimal policy π∗ is a deterministic policy which

minimizes the first passage time to the target state: π∗ ∈
argminπτπ (s; s̄). The optimal first passage times τ∗(s; s̄) obey
the Bellman optimality equation [1,54]

τ∗(s; s̄) = min
a

[
t (s, a) +

∑
s′∈Bs

p(s′|s, a)τ∗(s; s̄)

]
, (3)

where Bs is the set of states that can be reached from s in
one move, t (s, a) and p(s′|s, a) are respectively the average
residence time and the transition probability to state s′ when
the system is in state s with the action a. This equation can
be solved numerically by DP [1,38], which here consists in
iterating Eq. (3). Optimal policies for five and seven-particle
clusters are shown in Figs. S1 and S2 of the Supplemental Ma-
terial (SM) [55]. The number of states increases exponentially
with the number of particles in the cluster [38], and we have
investigated systems up to ten particles (∼3 × 104 states).

In contrast, RL algorithms aim to find τ∗(s; s̄) and π∗ from
a set of episodes where they choose the actions without prior
knowledge of the model, i.e., of t (s, a) and p(s′|s, a). Here,
RL only observes trajectories produced by Kinetic Monte
Carlo (KMC), as schematized in Fig. 1. We use two well-
known RL algorithms [1] based on the evaluation of the
action-value function qπ (s, a; s̄), which is the expected value
of ĝ starting from state s, taking the action a first, and then
following the policy π for subsequent actions. The first one,
MCL, evaluates qπ (s, a; s̄) from a direct estimate of Eq. (2)
using averages over the trajectories that lead to the target
in the episodes. In contrast, QL updates an approximation
of qπ (s, a; s̄) so as to reduce the so-called time-difference
error [1].

In both MCL and QL, the actions are chosen in such a
way to explore the states using an ε-greedy policy: as the
exploration parameter ε decreases during learning, actions are
chosen very randomly initially, but gradually more greedily,
i.e., in a way that minimizes the evaluation of the first passage
time to target based on the current approximate estimate of
the action-value function. This gradual decrease of the ran-
domness of the policy reflects the standard machine learning
tradeoff between exploration and exploitation. At the end of
the simulation, we obtain a deterministic policy that approxi-
mates an optimal one. Details of these well-known algorithms
are provided in Sec. II of the SM [55].

Following Refs. [38,52,56], we use the return time to target
τ r (s̄), defined as the time of first return to the target after
leaving it, as a simple representative value of the first passage
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FIG. 2. Learning efficiency. (a) Return time to target for no force, DP, MCL, and QL policies (evaluated with DP) as a function of J/kBT ,
with fixed Fd/kBT = 0.4. Inset: zoom in the intermediate/high temperature regime. The markers represent the shortest return time out of
ten independent learning runs and the dashed line corresponds to the average. (b) Average learning efficiency ηπRL (s̄) [defined in Eq. (4)] as
a function of Fd/kBT for QL. Inset: as a function of J/kBT . (c) Learning efficiency ηπRL (s̄) as a function of Fd/kBT for MCL. Inset: as a
function of J/kBT . In (a)–(c) the shaded area represents the standard deviation over the ten learning runs. (d) Reduction of the return time
obtained with DP: τ r

0 (s̄) − τ r
π∗ (s̄) (blue markers), and with RL: τ r

0 (s̄) − τ r
πRL

(s̄). Markers indicate the values of Fd/J , as in (b) and (c).

times τπ (s, s̄) from all the states s. We use the improvement
of τ r (s̄) to define our learning convergence criterion. To avoid
limitations due to observability, this criterion is unaware of
elapsed physical time, and is only based on the number of
episodes, as discussed in Sec. II of the SM [55]. Furthermore,
to keep simulation costs down, we focus on clusters with at
most ten particles [38].

c. Vanishing learning efficiency at high temperatures and
small forces. In Fig. 2(a), the return time obtained with DP,
MCL, and QL is shown for a given target state as a func-
tion of the inverse temperature J/kBT for a fixed value of
Fd/J = 0.4. The case of zero force is also shown, and will
serve as a reference for the value of the return time without
any optimization (a random policy could also be used, as
discussed in Sec. IV of the SM [55]). Strikingly, while the
return time obtained with MCL and QL at low temperatures
is close to the optimal result provided by DP, no learning is
obtained at high temperatures.

The effectiveness of learning can be quantified by the
efficiency of the learned policy πRL, defined as the ratio of
the reduction of the return time obtained with πRL over the
optimal value of this reduction

ηπRL (s̄) = τ r
0 (s̄) − τ r

πRL
(s̄)

τ r
0 (s̄) − τ r∗(s̄)

, (4)

where τ r
0 (s̄), τ r

∗(s̄), and τ r
πRL

(s̄) are the return times with zero
force, optimal policy obtained by DP, and RL policy, respec-
tively. In Figs. 2(b) and 2(c), all efficiencies for QL and MCL
for different values of Fd/J are seen to drop to zero when
Fd/kBT is small. This drop of efficiency is also seen in the
return time for other targets with various sizes as shown in
Fig. S3 of the SM [55], showing that it is not affected by the
complexity of the learning task. In addition, it is also found
for first passage times from other states, as shown in Fig. S4
of the SM [55], showing that the return time is a good probe
for the properties of first passage times.

A heuristic reasoning can rationalize this drop. In our
model Eq. (1), Fda corresponds to the change of the

diffusion barrier due to the work of the force Fa on the
distance ∼d to the energy saddle point. Since energy barriers
are divided by kBT in Eq. (1), an expansion of the rates for
small Fd/kBT leads to a first-order correction proportional
to Fda/kBT . Such correction ∼Fda/kBT corresponds to a
broad class of systems and is also recovered, e.g., with a
simple continuum model with no barriers in Sec. VI of the SM
[55]. Here, since a ∈ {−1, 0, 1}, the corrections of the rates
are ∼Fda/kBT ∼ Fd/kBT . Hence, the optimal reduction of
the first passage times—which depends on all corrections of
the transition rates—is proportional to Fd/kBT , i.e., τ r

0 (s̄) −
τ r
∗(s̄) = O(Fd/kBT ). In contrast, during learning, the actions

a are extracted from the policy πRL. For small Fd/kBT , πRL

is dominated by noise, i.e., all actions are equiprobable up
to a small correction proportional to Fd/kBT . The expecta-
tion of the action in a given state EπRL [a] is therefore small
and proportional to Fd/kBT . Hence, the expectation of the
change in the rates is ∼Fd EπRL [a]/kBT ∼ (Fd/kBT )2. We
thus have τ r

0 (s̄) − τ r
πRL

(s̄) = O(Fd/kBT )2. As a consequence,
the efficiency ηπRL (s̄), which is the ratio of the learned over
the optimal reduction of the return time, is proportional to
Fd/kBT and drop to zero. Such a behavior of the optimal and
learned reductions is confirmed by simulations in Fig. 2(d),
and a more rigorous derivation of the drop of efficiency based
on an expansion to first order in Fd/kBT is reported in Sec. IV
of the SM [55].

Our results show that the efficiency drops at small Fd/kBT .
Since in practice this means that learning does not converge,
such a statement seems to be in contradiction with well
known proofs of convergence for the RL methods that we use
[1]. However, there is no contradiction because it is always
possible to use a stronger convergence criterion to improve
learning. In other words, the resources needed to converge
at small Fd/kBT increase, and in practical applications the
difficulty of learning in this regime therefore has to be faced.

d. Transferability of learning from low temperatures. Re-
markably, one can circumvent the drop of efficiency at high
temperature by learning at a lower temperature. Indeed, poli-
cies learned at kBT � Fd can exhibit efficiencies up to 0.4
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FIG. 3. Transfer learning for a seven-particle target. For each
curve, the value of Fd/J is fixed: Fd/J = 0.4 (continuous lines)
and Fd/J = 0.2 (dashed gray lines). The efficiency ηπRL (s̄)|T2 is
evaluated with DP at a fixed temperature T2 with policies πRL learned
at various temperatures T with the same value of Fd/J . For each
point, we perform ten independent learning runs. The average ef-
ficiency ηπRL (s̄)|T2 as a function of Fd/kBT is shown with empty
symbols. The width of the shaded area represents the standard devia-
tion. The efficiency increases and reaches a plateau for low learning
temperatures, roughly corresponding to Fd/kBT > 1. The larger full
symbols correspond to the average efficiency when learning and
evaluation are done at the same temperature T = T2. The arrows
represent the gain of efficiency when learning at low temperatures
Fd/kBT > 1.

when evaluated at a higher temperature T2 such that kBT2 �
Fd , while the efficiency would be vanishingly small if the pol-
icy was learned at T2. In Fig. 3, the efficiency of a policy πRL

learned at a temperature T and evaluated at a temperature T2

for different forces F is seen to depend only weakly on J/kBT
(similar figures for first passage times from various targets
are shown in Fig. S5 of the SM [55]). For Fd/kBT > 1, the
efficiency saturates to a maximum value. Note that learning
at Fd/kBT > 1 means that the efficiency of learning is good,
i.e., that the learned policy is close to the optimal policy at
the learning temperature. Such a transferability of the learned
policy therefore suggests transferability of the optimal policy
when varying temperature.

However, the policy changes in a finite fraction of the states
when the temperature is varied, as shown in details in Sec. V
of the SM [55]. To elucidate this apparent contradiction, we
propose that this transferability is caused by the tendency of
the optimal policy close to the target to exhibit both a larger
policy robustness and a larger relevance for the efficiency.
The larger relevance is due to the fact that one necessarily
has to go through these states close to the target to reach the
target. The larger robustness is caused by the fact that the
optimal choice of the force tends to be always directed toward
the target in states that are close to the target, with a small
sensitivity to the values of the transition rates. In Sec. V of
the SM [55], we provide some numerical results following
hints from an expansion at small Fd/kBT that support these
assumptions. The optimal policies at different temperatures

are similar in states that are most relevant for the efficiency,
and these states are on average closer to the target (in terms of
distance measured by the ring index [57]). Since the optimal
actions in states that are close to the target are similar at high
and low temperatures, one can learn them at low temperatures
where RL performs better, and transfer them to higher tem-
peratures. Such transferability was unexpected because cluster
fluctuation dynamics exhibit different regimes as temperature
is varied [58–60].

e. Discussion. Our main result is that reinforcement learn-
ing becomes inefficient at high temperatures, small length
scales, and small forces. Moreover, since the states that are
close to the target exhibit both higher robustness and larger
relevance, transfer learning is possible from conditions where
learning can be achieved, such as lower temperatures.

The feasibility of some experimental RL control of col-
loidal clusters was demonstrated in Ref. [19], focusing on
relaxation of large clusters (of a few hundreds of particles)
toward a circular shape. Despite major differences with our
work—we consider arbitrary target shapes and few-particle
clusters—we speculate that better learning at low tempera-
tures and transferability of low-temperature policies to high
temperatures could be observed in this type of experimental
system.

Furthermore, navigation policies for directed or active
colloids were investigated experimentally in Ref. [9]. Two-
dimensional continuum positions were discretized with a
coarse-grained square lattice. In such settings, the coarse-
grained lattice parameter should play the role of d , and we
again expect the efficiency to drop as Fd/kBT . In Sec. VI of
the SM [55], a similar drop is recovered from the analysis
of a simplified one-dimensional continuum model. Learned
policies were also found to be transferable from one temper-
ature to another in Ref. [9]. We propose that this is caused
by the persistence of the optimal policy in the most relevant
states. However, observations become more difficult at high
temperatures due to faster particle motion. Disentangling the
observation-induced failure of the learning process and the
intrinsic difficulty of learning at high temperatures is an open
fundamental challenge that would require further theoretical
developments.

Moreover, when noise is not too strong and when the sys-
tems or the learning algorithms are complex enough, noise is
not always detrimental and can help exploration or can reg-
ularize the learning process [30,31,61]. However, our results,
which have been checked here for MCL and QL, only rely on
the use of an ε-greedy policy based on the q function in the
limit of strong thermal noise. We therefore expect them to be
robust and relevant for a wider range of RL algorithms based
on the q function, including advanced RL algorithms that are
coupled to artificial neural networks, such as deep Q-learning
[2,62]. Hence, our study on elementary RL methods provides
directions for better performances and transfer learning strate-
gies [63,64] for advanced RL algorithms applied to nanoscale
systems.

The authors wish to thank Y. Benamara and L. Matignon
for useful discussions, and D. Rodney for comments on the
manuscript.
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