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Keldysh field theory, based on adiabatic assumptions, serves as a widely used framework for addressing
nonequilibrium many-body systems. Nonetheless, the validity of such adiabatic assumption when addressing
interacting Gibbs states remains a topic of contention. Interestingly, the knowledge of work statistics developed
in nonequilibrium thermodynamics helps us to quantitatively explore this problem. Consequently, we deduce
a universal theorem delineating the characteristics of evolutions that transition an initial Gibbs state to another.
Based on this theorem, we analytically ascertain that adiabatic evolutions fail to transition a noninteracting Gibbs
state to its interacting counterpart. However, the adiabatic evolution remains a superior approximation relative
to its nonadiabatic counterparts. Numerics verifying our theory and predictions are also provided. Furthermore,
our findings render insights into the Gibbs state preparation within the domain of quantum computation.
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Introduction. The concept of adiabatic driving has been
widely used in quantum physics, including Berry phase [1],
zero-temperature many-body theory [2,3], nonequilibrium
many-body theory [4–6], and adiabatic quantum computa-
tion [7]. The adiabatic theorem [8–11] guarantees the validity
of the adiabatic assumption in studying those physics. Specif-
ically, in the zero-temperature many-body (field) theory, the
Gell-Mann-Low theorem [2,3,12], which is a specialization
of the adiabatic theorem for interacting many-body systems,
indicates that one can obtain the interacting ground state from
a noninteracting ground state by adiabatically switching on
the interaction Hamiltonian. Such a reduction greatly facilitate
the treatment of interacting systems, as it makes the noninter-
acting Green’s functions as the building blocks.

Based on the Schwinger-Keldysh closed-time formal-
ism [4,13,14], the nonequilibrium Green’s functions serve
as a useful framework for nonequilibrium many-body prob-
lems [5,15–19]. When considering nonequilibrium many-
body systems, one is often staring from a Gibbs state at
inverse temperature β, where the Hamiltonian is in the form of
H = H0 + λ1H1 with H1 being the interaction and λ1 the inter-
action strength. To deal with such an interacting initial state,
Konstantinov and Perel’ [6,14] proposed that one can regard
the interacting Gibbs state as an evolution in the imaginary
time axis and then treat it with the imaginary time Matsub-
ara formalism [20]. Despite the mathematical rigor of this
approach, it presents complexities due to the concurrent han-
dling of both imaginary-time and real-time Green’s functions.
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Moreover, the treatment of interacting Gibbs states using
Matsubara formalism is already a difficult task. Therefore, a
streamlined formalism, predominantly focusing on real-time
Green’s functions for nonequilibrium many-body problems,
is advantageous. To this end, Keldysh suggested an approach
wherein the interacting Gibbs state is considered as the fi-
nal state of an evolution that initiates from a noninteracting
Gibbs state at t = −∞, with interactions being adiabatically
switched on [4–6]. Then, the building blocks reduce to nonin-
teracting Green’s functions and one only needs to concentrate
on real times, as encountered in the zero-temperature many-
body theory.

In contrast with the zero-temperature many-body theory,
the validity of the adiabatic assumption within the nonequi-
librium many-body framework remains an open question.
Specifically, if an adiabatic evolution fails to transition a
noninteracting Gibbs state to an interacting Gibbs state for
a specified Hamiltonian [6,21], can the adiabatic assumption
still be deemed a viable approximation when comparing with
alternative evolution protocols? If the adiabatic assumption
is a good approximation at finite temperature, then Keldysh
approach can be still applied, which will definitely make
treatments of nonequilibrium many-body problems more con-
venient due to the advantages of Keldysh approach. These
heavily rely on analytical and quantitative descriptions of the
accuracy of adiabatic assumption. In addition, the quantitative
description also enables us to determine the regime in which
the Keldysh approach fails. Furthermore, it is pertinent to ex-
plore the inherent characteristics of such evolution protocols
capable of transitioning a noninteracting Gibbs state to its
interacting counterpart. Insights from these properties might
prove instrumental for Gibbs state preparation methodologies
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FIG. 1. (a) Definition of work statistics through two energy mea-
surements. (b) The contour C used in calculating the characteristic
function of work. The contour C is divided into four parts for our
case: (i) 0 → t : λC (s) = λ(s); (ii) t → t − u with u < 0: λC (s) =
λ1; (iii) t − u → t : λC (s) = λ(s + u); (iv) − u → 0: λC (s) = 0.

[22–24]. In subsequent discussions, we refer to these evolu-
tion protocols as noninteraction-to-interaction (NI) evolution
protocols.

In this work, we analytically and quantitatively discuss
these problems, which becomes possible with the help of
work statistics [25–32] developed in the nonequilibrium ther-
modynamics. Specifically, a universal theorem that holds for
arbitrary quantum systems and determines the NI evolution
protocol is derived. Generic calculations of work statistics
show that the adiabatic evolution cannot transition a nonin-
teracting Gibbs state to an interacting Gibbs state. However,
comparing with nonadiabatic evolution protocols, the final
state of the adiabatic evolution is closer to the desired inter-
acting Gibbs state up to an error of the order of O(λ3

1). For
nonadiabatic evolutions, the error is of the order of O(λ2

1).
Work statistics and Jarzynski equality. Before examining

properties of the desired NI evolution protocol, we briefly
review work statistics and the Jarzynski equality [25–33]
within the context of quantum systems, as they enable us to
quantitatively and universally consider those aforementioned
problems.

Ingredients of work statistics in quantum version can be
defined through two energy measurements [34,35] as shown
in Fig. 1(a). In the first measurement, the energy outcome
is determined by the initial Gibbs state ρ(ti ) = e−βH (ti )/Z (ti )
with Z (ti ) = tr[e−βH (ti )] being the partition function of the ini-
tial system. The first measurement can produce an eigenvalue
Ei

n of H (ti ) with a probability pn = e−βEi
n/Z (ti ). Subsequent

to this, the system transitions to the eigenstate |ψ i
n〉 and

evolves according to the time-dependent Hamiltonian H (t )

under the unitary evolution U (t ). At the final time t f , another
measurement results in the eigenvalue E f

m of H (t f ) with a con-
ditional probability p(m, t f |n, ti ) = |〈ψ f

m|U (t f )|ψ i
n〉|2. Here,

|ψ f
m〉 signifies the eigenstate of H (t f ) corresponding to E f

m.
Consequently, the joint probability of obtaining measure-
ments E f

m and Ei
n is p(m, t f |n, ti )pn. The work is defined as

the difference of two energy outcomes: w = E f
m − Ei

n, and the
probability of work w should be

p(w) =
∑
n,m

δ
[
w − (

E f
m − Ei

n

)]
p(m, t f |n, ti )pn. (1)

Having derived the work distribution, one can also define
the characteristic function of work (CFW) through the Fourier
transformation of p(w):

χ (u) =
∫

dweiuw p(w)

= 1

Z (ti )
tr
[
U †(t f )eiuH (t f )U (t f )e−(iu+β )H (ti )

]
. (2)

The CFW is a more convenient tool in studying nonequilib-
rium physics of quantum systems than the distribution p(w).
Remarkably, by setting u = iβ in the CFW, one can obtain the
Jarzynski equality [25]:

〈e−βw〉 = Z (t f )

Z (ti )
, (3)

where 〈·〉 without subscript is defined as 〈·〉 = ∫
dw(·)p(w),

and Z (t f ) = tr[e−βH (t f )] is the partition function of a hypothet-
ical system with Hamiltonian H (t f ) in a Gibbs state at inverse
temperature β. Note that the real system at t f is not necessarily
at a Gibbs state. Hence, it is also desirable to ask that when the
real system will be in a Gibbs state at t f .

Properties of the noninteraction-to-interaction evolution
protocol. In the following, we present the theorem elucidating
the properties of the noninteraction-to-interaction (NI) evolu-
tion protocol. Prior to that, we introduce two lemmas essential
for the proof of the theorem. We provide only a succinct
overview of the pivotal steps in the proof, with comprehensive
details available in the Supplemental Material (SM) [36].

Lemma 1. The averaged work 〈w〉 ≡ ∫
dwwp(w) of an

evolution from ti to t f , can also be expressed as 〈w〉 =
〈H (t f )〉t f − 〈H (ti )〉ti , where 〈H (t )〉t ≡ tr[ρ(t )H (t )].

Lemma 2. Suppose there exists an evolution protocol from
ti to t f , such that for all systems, the average work of the
evolution satisfies 〈w〉 = 〈H (t f )〉G − 〈H (ti )〉ti , where

〈H (t f )〉G ≡ 1

tr
[
e−βH (t f )

] tr
[
e−βH (t f )H (t f )

]
,

then the final state ρ(t f ) is a Gibbs state with respect to H (t f )
at inverse temperature β.

Having derived the above two lemmas, we are now able
to prove a theorem, which gives the property of the desired
evolution protocol for arbitrary systems.

Theorem 1. For any given system with an initial Hamilto-
nian H (ti ) and a final Hamiltonian H (t f ), an evolution that
drives the initial Gibbs state ρ(ti ) = e−βH (ti )/Z (ti ) to the final
one ρ(t f ) = e−βH (t f )/Z (t f ), exists if and only if the work dis-
tribution p(w) is a δ function.
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Proof.
(a) We first prove the sufficiency. If the work distribution

is p(w) = δ(w − w0) (for different systems, w0 can be differ-
ent), then the work of each trajectory should be the same, and
equals to the average 〈w〉. According to the Jarzynski equality
Eq. (3), one has

〈e−βw〉 = e−βw0 = Z (t f )

Z (ti)
, (4)

where Z (t f ) is the partition function of a hypothetical system
with Hamiltonian H (t f ) in a Gibbs state at inverse temperature
β. Then

〈w〉 = − ∂

∂β
ln

Z (t f )

Z (ti )
= 〈H (t f )〉G − 〈H (ti )〉ti . (5)

According to Lemma 2, we know that the state of the real
system at t f is the Gibbs state ρ(t f ) = e−βH (t f )/Z (t f ).

(b) We next prove the necessity. If the state at t f is ρ(t f ) =
e−βH (t f )/Z (t f ), then according to Lemma 1, one has

〈w〉 = 〈H (t f )〉t f − 〈H (ti )〉ti = − ∂

∂β
ln

Z (t f )

Z (ti )
. (6)

In addition, the Jarzynski equality will lead to

− ∂

∂β
ln〈e−βw〉 = − ∂

∂β
ln

Z (t f )

Z (ti )
. (7)

Combining Eqs. (6) and (7), one has

〈w〉 = − ∂

∂β
ln〈e−βw〉 ⇒ 〈we−βw〉 = 〈w〉〈e−βw〉. (8)

In order that Eq. (8) holds, w and e−βw must be indepen-
dent or the trajectory work w is a constant. Since both of w

and e−βw are functions of w, they must not be independent.
Therefore, Eq. (8) requires that the trajectory work w should
be a constant, that is w = w0, where w0 is a constant but
can be different for different systems. Therefore, the work
distribution for the desired evolution protocol should be a δ

function,

p(w) = δ(w − w0). (9)

�
The time-independent case is a trivial example of this the-

orem. In this case, the final Gibbs state is identical with the
initial Gibbs state, and the state after the first measurement
only acquires a overall phase under the evolution provided by
the time-independent Hamiltonian. Thus the trajectory work
is simply w = w0 = 0.

Given the utility of the characteristic function of work
(CFW) in facilitating analysis, we derive a corollary based on
Theorem 1 in order to capture the property through the CFW.

Corollary 1. The logarithm of the characteristic function
of work χ (u) for the evolution protocol given by Theorem 1
satisfies ln χ (u) = iuw0, where w0 is a real number.

Here, we would like to emphasize again that we are not
researching some problems exiting in the field of nonequi-
librium thermodynamics, but just apply the knowledge of
nonequilibrium thermodynamics to consider the foundation
of Keldysh field theory. One may ask why we have to use
work statistics to consider the problem. The reason is that,

to our knowledge, other approaches like calculating tradi-
tional observable expectations in quantum mechanics and
perturbatively treating the equation of motion, cannot give us
analytical and quantitative information if we would like to
universally treat this problem without depending on specific
models.

Perturbative calculations of the characteristic function of
work. For systems under an arbitrary nonequilibrium evolu-
tion, computing the CFW can be challenging. Nonetheless,
when the full interaction strength, denoted λ1 in the Hamil-
tonian H = H0 + λ1H1, is small, a universal formula for the
CFW can be derived via the perturbation theory [35]. Given
the suitability of field theory techniques to weakly interacting
quantum many-body systems, our focus predominantly lies
within the perturbative domain.

Given the time evolution protocol where the interaction is
gradually turned on from zero to t , the exponential operators
in Eq. (2) can all be treated as evolution operators along either
real-time axis or imaginary-time axis. Thus, analogous to the
Schwinger-Keldysh contour, the CFW can be written in a
contour-integral form [35]:

χ (u) = 〈
TC

[
e−i

∫
C dsλC (s)HI

1 (s)
]〉

0, (10)

where 〈·〉0 = tr[(·)e−βH0 ]/tr[e−βH0 ], TC is the contour-ordered
operator with C being the contour analogous to the
Schwinger-Keldysh contour, and HI

1 (s) = eiH0sH1e−iH0s is the
interacting Hamiltonian in the interaction picture. The contour
is divided into four parts as shown in Fig. 1(b), according to
the value of λC (s). As the initial interaction strength is zero,
the contour only resides on the real-time axis.

The logarithm of χ (u), known as cumulant CFW, can be
expanded via cumulant correlation functions [35,37]:

ln χ (u) =
∞∑

n=1

∫
C

ds̄1 · · · ds̄nGc(s1, . . . , sn), (11)

where ds̄l ≡ dslλC (s)θC (sl − sl+1) with θC (sl − sl+1) being
the contour step function [35] and θC (sn − sn+1) ≡ 1, and
Gc(s1, . . . , sn) ≡ (−i)n〈HI

1 (s1) · · · HI
1 (sn)〉c is the n-point cu-

mulant correlation function.
For nonadiabatic evolutions in our case, ln χ (u) up to sec-

ond order of λ1 is given by

ln χ (u) = iuλ1〈H1〉c + iuλ2
1

∫ ∞

−∞

dω

2π

G>
c (ω)

ω

+
∫ ∞

−∞

dω

2π

1 − eiωu

ω2
A(ω)G>

c (ω) + O
(
λ3

1

)
, (12)

where G>
c (ω) is the Fourier transformation of G>

c (s1 − s2) ≡
Gc(s1, s2), and A(ω) ≡ | ∫ t

0 dsλ̇(s)eiωs|2. It is easy to verify
that G>

c (ω) is a real function, the first and second term match
Corollary 1, while the third term does not. For the adiabatic
case, t → ∞ and λ̇(s) → 0, then the third term containing
A(ω) approaches zero. Thus, for adiabatic cases, ln χ (u) is
linear in u when we keep terms up to O(λ2

1), and then matches
our theorem (or corollary). To see whether this holds for arbi-
trary order, we calculate ln χ (u) up to O(λ3

1) for the adiabatic
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(a) (b)

FIG. 2. Infidelities (1 − fidelity) between the interacting Gibbs state and final states of different evolution protocols. The parameters in
common are chosen to be J = 2, λ1 = 0.1, β = 1. The total time for each evolution is λ1/0.001 = 100. (a) Infidelities for different evolution
velocities of the linear driving λ(t ) = vt . The size of the XXZ chain is chosen to be N = 11. The final point marked as a star represents the
quench evolution protocol, the velocity of which is regarded as ∞. For velocities larger than 0.001, the system will reach the full interaction
before t = 100, and then the system will continue to evolve with full interaction until time reaches 100. (b) Infidelities for different sizes of
the XXZ chain. The increasing velocity is chosen to be v = 0.2 and the evolution time is also t = 100.

case and obtain

ln χ (u) = iuλ1〈H1〉c + iuλ2
1

∫ ∞

−∞

dω

2π

G>
c (ω)

ω

+ iuλ3
1

∫ ∞

−∞

dω1

2π

dω2

2π

G>
c (ω1, ω2)

iω1(ω1 + ω2)
+ O

(
λ4

1

)
,

(13)
where G>

c (ω1, ω2) is the Fourier transformation of G>
c (s1 −

s3, s2 − s3), which is defined as

G>
c (s1 − s3, s2 − s3)

≡ (−i)3
〈
HI

1 (s1 − s3)HI
1 (s2 − s3)HI

1 (0)
〉
c

= Gc(s1, s2, s3). (14)

One finds that O(λ3
1) term does not match Corollary 1, as

one can demonstrate that G>
c (ω1, ω2) is a complex function.

Complete calculations can be found in the SM [36].
Upon examining the universal criteria set by Theorem 1

(Corollary 1), we discern that neither adiabatic nor nona-
diabatic evolution protocols can transition a noninteracting
Gibbs state to its interacting counterpart (see the SM [36]
for an intuitive interpretation). Notably, the logarithmic CFW
for adiabatic protocols deviates from that of the NI proto-
col (shown in Corollary 1) to the order of O(λ3

1), while for
nonadiabatic protocols, the discrepancy occurs to the order of
O(λ2

1) [evident from the third term in Eq. (12)]. This suggests
that although adiabatic evolution does not precisely achieve
the desired state transition, it offers a superior approximation
relative to nonadiabatic alternatives.

Numerical verification. The former discussions are general
and universal without depending on specific models in order
to verify our theory and the prediction of accuracy of the adia-
batic assumption, we consider numerical results for a specific
model—one-dimensional XXZ spin chain. The Hamiltonian

reads

Hxxz = J
N−1∑
i=1

[
σ+

i σ−
i+1 + σ−

i+1σ
+
i + λ(t )σ z

i σ z
i+1

]
, (15)

where λ(t ) controls the zz interaction strength. For a given
model, to check whether these two states are identical, one
can directly compute the fidelity [38] between the interacting
Gibbs state and the final state after an evolution. Without loss
of generality, we consider a linear driving protocol λ(t ) = vt ,
where v is the increasing velocity of the interaction strength.
For a given system size, an evolution with larger v is more
nonadiabatic. We consider the small interaction regime, in
which our perturbative calculation works. We finally arrive at
Fig. 2(a). One finds that larger velocities will lead to a final
state more deviated from the target interacting Gibbs state.
This confirms the result of our universal analysis based on
work statistics. Remarkably, in the nearly adiabatic regime
(small v), the infidelity is approximately the order of O(λ3

1),
while in the nonadiabatic regime (large v), the infidelity
(1-fidelity) is the order of O(λ2

1). This result matches the
prediction based on the logarithmic CFW. For smaller sizes
with identical J and λ, energy gaps will be larger, thus for a
fixed increasing velocity, the evolution will be more adiabatic,
and one is expected to see smaller infidelities. This argument
is confirmed by Fig. 2(b). In addition, the infidelity in the
adiabatic regime is still the order of O(λ3

1).
Conclusion. In summary, based on work statistics, we de-

rived a theorem elucidating the thermodynamic properties of
an evolution transitioning an initial Gibbs state to another one.
In the realm of weak interactions, where the Keldysh field the-
ory becomes particularly applicable, our theorem analytically
demonstrates that the adiabatic evolution does not precisely
transition a noninteracting Gibbs state to its interacting coun-
terpart. Nevertheless, in this work, we analytically show that
when contrasted with nonadiabatic protocols, the resultant
state from adiabatic evolution presents a closer approximation
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to the desired interacting Gibbs state. Our numerical simula-
tion confirms the theoretical prediction.
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