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Optimizing leapover lengths of Lévy flights with resetting
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We consider a one-dimensional search process under stochastic resetting conditions. A target is located at
b � 0 and a searcher, starting from the origin, performs a discrete-time random walk with independent jumps
drawn from a heavy-tailed distribution. Before each jump, there is a given probability r of restarting the walk
from the initial position. The efficiency of a “myopic search”—in which the search stops upon crossing the target
for the first time—is usually characterized in terms of the first-passage time τ . On the other hand, great relevance
is encapsulated by the leapover length l = xτ − b, which measures how far from the target the search ends. For
symmetric heavy-tailed jump distributions, in the absence of resetting the average leapover is always infinite.
Here we show instead that resetting induces a finite average leapover �b(r) if the mean jump length is finite. We
compute exactly �b(r) and determine the condition under which resetting allows for nontrivial optimization, i.e.,
for the existence of r∗ such that �b(r∗) is minimal and smaller than the average leapover of the single jump.
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In various situations found in nature on both macroscopic
and microscopic scales, the analysis of the strategies that a
searcher implements to reach a target proves to be of extreme
interest [1]. Search strategies are relevant, for example, in the
study of protein-DNA interactions [1], diffusion-controlled
reactions [2], and the movement of animals or microorgan-
isms searching for food [3,4]. The fundamental question
common to all these different settings concerns the search
efficiency and the existence of an optimal protocol to perform
the task. The highly complex underlying dynamics are usually
well described by random walk models, and thus the prob-
lem reduces to the study of optimization strategies for such
stochastic processes.

In many contexts a central role is played by jump pro-
cesses, which are defined as a sequence of independent jumps
of random lengths [5–8]. For these processes a “myopic
search” is typically implemented, where the search stops once
the walker jumps over the target for the first time [9–12]. The
final distance to the target, known in the literature as leapover
length [13], is therefore an aspect that should not be underes-
timated in evaluating the efficiency of a myopic search [14].
This is especially relevant for Lévy flights, a well-known class
of random walks with independent jumps drawn from a com-
mon probability density function (PDF) decaying for large η
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as λ(η) ∝ η−1−μ, with 0 < μ < 2. Indeed, it is known that for
Lévy flights with symmetric jumps the PDF of the leapover
length decays as ℘(l ) ∝ l−1−μ/2, leading to the seemingly
paradoxical result that the average leapover diverges also in
the range 1 < μ < 2, where the mean jump length is finite
[13,15]. This feature is far from a subtlety, as Lévy flights
are ubiquitous in nature and have found applications ranging
from animal foraging [16,17] to human behavior [18]. Hence
l is important to quantify, e.g., how far an animal gets from the
resources it is looking for, if it crosses them in a blind phase
of the search [1], or how far an infectious disease spreads
after the first crossing of a border [18]. We also observe that
leapover lengths are not only crucial in the context of search
efficiency, but also play an important role in extreme value
theory, where they can be interpreted as record increments
[15], and in renewal theory, where they admit an interpretation
as waiting times in the presence of aging [19].

In recent years, one of the most studied strategies for search
optimization is stochastic resetting, which consists in restart-
ing the search after random time intervals until the target
is reached or crossed [20,21]. The main advantage of this
strategy is the ability to control the search time τ through an
external parameter (typically, the reset rate [20,21], but also
different mechanisms have been studied [22,23]), which can
be optimally chosen to minimize the average capture time
of the target. This has been proven effective in a variety of
areas, ranging from biology [24,25] to algorithm optimization
[26], and has therefore generated increasing interest, both
theoretical and experimental [9,27–35].

In this Letter, we show that stochastic resetting is an ef-
fective strategy to control the leapover length of Lévy flights.
We obtain exactly the leapover distribution and show that for
μ > 1 resetting induces a finite average leapover, which we

2470-0045/2024/110(2)/L022103(5) L022103-1 Published by the American Physical Society

https://orcid.org/0000-0001-9887-1047
https://ror.org/01bf9rw71
https://orcid.org/0000-0003-4601-8575
https://ror.org/01ynf4891
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.110.L022103&domain=pdf&date_stamp=2024-08-19
https://doi.org/10.1103/PhysRevE.110.L022103
https://creativecommons.org/licenses/by/4.0/


MATTIA RADICE AND GIAMPAOLO CRISTADORO PHYSICAL REVIEW E 110, L022103 (2024)

FIG. 1. Phase diagram for the case of Lévy stable jump processes, with λ̂(k) = e−|ak|μ . Region I is the phase where a nontrivial optimal
resetting probability 0 < r∗ < 1 is guaranteed to exist: in this regime the optimal average leapover �b(r∗) is smaller than that obtained by
a single jump. The boundary of this region is numerically computed from the exact condition given in Eq. (6). The dashed straight line
corresponds to the analytical linear approximation of the boundary for small b, i.e., for targets close to the origin, given by Eq. (8a). In region
I′ the sufficient condition (6) is not satisfied but a nontrivial optimization probability is still observed, together with a local maximum for �b(r)
[see panel (a) for details]. This region extends up to b/a ≈ 0.91. Region II is the phase where the average leapover �b(r) assumes its minimum
at the “trivial” value r = 1. The data displayed in panels (a) and (b), obtained by numerical simulations, show examples of transitions from
one region to another as b increases, with μ kept fixed. In (b) we also show a comparison with the small-b approximation of �b(r) given by
Eq. (9).

compute analytically (see Eq. (S2) in Supplemental Material
[36]). We then determine a sufficient condition for the exis-
tence of a nontrivial optimization strategy, i.e., such that the
minimal average leapover under resetting is strictly smaller
than that obtained from a single jump; see Eq. (6). This con-
dition, which strikingly involves properties of the reset-free
random walk after 1 and 2 jumps only, makes it possible to
identify regions in the (μ, b) plane where such a nontriv-
ial optimization is possible; see Fig. 1 for a paradigmatic
example.

To demonstrate these results, we consider a one-
dimensional random walk xn that for n � 1 evolves according
to

xn =
{

xn−1 + ηn with probability 1 − r,

ηn with probability r,
(1)

where 0 � r � 1 and ηn are independent continuous random
variables with common PDF λ(η). The initial position is x0 =
0. A target is placed at b � 0 and the evolution goes on until
the first-passage time in (b,∞), denoted as τ . Consequently,
l = xτ − b is the leapover length. We call fr (x, n; b) the joint
PDF of xτ and τ . The leapover PDF is thus given by℘r (l; b) =∑

n�1 fr (l + b, n; b). Let us also introduce q0(x, n; b), which
is the PDF of the position xn for walks that, in the absence
of resetting, never cross b in n steps. We can then set up a
first-renewal equation for fr (x, n; b) [9]:

fr (x, n; b) = r
n−1∑
m=0

(1 − r)mQ0(m; b) fr (x, n − m; b)

+ (1 − r)n f0(x, n; b), (2)

where Q0(n; b) = ∫ b
−∞ q0(x, n; b)dx is the survival probabil-

ity in n steps. By defining the double transform G(k, z) =∑
n�0 zn

∫ +∞
−∞ eikxg(x, n)dx, we obtain from Eq. (2) a rela-

tion between Fr (k, z; b) and Q0(k, z; b), the transforms of
fr (x, n; b) and q0(x, n; b) respectively. The Fourier trans-
form of the leapover PDF is then obtained from ℘̂r (k; b) =
e−ikbFr (k, 1; b), and we arrive at

℘̂r (k; b) = e−ikb 1 − [1 − (1 − r)λ̂(k)]Q0(k, 1 − r; b)

1 − rQ0(0, 1 − r; b)
, (3)

where λ̂(k) = ∫ +∞
−∞ eikηλ(η)dη is the characteristic function of

the jumps. From this exact expression one can obtain, e.g., the
large-l behavior of the leapover distribution and the average
leapover length �b(r). We point out that the only unknown on
the right-hand side (rhs) of Eq. (3) is Q0(k, z; b). By using a
result of Spitzer [37], we compute exactly its Laplace trans-
form with respect to b, which reads∫ ∞

0
e−wbQ0(k, z; b)db = Q0(k, z)

eφ+(k+iw,z)

w
, (4)

where Q0(k, z) is a shorthand notation for Q0(k, z; b = 0) and
is known in the literature [38], whereas φ+(ξ, z) is defined as

φ+(ξ, z) = 1

2π i

∫ +∞

−∞

ds

ξ − s
ln[1 − zλ̂(s)]. (5)

It can be shown that φ+(ξ, z) is analytic for Im(ξ ) > 0. We
can thus compute the small-k expansion of the rhs in Eq. (4),
and then transform it back to obtain the small-k expansion of
Q0(k, z; b). Finally, we can derive the expansions for both the
real and imaginary parts of ℘̂r (k; b).
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FIG. 2. (a) Average leapover distance and (b) optimal resetting probability for Lévy stable processes, case b = 0. In (a) the results of
numerical simulations, displayed in function of the resetting probability, are compared with the theoretical curves (see Eq. (S55) in [36]),
showing excellent agreement. In (b) we present r∗ and (inset) the corresponding �0(r∗) versus μ. The dashed vertical line represents the critical
value μc. The values of r∗ are obtained by evaluating numerically the minimum of �0(r).

We consider the case of symmetric jump distributions
that for large |η| decay as λ̂(η) ∝ |η|−1−μ, with 0 < μ <

2. Consequently, λ̂(k) ∼ 1 − |ak|μ for small k, where a is
a scale parameter. For r > 0, we obtain Re[̂℘r (k; b)] ∼ 1 −
Ar (b)|ak|μ, where Ar (b) is written in terms of the generating
function Q̃0(z; b) = ∑

n�0 znQ0(n; b) [36]. Hence ℘r (l; b) ∼
Ar (b)λ(l ) for large l . It follows that, as stated, for μ > 1 the
average leapover length �b(r) is finite and can be expressed as
a well-defined function of r. Indeed, for small k and μ > 1 we
obtain Im[̂℘r (k; b)] ∼ k�b(r), where �b(r) can be determined
exactly [36]. For r = 1, this function is equal to the average
leapover of a single jump. On the other hand, for r → 0 we
must recover the behavior of the reset-free walk, yielding a
diverging �b(r) for μ < 2. Hence, in the range 1 < μ < 2,
since �b(r) diverges for r → 0 and is finite for r = 1, a suffi-
cient condition for the existence of a probability 0 < r∗ < 1
that minimizes �b(r) is that the derivative �′

b(r) be positive as
r → 1. By using our exact result, we find that this condition
can be recast as

〈|x2|〉
〈|x1|〉 < 
μ(b), (6)

where both sides of this inequality depend only on the first
two steps of the reset-free walk, thus it is easy to evaluate nu-
merically. Here 〈|xn|〉 is the absolute first moment of the walk
after n steps and 
μ(b) has an exact expression (see Eq. (S4)
in [36]) that involves λ(η) and the survival probability in one
and two steps. Interestingly, for b = 0 the rhs is a constant,

μ(0) = 3

2 , independently of the jump distribution, as long
as it is symmetric and continuous. We stress that, as both
sides have an implicit dependence on μ, Eq. (6) allows one to
determine the existence of a region in the (μ, b) plane where
�b(r) has a global minimum at some 0 < r∗ < 1. In Fig. 1
we draw the phase diagram for the paradigmatic example of
the family of Lévy stable processes, whose jumps have the
characteristic function λ̂(k) = e−|ak|μ .

We now consider in detail the case b = 0. The case of a
target at the origin is particularly significant because, thanks
to the Sparre-Andersen universality [39], we are able to pro-
vide a compact expression for the average leapover length.

Indeed, the exact formula for �b(r) assumes a simple form
when b = 0:

�0(r) =
√

r

π (1 − √
r)

∫ ∞

0

ds

s2
ln

(
1 − (1 − r)λ̂(s)

r

)
(7a)

=
√

r

1 − √
r

∞∑
n=1

(1 − r)n

2n
〈|xn|〉. (7b)

We remark that both of these equations are valid for any
symmetric and continuous jump distribution, not necessar-
ily heavy-tailed, with finite first moment. The first gives
�0(r) in terms of λ̂(k) only, while the second allows for an
analytic computation once 〈|xn|〉 is known for each n. For
instance, in the case of Lévy stable processes, for 1 < μ �
2 we have 〈|xn|〉 = 2a�(1 − 1/μ)n1/μ/π , where �(z) is the
Euler gamma function. One can then rewrite the series in
Eq. (7b) in terms of the polylogarithm Li1−1/μ(1 − r) [40],
and obtain an analytic expression for �0(r), which can be
compared with simulations; see Fig. 2. Moreover, in this case
Eq. (6) simplifies to 21/μ < 3

2 , which is solved for μ > μc =
ln(2)/ ln(3/2) ≈ 1.7095. When μ > μc, one can show that
�0(r) has indeed a unique minimum attained for r∗ < 1. For μ

below the critical value instead, �0(r) is a decreasing function
of r, hence r∗ = 1. Thus, we find explicitly that there exists
a critical value μc defining a transition to a phase where,
by choosing optimally the resetting probability, we obtain an
average leapover that is smaller than the average length of a
single jump. The whole situation is depicted in Fig. 2, where
we plot the numerically computed r∗ versus μ.

We now want to determine explicitly how μc changes by
increasing b, at least for small b. This can be done by approx-
imating the function 
μ(b) for small b to get from Eq. (6) an
explicit condition for the critical exponent μc(b). We linearize

μ(b) ≈ 
μ(0) + 
 ′

μ(0)b and then invert Eq. (6) to write
K(μ) = b, where K(μ) = [〈|x2|〉/〈|x1|〉 − 
μ(0)]/
 ′

μ(0). By
linearizing then K(μ) around μc, we finally obtain μc(b) ≈
b/K′(μc) + μc. Again, everything can be computed explicitly
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for Lévy stable processes, and following the procedure we just
described we find

μc(b) ≈ Cb

a
+ ln(2)

ln(3/2)
, (8a)

C = ln(4)

9π ln2(3/2)
�

(
ln(3)

ln(2)

)
≈ 0.265 997 3 . . . . (8b)

The agreement between this linear approximation and
the values obtained numerically from the exact condition of
Eq. (6) is shown in Fig. 1. By following the same idea, we
compute an explicit approximation of �b(r) for small b. To
do this, we need the small-b expansion of Q0(k, z; b), which
can be obtained from the large-w expansion of its Laplace
transform on the rhs of Eq. (4). For continuous and symmetric
jump distributions, in the limit w → ∞ the w-dependent term
at the rhs tends to the Laplace transform of

√
1 − zQ̃0(z; b),

hence we only need a small-b approximation of the generating
function. This was calculated in [9] in the context of search
time optimization of Lévy flights. It reads

√
1 − zQ̃0(z; b) ≈

1 + bI (z) + O(b2), where I (z) is an integral that depends on
λ̂(k). It is then possible for us to write an explicit approx-
imated expression for �b(r), which, by keeping only terms
O(b), reads

�b(r) ≈ �0(r) + b

(
I (1 − r)�0(r)

1 − √
r

− 1

)
. (9)

In the specific case of Lévy stable processes we can write
explicitly I (z) in terms of the polylogarithm Li1+1/μ(z), hence
we get an analytical curve that we can compare with simula-
tions. The agreement of Eq. (9) with data is shown in Fig. 1.
We find that the approximation reflects well the behavior of
the numerical data for small b, although it tends to underesti-
mate them, more so as b increases.

To summarize, we have shown that stochastic resetting is
an effective mechanism to control the leapover lengths of
one-dimensional Lévy flights performing a myopic search.
We have demonstrated that, in contrast to the scenario without
resetting, a finite average leapover length is attained and that,
moreover, in some cases there exists an optimal resetting prob-
ability strictly smaller than one that minimizes the average
leapover distance. Consequently, for probabilities close to this
optimal value, the average leapover distance is smaller than
that obtained by a single jump. A sufficient condition for
this is given by Eq. (6). For Lévy stable processes, we have
illustrated our findings in the phase diagram of Fig. 1. This
diagram also shows an interesting phase in which nontrivial
optimization is possible even if Eq. (6) is not verified. This
work, in conjunction with other research in the literature,
opens the way for the study of search strategies aimed at
optimizing the coupling of spatial and temporal variables,
such as first-passage times and leapover lengths. To expand
the generality of our results, it would be beneficial in the
future to investigate the phase diagram more thoroughly and
for different types of jump distribution, as well as to conduct a
rigorous study of the nontrivial phase violating Eq. (6), which
in the present work is only investigated numerically.
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