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Exploring anisotropic pressure and spatial correlations
in strongly confined hard-disk fluids: Exact results
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This study examines the transverse and longitudinal properties of hard disks confined in narrow channels.
Employing an exact mapping of the system onto a one-dimensional polydisperse, nonadditive mixture of hard
rods with equal chemical potentials, we compute various thermodynamic properties, including the transverse and
longitudinal equations of state, along with their behaviors at both low and high densities. Structural properties
are analyzed using the two-body correlation function and the radial distribution function, tailored for the highly
anisotropic geometry of this system. The results are corroborated by computer simulations.
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Introduction. The investigation of fluids under extreme
confinement has garnered considerable attention over the
years, playing a pivotal role in comprehensively understand-
ing liquid behavior. Among the various confined geometries
in which liquids can be situated, quasi-one-dimensional
(q1D) channels hold particular significance. In these con-
figurations, the available space along one dimension (the
longitudinal axis) vastly exceeds that along the perpendicular,
confined axes. This disparity in dimensions characterizes the
highly anisotropic nature of q1D confinement. Thus, these
q1D systems lie halfway between purely one-dimensional
(1D) systems, which are known to have analytical solu-
tions under certain circumstances [1–7], and bulk two- or
three-dimensional systems, whose properties are generally
addressed through approximations, numerical solutions, or
simulations [8–11].

In addition to their inherent theoretical interest, these sys-
tems have gained even greater relevance with the advancement
of nanofluidics [12], nanopores [13–15], and various exper-
imental techniques capable of replicating such conditions
[16–19]. These experimental setups have provided invaluable
insights into the behavior of fluids under extreme confine-
ment, further motivating theoretical investigations into the
properties of fluids in q1D channels.

The task of deriving exact, analytical expressions for the
thermodynamic and structural properties of q1D systems has
been a focal point of research over the years and has been
approached from various theoretical perspectives and sim-
ulation methods [20–28]. Exact results for the longitudinal
thermodynamic properties of these systems are known, and
more recently, exact results for their structural properties have
also been obtained, although numerical integration is ulti-
mately required [29–31]. Purely analytical expressions found
in the literature are typically obtained through approxima-
tions [23,29,32,33]. Despite some advances in understanding
transverse properties (see especially Refs. [21,28]), a com-
prehensive study in this area is still lacking, and a unified
methodology for investigating these systems remains elusive.

In this article, we investigate a q1D confined system char-
acterized by one longitudinal dimension of length L‖ = L and
one transverse dimension of length L⊥ = ε � L. The parti-
cles in the system interact via a hardcore pairwise additive
potential, with each particle having a hardcore diameter of
d = 1 (henceforth defining the unit of length), so that the
separation between the two confining walls is 1 + ε [34]. The
smallness of the transverse dimension prevents particles from
bypassing each other, compelling them to arrange in a single-
file formation along the longitudinal dimension. Moreover, we
impose ε �

√
3

2 to ensure that interactions with second-nearest
neighbors are absent.

In these circumstances, it can be demonstrated that the
confined q1D system is formally equivalent to a 1D polydis-
perse mixture with equal chemical potential [29–31]. Particles
in the mixture are categorized into different species based
on the transverse coordinates y (with −ε/2 � y � ε/2) of
the disks in the original system. They interact via an ef-
fective hardcore distance of ay1y2 =

√
1 − y2

12, where y2
12 =

(y1 − y2)2 [35]. Since ay1y2 �= 1
2 (ay1y1 + ay2y2 ), the 1D mixture

is indeed a nonadditive one. The mole fraction distribution
function, φ2

y , of the 1D polydisperse system coincides with
the transverse density profile of the equivalent hard-disk
confined fluid.

The 1D polydisperse system. Typically, the exact solution
for 1D fluids is derived within the isothermal-isobaric en-
semble [36]. In particular, the nearest-neighbor probability
distribution function of a generic 1D polydisperse hard-rod
fluid is P(1)

y1y2
(x) = (φy2/φy1 )Ay1 Ay2 e−βp‖x�(x − ay1y2 ), where

�(·) is the Heaviside step function, β ≡ 1/kBT (kB and T
being the Boltzmann constant and the absolute temperature,
respectively), and p‖ is the 1D pressure, which has dimensions
of force. Given an arbitrary mole fraction distribution φ2

y , the
function Ay is the solution to [30,36]

Ay1

∫
ε

dy2 e−βp‖ay1y2 Ay2φy2 = βp‖φy1 . (1)
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Successive convolutions of P(1)
y1y2

(x) yield the pair corre-
lation function gy1y2 (x). Its Laplace transform, Gy1y2 (s) =∫ ∞

0 dx e−sxgy1y2 (x), follows the integral equation [30,31]

φy2

Ay2

Gy1y2 (s) =
∫

ε

dy3 φy3 Gy1y3 (s)Ay3

e−(s+βp‖ )ay2y3

s + βp‖

+ Ay1

λφy1

e−(s+βp‖ )ay1y2

s + βp‖
. (2)

Here, the linear density [37] λ = N/L (where N is the number
of particles) is given by [29,30]

βp‖
λ

= 1 +
∫

ε

dy1

∫
ε

dy2 φy1φy2 Ay1 Ay2 ay1y2 e−βp‖ay1y2 . (3)

It can be demonstrated that the parameter Ay is directly pro-
portional to the square root of the fugacity of “species” y [30].

In Eqs. (1)–(3) we have assumed a polydisperse sys-
tem with a general mole fraction distribution φ2

y . On the
other hand, contact with the original monocomponent q1D
fluid necessitates the condition of equal chemical potential,
i.e., Ay = A for all y. In that case, Eq. (1) reduces to the
eigenvalue/eigenfunction problem obtained from the transfer-
matrix method [20], where the (largest) eigenvalue � is related
to A by � = βp‖/A2. Moreover, the excess Gibbs–Helmholtz
free energy per particle of the equal-chemical-potential 1D
polydisperse system becomes [29,30]

βgex(βp‖, ε) = − ln
�(βp‖, ε)

ε
. (4)

Taking into account that limβp‖→0 � = ε [29], we have that
limβp‖→0 βgex = 0, as it should be.

When tackling the numerical solution of the equations for
the 1D polydisperse system, we considered M-component dis-
crete mixtures. Specifically, within the discretized rendition
of Eq. (2), the evaluation of Gy1y2 (s) was directly achieved
through matrix inversion. The results showed a linear corre-
lation with M−1, allowing for a subsequent extrapolation to
M → ∞ [31].

Thermodynamic properties. Due to the pronounced
anisotropy of the q1D fluid, the thermodynamic pressure be-
comes a tensor with two diagonal components (P‖ and P⊥)
along the longitudinal and transverse directions, respectively.
Both components have dimensions of force per unit length,
but each exhibits distinct behaviors. In the mapped 1D poly-
disperse system, only the 1D pressure, p‖ = εP‖, possesses
physical significance, and ε simply represents the interval over
which the “species” label runs. On the other hand, upon re-
verting to the original q1D system, we can still utilize Eq. (4)
by interpreting gex(βp‖, ε) as the thermodynamic potential
in a hybrid ensemble: isothermal-isobaric in the longitudinal
direction and canonical in the transverse one. Consequently,
the independent thermodynamic variables are the longitudinal
pressure P‖ (or, equivalently, p‖) and the transverse length ε,
with their conjugate variables being the longitudinal length L
and the transverse pressure P⊥, respectively. We can denote
this ensemble with the set {N, p‖, L⊥, T }. It is indeed note-
worthy that the mapping from q1D to 1D systems not only
yields the longitudinal properties of the original system but
also its transverse ones.

The longitudinal compressibility factor, Z‖ ≡ βP‖Lε/N =
βp‖/λ, and the transverse compressibility factor, Z⊥ ≡
βP⊥Lε/N = βP⊥/(λ/ε), can be obtained from the thermo-
dynamic relations Z‖ = 1 + βp‖(∂βgex/∂βp‖)ε and Z⊥ =
1 − ε(∂βgex/∂ε)βp‖ . Starting from the mathematical iden-
tity (∂/∂ε)βp‖ = (∂/∂ε)βP‖ − (βP‖/ε)(∂/∂βP‖)ε , we can
straightforwardly derive Eq. (9) of Ref. [21]: Z⊥ = Z‖ −
ε(∂βgex/∂ε)βP‖ . Based on the notation α = ‖,⊥, the final
results can be expressed as follows:

Zα = 1 + βp‖
�

∫
ε

dy1

∫
ε

dy2 φy1φy2ω
α
y1y2

e−βp‖ay1y2 , (5)

with ω‖
y1y2

= ay1y2 and ω⊥
y1y2

= y2
12/ay1y2 . Equation (5) with

α = ‖ coincides with Eq. (3) after setting Ay = A = √
βp‖/�

in the latter. Moreover, it can be proved that Eq. (5) with
α =⊥ is equivalent to the contact-theorem expression
Z⊥ = εφ2

ε/2 [28,38].
Low-pressure behavior. Virial expansions stand out as

one of the most common approaches for characterizing flu-
ids under low-density conditions. Obtaining the exact virial
coefficients, particularly those of lower order, remains es-
sential to understand the behavior of the system, as well
as to validate the precision of approximate methodologies.
In our q1D fluid, the virial coefficients for each compo-
nent of the compressibility factor are traditionally defined
based on the expansion in powers of density, i.e., Zα =
1 + ∑∞

k=2 Bkαλk−1. However, for practical convenience, it is
far more advantageous to employ coefficients B′

kα in the
expansion expressed in terms of the longitudinal pressure
[29,33], namely Zα = 1 + ∑∞

k=2 B′
kα (βp‖)k−1. Both sets of

coefficients are simply related: B2α = B′
2α , B3α = B2‖B2α +

B′
3α , B4α = B2

2‖B2α + 2B2‖B′
3α + B′

3‖B2α + B′
4α , .... Coeffi-

cients B′
k‖, with k = 2, 3, 4, are already known [29,32]. To

obtain B′
k⊥, it is only necessary to take into account the

thermodynamic relation βp‖(∂Z⊥/∂βp‖)ε = −ε(∂Z‖/∂ε)βp‖ ,
yielding B′

k⊥ = −(k − 1)−1ε∂B′
k‖/∂ε. The final results are

B2‖ = 2

3

(
1 + ε2

2

)√
1 − ε2 − 1

ε2
+ sin−1(ε)

ε
, (6a)

B2⊥ = 4

3

(
1 − ε2

4

)√
1 − ε2 − 1

ε2
+ sin−1(ε)

ε
, (6b)

B′
3α = 3B2‖B2α − 2W2α + C2α, (6c)

B′
4α = B2α

(
10B2

2‖ − 4W2‖ + 1

2
C2‖

)
+ 3W3α

− B2‖(8W2α − C2α ) + C3α, (6d)

where C2‖ ≡ ε2

6 − 1,C2⊥ ≡ − ε2

6 , C3‖ ≡ 1+5ε2−(1−ε2 )5/2

15ε2 , and

C3⊥ ≡ 2−(1−ε2 )3/2(2+3ε2 )
45ε2 are exact coefficients, while

W2α ≡ 1

ε

∫
ε

dy ψ‖
y ψα

y , (7a)

W3α ≡ 1

3ε2

∫
ε

dy1

∫
ε

dy2 ψ‖
y1

(
2ay1y2ψ

α
y2

+ ωα
y1y2

ψ‖
y2

)
(7b)

are numerical integrals, with ψ‖,⊥
y ≡ 1

2ε
(ψ̄±

y + ψ̄±
−y) and

ψ̄±
y ≡ sin−1( ε

2 + y) ± ( ε
2 + y)

√
1 − ( ε

2 + y)2.
High-pressure behavior. In the limit βp‖ → ∞, the linear

density tends to its close-packing value λcp = (1 − ε2)−1/2.
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FIG. 1. Plot of Z‖ and Z⊥ as functions of the linear density for
(a) ε = 0.5 and (b) ε = √

3/2. Dash dotted lines represent the trun-
cated expansions Zα = 1 + ∑4

k=2 B′
kα (βp‖)k−1, while dashed lines

represent the high-pressure behavior given by Eq. (8). We have
checked that the figure is fully consistent with Fig. 3 of Ref. [21].

The corresponding asymptotic behaviors of φy and � in that
limit were derived in Ref. [29]. Application of the limit in
Eq. (5) yields

Zα → 2Aα

1 − λ/λcp
, A‖ = 1, A⊥ = λ2

cp − 1. (8)

When examining the behaviors of the compressibility factor’s
components under both low and high densities, a notable
observation emerges: while Z⊥ < Z‖ consistently holds in the
low-density range, this relation becomes true in the high-
density regime only if λcp <

√
2. Consequently, when ε >

1/
√

2 � 0.707, at least one crossing point between both com-
ponents arises. This crossing is unique, as depicted in Fig. 1,
while lower values of the width parameter ε exhibit no such
crossing. To better understand this point, let us consider the
common tangent of two disks that are in contact at close
packing, and define the angle θ = cos−1 ε that the common
tangent makes with the walls. If ε > 1/

√
2, then θ < 45◦,

which explains why P⊥ > P‖ as λ → λcp, while the opposite
happens if θ > 45◦.

Figure 1 additionally demonstrates that both the low- and
high-pressure approximations exhibit excellent performance
across a broad spectrum of densities, extending beyond just
the limiting scenarios. However, it is worth noting that the
validity range decreases as the channel width parameter, ε,
grows.

Behavior under maximum confinement. At a fixed linear
density λ, the excess pore width ε can be made arbitrar-
ily small only if λ � 1. Assuming λ < 1 and considering
ε � 1 in the eigenvalue equation for φy and �, one derives
φy → ε−1/2[1 + βp‖

2 (y2 − ε2

12 )] and � → e−βp‖ε(1 + βp‖ ε2

12 ).
Substituting these expressions into Eq. (5), we obtain

Z‖ → 1 + βp‖

(
1 − ε2

12

)
, Z⊥ → 1 + βp‖

ε2

6
, (λ < 1),

(9)

implying Z‖ → (1 − λ)−1 and Z⊥ → 1 in the limit ε →
0 if λ < 1. These results for λ < 1 agree with those

recently obtained by Franosch and Schilling through a differ-
ent approach [28].

If, on the other hand, λ > 1, the smallest possible value of
ε is

√
1 − λ−2. As one approaches this minimum value, we

can use Eq. (8) to obtain

Zα → 2A′
α

λ
(ε −

√
1 − λ−2)−1, (λ > 1), (10)

with A′
‖ = 1/

√
λ2 − 1, A′

⊥ = √
λ2 − 1. The borderline case

λ = 1 necessitates special consideration. In this scenario, after
some algebra, one finds

Z‖ ∼ ε−2, Z⊥ → 3, (λ = 1). (11)

Pair distribution functions. In liquid-state theory, the radial
distribution function (RDF) stands as a pivotal structural char-
acteristic, elucidating the variation of local density concerning
distance from a reference particle. However, in confined
liquids, defining a global RDF, g(r), proves less straightfor-
ward compared to bulk systems due to the loss of rotational
invariance in the fluid. In general, if n1(r) is the local num-
ber density and n2(r1, r2) is the two-body configurational
distribution function, the pair correlation function g(r1, r2)
is defined by n2(r1, r2) = n1(r1)n1(r2)g(r1, r2). In the q1D
fluid, n1(r) = λφ2

y and g(r1, r2) = gy1,y2 (x12), where x12 =
|x1 − x2|. The function gy1,y2 (x) can be identified with the
interspecies RDF of the 1D polydisperse system, which, in
Laplace space, is given by Eq. (2) with Ay = √

βp‖/�. The
transverse-averaged longitudinal correlation function is ex-
pressed as g‖(x) = ∫

ε
dy1

∫
ε

dy2 φ2
y1
φ2

y2
gy1,y2 (x).

As an alternative to Eq. (5), it is feasible to express
the compressibility factors in terms of λ and integrals in-
volving g‖(x). Specifically, Z‖ = (1 − I0)/[1 − λ(1 − I0 +
I+
1 )] and Z⊥ = Z‖[λ(1 − I0 + I−

1 ) − 1] + 2 + I−
2 , where I±

n ≡
λ

∫ 1√
1−ε2 dx x±ng‖(x).

Let us now define the radial pair distribution function,
n̂(r), such n̂(r)dr is the average number of particles at a
distance between r and r + dr from any other particle. As
a marginal distribution, n̂ is obtained from n2 as n̂(r) =
N−1

∫
dr1

∫
dr2 n2(r1, r2)δ(r −

√
x2

12 + y2
12). After some al-

gebra, and assuming r � L, one finds

n̂(r) = 2λr
∫ †

ε

dy1

∫ †

ε

dy2 φ2
y1
φ2

y2

gy1y2

(√
r2 − y2

12

)
√

r2 − y2
12

, (12)

where the dagger symbolizes the constraint y2
12 < r2 imposed

on the integrals. In the regime 1 � r � L, where correlations
are negligible, there exist two stripes of height ε and width
dr at a distance r from a certain reference particle. As a
consequence, n̂(r) ≈ 2λ in that regime. In an ideal gas, the
absence of interactions yields φ2

y → ε−1 and gy1y2 (x) → 1,
resulting in

n̂id(r) = 4λr

ε

⎧⎨
⎩

π
2 − r

ε
, r � ε,√(

r
ε

)2 − 1 − r
ε

+ sin−1
(

ε
r

)
, r � ε.

(13)

Interestingly, n̂id(r) is not constant due to the pronounced
anisotropy of the system. Now we return to the interacting
fluid. Neglecting spatial correlations (but retaining the actual
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FIG. 2. Plot of (a) Z‖ and (b) Z⊥ as functions of the linear density
for different values of the excess pore width ε. The symbols in
panel (a) represent data for Z‖ obtained from {N, p‖, L⊥, T } MC
simulations.

density profile φ2
y ) would yield n̂nc(r) by setting gy1y2 (x) → 1

in Eq. (12). The RDF of the q1D fluid can be defined as
the ratio g(r) = n̂(r)/n̂nc(r), which differs from the average
function g(r) = ∫

ε
dy1

∫
ε

dy2 φ2
y1
φ2

y2
gy1y2 (

√
r2 − y2

12).
Validating theory through simulations. To validate the the-

oretical predictions derived within the 1D framework, Monte
Carlo (MC) simulations were conducted on the original q1D
fluid. For obtaining the longitudinal compressibility factor
Z‖, simulations were performed in the {N, p‖, L⊥, T } en-
semble, while the {N, P⊥, L‖, T } ensemble was utilized for
determining Z⊥. Conversely, the spatial correlation func-
tions were assessed within the canonical {N, L‖, L⊥, T }
ensemble. In general, 102 particles were used and 107 sam-
ples were collected after a sufficiently large equilibration
process.

Figure 2 illustrates the density-dependence of the com-
pressibility factors for various width parameter values. Both
quantities exhibit divergence at the close-packing density
λcp = (1 − ε2)−1/2. Remarkably, there is an excellent agree-
ment between the theoretical Z‖ and its corresponding MC
values obtained in the {N, p‖, L⊥, T } ensemble. The lat-
ter ensemble is not appropriate to measure the transverse
compressibility factor in simulations. Thus, Fig. 2 is comple-
mented by Fig. 3, where the ε dependence of Z‖ and Z⊥ is
shown for various densities. Again, an excellent agreement
between theoretical and MC values of Z⊥ is observed. Fig-
ure 3 also shows that, as discussed before, Z‖ and Z⊥ for
λ > 1 diverge as ε approaches its minimum value

√
1 − λ−2,

while both compressibility factors reach finite values in the
limit ε → 0 if λ < 1. In the special case λ = 1, Z‖ diverges
in that limit but Z⊥ → 3. Interestingly, Z⊥ ≈ 3 at λ = 1 for
practically any value of ε, as Figs. 2(b) and 3(b) show.

Now, let us examine the spatial correlation functions.
Figure 4 presents both the longitudinal correlation function,
g‖(x), and the radial pair distribution function, n̂(r)/2λ,
for ε = √

3/2 and two characteristic densities (λ = 1.0 and
λ = 1.6). As expected, the MC simulations data confirm the
theoretical predictions for these correlation functions. It is
evident that the structural characteristics of the q1D fluid

FIG. 3. Plot of (a) Z‖ and (b) Z⊥ as functions of the excess pore
width for different values of the linear density λ. The symbols in
panel (b) represent data for Z⊥ obtained from {N, P⊥, L‖, T } MC
simulations.

exhibit considerably more complexity when transitioning
from λ = 1.0 to λ = 1.6. At λ = 1.6, g‖(x) displays evident
oscillatory behavior, featuring local maxima positioned
at x � 0.58, 1.21, 1.81, 2.44, 3.07, 3.67, 4.30, 4.90, . . .,
consistent with the asymptotic wavelength of 0.63 � λ−1

derived from the dominant pole in Laplace space [30].
Conversely, the oscillations of n̂(r) at λ = 1.6 exhibit
much less regularity, with local maxima at r = 1 and

FIG. 4. Plot of (a), (b) g‖(x) and (c), (d) n̂(r)/2λ for ε = √
3/2

and two density values: (a), (c) λ = 1.0 and (b), (d) λ = 1.6. The
symbols represent data obtained from {N, L‖, L⊥, T } MC simula-
tions. Panels (c) and (d) also include the functions n̂nc(r)/2λ (dashed
lines) and n̂id(r)/2λ (dash dotted lines).
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r � 1.19, 1.99, 2.42, 3.17, 3.66, 4.38, 4.87, . . .. Significantly,
the positions of the first, third, fifth, seventh, ..., maxima of
n̂(r) and g‖(x) are approximately related by the expression
r � √

x2 + ε2. Conversely, the locations of the second,
fourth, sixth, eighth, ..., maxima align with r � x. These
relations reveal a zigzaglike arrangement of the disks.
Figures 4(c) and 4(d) additionally feature the ideal-gas
radial function, n̂id(r)/2λ, and the one in the absence of
correlations, n̂nc(r)/2λ. Both exhibit nonzero values and
display a peak within the forbidden region r < 1, swiftly
approaching 1 as r > 1. Consequently, both ratios n̂(r)/n̂id(r)
and g(r) = n̂(r)/n̂nc(r) are scarcely distinguishable from the
plotted quantity n̂(r)/2λ.

Conclusions. Our investigation delved into the nuanced
properties of strongly confined hard-disk fluids within q1D
channels, shedding light on both transverse and longitudinal
behaviors. By leveraging an exact mapping onto a 1D
polydisperse mixture of hard rods with equal chemical po-
tentials, we unraveled various thermodynamic and structural
characteristics across the whole spectrum of densities, thus
providing a robust theoretical framework for our exploration.
This equivalence, previously exploited only for longitudinal

properties [29,30], underscores the nontrivial nature of the
confined system, characterized by a delicate balance between
transverse confinement and interparticle interactions. Sup-
ported by computer simulations, our findings offer valuable
insights into the intricate properties of fluids in narrow
channels, with implications for nanofluidics and experimental
setups emulating such conditions. Moving forward, we hope
that our work paves the way for further investigations into
the transverse properties of such systems, bridging the gap
between purely one-dimensional and bulk two- or three-
dimensional systems. By elucidating the intricate interplay
of confinement and interactions in q1D fluids, this work may
contribute to the ongoing quest for a unified methodology to
analyze and understand these complex systems.
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