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Diffusion in composite media with high contrasts between diffusion coefficients in fractal sets of inclusions
and in their embedding matrices is modeled by lattice random walks (RWs) with probabilities p < 1 of hops
from fractal sites and 1 from matrix sites. Superdiffusion is predicted in time intervals that depend on p and with
diffusion exponents that depend on the dimensions of matrix (E ) and fractal (DF ) as ν = 1/(2 + DF − E ). This
contrasts with the nonuniversal subdiffusion of RWs confined to fractal media. Simulations with four fractals
show the anomaly at several time decades for p � 10−3 and the crossover to the asymptotic normal diffusion.
These results show that superdiffusion can be observed in isotropic RWs with finite moments of hop length
distributions and allow the estimation of the dimension of the inclusion set from the diffusion exponent. However,
displacements within single trajectories have normal scaling, which shows transient ergodicity breaking.
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Diffusion in porous media has applications in heteroge-
neous catalysis, membrane separation, environmental reme-
diation, and rock weathering [1–4]. In homogeneous media,
the mean square displacement (MSD) of diffusing tracers or
diffusing fronts linearly increase with time t as 〈r2〉 = 2Dt ,
where D is the diffusion coefficient. In materials with the same
chemical properties but different morphologies, the values
of D for a given tracer may vary three orders of magnitude
or more; for instance, chloride diffusion coefficients in com-
pacted bentonite vary from ∼10−10 m2/s to ∼10−13 m2/s for
porosity from ∼30% to ∼0.3% [5], iodide coefficients in
limestones with the same range for porosity vary from ∼3%
to ∼40% [6], and U(VI) coefficients from ∼10−15 m2/s to
10−12 m2/s are measured in bentonite with porosity between
∼0.02% and ∼7% [7]. In materials with different chemical
compositions, the values of D may differ by much more
than three orders; the time evolutions of the MSD in two
homogeneous media with such high contrasts in diffusivities
are schematically illustrated by the top and bottom dashed
lines in Fig. 1. In a composite where small domains of one
of these materials are periodically or randomly distributed
within the other material, the diffusion coefficient is averaged
over the concentrations of those components, following the
intermediate dashed line in Fig. 1.

However, correlations in the heterogeneity distributions are
frequent in natural and manufactured media; for instance, a
fractal organization may result from the aggregation dynamics
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of a heterogeneous medium [8,9]. This may result in anoma-
lous behavior of the MSD as

〈r2〉 ∼ t2ν (1)

with ν �= 1/2 [10–13]. If the diffusion is restricted to the
fractal component (e.g., impermeable solid with fractal pore
network), several studies showed subdiffusion (ν < 1/2) be-
cause the diffusing tracers or fronts encounter self-similar
distributions of obstacles as they advance [14,15]. This is
illustrated by the dotted line in Fig. 1 for a fractal medium
formed by the low conductivity material. The exponent ν is
nonuniversal because it is not solely a function of the fractal
dimension DF of that medium. For instance, the exact values
of ν in a Sierpinski gasket [14] and in a T-fractal [16] with
exactly the same DF are different, while simulations show
very different values of ν (≈0.47, ≈0.35) in Sierpinski carpets
[17] and percolation clusters [18] with nearly the same DF ;
see Ref. [19].

Superdiffusion (ν > 1/2) is also observed in several pro-
cesses, such as those whose jump size distributions have
long tails (e.g., Lévy walks and flights) [12,20,21], sediment
transport [22,23], phase change problems [24], fluid infil-
tration [25–27], contaminant transport in aquifiers [28,29],
continuous time random walks (RWs) with correlated jump
lengths [10,11], diffusion with extended temporal correla-
tions [30–32] or with memory [33,34], and other nonlinear
diffusion processes [35]. Driven motion in disordered media
may also lead to superdiffusion in several time decades be-
fore the crossovers to normal behavior [36–39]. However, to
our knowledge, all previous models of isotropic RWs with
finite moments of hop length distributions exhibited normal or
subdiffusive scaling in disordered media (dashed and dotted
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FIG. 1. Time evolution of the MSD in homogeneous and com-
posite media whose geometries are schematically illustrated. The
diffusion coefficient is much larger in the brown (darkest gray) ma-
terial than in the cyan (lightest gray) material and dashed lines with
slope 1 correspond to normal diffusion.

lines in Fig. 1) because the disorder retards the walker spread-
ing.

In this Letter, we study diffusion in composite media with
a two- or three-dimensional matrix and an embedded frac-
tal network of inclusions where the diffusion coefficient is
smaller than that of the matrix. If the diffusing species is
injected at the fractal network, we will show that the MSD
scaling is qualitatively represented by the solid line in Fig. 1.
This is a superdiffusive behavior (ν > 1/2) in a number of
time decades that increases as the diffusivity contrast between
the two components increases. This result is obtained in a RW
model on lattices whose sites represent small domains of each
component and in which different hop probabilities represent
the different diffusion coefficients in those components. Com-
pared to other models, superdiffusion is observed here with
much simpler physical mechanisms: hop length distributions
are finite, the motion is not driven, and there is no memory
effect. Moreover, contrary to subdiffusive systems, the su-
perdiffusion is universal because the exponent ν depends only
on the dimensions of the inclusion set and of the embedding
matrix.

The RW model is defined in a hypercubic lattice of dimen-
sion E where a fractal with dimension DF is embedded. We
refer to the fractal sites as inclusions and to the remaining sites
as matrix. Each site represents a nanoscopic or microscopic
homogeneous domain with one of the two components. The
edge length a of a site is the maximal length scale of the
composite with homogeneous properties. A tracer is left at
a randomly chosen inclusion at t = 0 and attempts to hop to
a randomly chosen nearest neighbor (NN) site in each time
interval s. If the tracer is at the matrix, the hop is executed
with probability 1; if it is at an inclusion, the hop is executed
with probability p, otherwise it remains in the same position;
see Fig. 2(a). Thus, s and s/p are the average residence times

FIG. 2. (a) Possible hops (arrows) of tracers (black dots) at ma-
trix sites (brown or darkest gray) and at inclusions (cyan or lightest
gray), with the corresponding probabilities of executing the hops.
(b) Circles centered at the initial position (small black dot) approx-
imate the regions scanned by a tracer at three times. The inclusions
form a Sierpinski carpet pattern.

of the tracer in matrix and inclusion sites, respectively. In a
composite, p is the contrast of diffusion coefficients of matrix
and inclusions, so p � 1 is a realistic possibility.

The splitting of a porous medium into two regions with
different transport properties (e.g., diffusion coefficient or
hydraulic conductivity) is equivalent to the double (or dual)
porosity modeling of flow in geological formations [40]. Our
model may find applications to naturally fractured reservoirs
of type IV, in which minerals form barriers to fluid or solute
transport in fractures [41]. Moreover, the limit p → 0 of our
model is similar to the recently proposed butterfly diffusion
model [42].

Since the hop directions are randomly chosen at each site,
the tracer spreads as in a RW in dimension E . As the time
increases, the tracer scans wider regions centered at the start-
ing point; see Fig. 2(b). The fraction of visited inclusion sites
decreases with the observation radius r as [8,9]

ρ ∼ r−�, � = E − DF . (2)

At short times the tracer is frequently stuck at the inclusions
[e.g., t1 in Fig. 2(b)], but as the time increases it crosses an
increasing fraction of matrix sites [e.g., large brown areas
inside the circle at t3 in Fig. 2(b)]. This leads to faster spread
as time increases and qualitatively explains the superdiffusion.
However, Eq. (2) is applicable only if the origin is a point of
the fractal and if the fractal does not have disconnected parts.

Now we determine the ensemble average MSD, abreviately
denoted as r2, partly following scaling approaches previously
applied to infiltration problems [43,44].

Let N 	 1 be the number of executed hops at time t , so
that N + 1 ≈ N sites were visited by the tracer. Letting NF

be the number of visited sites of the fractal (inclusions) and
remembering that the tracers are uniformly spread in a radius
∼r, the fraction of visited sites belonging to the fractal scales
as the density in Eq. (2):

NF

N
≈ C

( r

a

)−�

, (3)

where C ∼ 1 is a dimensionless constant. The number of
hops executed from matrix sites is N − NF . The time t is
then split into average hopping times in each set, which are
obtained from the numbers of executed hops and the average
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FIG. 3. Media in which simulations are performed, with inclusion sites in cyan (lightest gray) and matrix sites [shown only in the two-
dimensional (2D) media] in brown (darkest gray). (a) First two stages of construction of a Sierpinski carpet (DF = ln 12/ ln 4 ≈ 1.7924).
(b) Central region of a DLA (DF ≈ 1.71) [8]. (c) First two stages of construction of a generalized Menger sponge (DF = ln 19/ ln 3 ≈ 2.6801).
(d) Central region of critical percolation cluster in simple cubic lattice with NN and next NN connectivity (DF ≈ 2.53) [46].

residence times:

t = NF
s

p
+ (N − NF )s. (4)

For p � 1, the number of hop attempts t/s may be much
larger than N .

The uniform spread of tracers that executed N hops imply

r2 = Na2. (5)

Eqs. (3), (4), and (5) then give

(
r

a

)2

≈ t

s

[
1 + C

(
1

p
− 1

)(
r

a

)−�
]−1

. (6)

For p � 1 and r not too large, the second term inside the
brackets is dominant, which leads to

r ≈ a

(
p

C

t

s

)ν

, ν = 1

2 − �
, (7)

where � is in Eq. (2). We typically expect that 0 < � < 1,
e.g., for a fractal with DF > 2 embedded in a 3D matrix.
Equation (7) predicts universal superdiffusive behavior in
which 1/2 < ν < 1 and ν depends only on DF and E . This
is in striking contrast with the nonuniversal exponents of
subdiffusion confined to fractal media [14,19].

We performed simulations of the model with two fractals
embedded in E = 2 and two fractals embedded in E = 3:
Sierpinski carpet with scaling factor 4 and 2×2 blocks re-
moved at each iteration, with removed blocks forming the
matrix [DF = ln 12/ ln 4 ≈ 1.7924; Fig. 3(a)]; diffusion lim-
ited aggregate (DLA) in a square lattice [DF ≈ 1.71 [8];
Fig. 3(b)]; generalized Menger sponge with scaling factor 3
and eight cubes removed from the vertices at each iteration,
with removed cubes forming the matrix [DF = ln 19/ ln 3 ≈
2.6801; Fig. 3(c) with matrix sites not shown]; a critical per-
colation cluster in a simple cubic lattice with NN and next NN
connectivity, with occupation probability 0.137 304 5(5) [45]
and the remaining sites forming the matrix (DF ≈ 2.53 [46])
[Fig. 3(d) with matrix sites not shown]. Percolation clusters
and DLAs represent several materials with fractal geometry
[14,47], while laboratory made materials were already built
with the geometry of deterministic fractals [48–50]. Simula-
tion cells have lateral sizes ∼1.6×104 in E = 2 and ∼700
in E = 3 (in units of a), while p ranged from 10−4 to 10−1.
The control of the simulation time ensures that no tracer

reaches the borders of the simulation cells. Numerical results
are presented with a = 1 and hop attempt time s = 1.

Figure 4 shows the evolution of 〈r2〉/t in those media and
several values of p. This ratio increases in 1–3 time decades,
which indicates superdiffusive behavior. Linear fits in those
regions have the slopes shown in Fig. 4, which give ν = 0.55
(carpet), 0.55 (DLA), 0.56 (sponge), and 0.64 (percolation
cluster). Equation (7) with the known values of DF give the
respective values ν = 0.56, 0.59, 0.60, and 0.65, which differ
from simulation values by 2%–7%.

In E = 1, Eq. (7) gives the same exponent ν of fluid in-
filtration in layered media with low conductivity inclusions
distributed as in Cantor sets [51]. Calculations for hydraulic
conductivity contrasts �50 (easily found in geological ma-
terials [52]) showed that superdiffusive infiltration might be
observed in realistic settings. The scaling behaviors of that
model and of infiltration of diffusing tracers was shown to be
the same [44], so the present model may be extended to fluid
flow in materials with high contrasts in the hydraulic conduc-
tivities of the components. This may be relevant to explain

FIG. 4. Ratio between MSD and time in media with four inclu-
sion patterns, with corresponding values of p and slopes of linear fits
(straight lines).
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FIG. 5. Scaling plots following Eq. (10) with values of z indicated in each panel and inclusion patterns of (a) Sierpinski carpet, (b) DLA,
(c) generalized Menger sponge, (d) critical percolation cluster. Minimal and maximal values of p are shown in each plot. Intermediate values
of p vary by consecutive factors 1.25–1.5.

superdiffusive behavior of moisture infiltration in building
materials [25,26,53], where there is no evidence of the usual
mechanisms of superdiffusion (long distance hops, driven mo-
tion, or memory effects).

At sufficiently long times, the RW model crosses over to
normal diffusion. This is clearly shown in Fig. 4 for 3D media
due to the small simulation cells. The crossover occurs when
the second term inside the brackets of Eq. (6) is of the same
order as the first term; for p � 1, this occurs for (r/a)� ∼
C/p. This condition and Eq. (7) predict a crossover time

tc ∼ s

(
p

C

)−z

, z = 2

�
. (8)

As expected, tc increases as p decreases. The crossover expo-
nent z is very large for small � (DF close to E ), which implies
high sensitivity of the crossover time on variations of p and the
possibility to observe superdiffusion in several time decades
in systems with high contrasts in the diffusion coefficients.

For the fractals considered in our simulations, z ranges from
4.3 to 9.6.

A dynamic scaling relation that fits anomalous and normal
regimes can be written as(

r

a

)2

= t

s
F

(
t

tc

)
, (9)

where F has asymptotic forms F (x) ∼ x2ν−1 for x � 1 and
F (x) → 1 for x 	 1. In simulations with a = 1 and s = 1 we
expect

〈r2〉
t

= G(pzt ), (10)

where G is a function with properties similar to F . Following
this reasoning, Figs. 5(a)–5(d) show 〈r2〉/t as a function of
pzt for the four fractal patterns. The values of z were chosen
to provide the best data collapses (after removing short and
long time data for each p). For the smallest p (left sides of the
plots), the data collapse in a time increasing line shows that

L022102-4



UNIVERSAL SUPERDIFFUSION OF RANDOM WALKS IN … PHYSICAL REVIEW E 110, L022102 (2024)

FIG. 6. Scaled ensemble and time averaged MSDs in the Sier-
pinski carpet. The linear fit (straight line) of the ensemble MSD has
the indicated slope.

superdiffusion would be observed in a large number of time
decades (5–15 decades) if much longer simulations were pos-
sible; of course, these longer simulations would require much
larger lattices to avoid the finite-size effects. The smallest p in
Figs. 5(a)–5(d) are of orders 10−4–10−3, which are diffusivity
contrasts not difficult to find in natural or manufactured mate-
rials, so the expectation of superdiffusion is realistic in media
whose geometries follow the present conditions.

From the numerical estimates of z, Eqs. (2) and (8) may be
used to estimate DF . The differences from the exact dimen-
sions of regular fractals are from 0.6% to 1.8% and the differ-
ences from the numerically estimated dimensions of stochas-
tic fractals are from 5% to 6%. However, deviations between
the numerical and the theoretical values of z are larger, spe-
cially in the stochastic fractals; the theoretical values are 9.6
(carpet), 6.9 (DLA), 6.3 (sponge), and 4.3 (percolation clus-
ter), to be compared with those in Figs. 5(a)–5(d). This occurs
because small variations in DF lead to large variations in �

and, consequently, to large variations in z. Possible reasons
for those deviations are that (i) the values in the stochastic
fractals were obtained from large scale simulations instead of
the relatively small lattices used here and (ii) the simulations
are performed near the central regions of the fractal patterns,
where the scalings of mass with observation radius may have
corrections relatively to the asymptotic relations.

Now we analyze the scaling of the time averaged MSD
〈δ2(τ )〉, which represents a single tracer displacement in a
time interval τ . It is calculated at two steps [54]: (i) the time
averaged MSD over a trajectory with maximal time T is

δ2(τ ) = 1

T − τ

∫ T −τ

0
[
x(t + τ ) − 
x(t )]2dt ; (11)

(ii) δ2(τ ) is averaged over different trajectories (and dif-
ferent configurations in stochastic fractals). Figure 6 com-
pares 〈δ2(τ )〉/τ in the Sierpinski carpet with the ensemble

average 〈r2〉/t . 〈δ2(τ )〉/τ has small variation in more than two
time decades, which contrasts with the increase in 〈r2〉/t ; the
oscillations of 〈δ2(τ )〉/τ are expected in RWs in determinis-
tic fractals [55]. Thus, the model has a transient nonergodic
behavior which may persist for very long times while the
superdiffusive behavior of the ensemble average remains.
Transient nonergodic behavior was also observed, e.g., in
previous work on fractional Brownian motion driven by long-
range correlated noise [56].

In order to explain this result, we recall that the density
of a fractal set decreases with the radius where its mass
is measured [Eq. (2)] only if the center of the observation
windows is at the fractal. Instead, if the observation window
has a center at the matrix, the density of inclusions may not
follow Eq. (2) and may even be zero. For instance, if the center
is in the middle of the largest hole of the Sierpinski carpet
[Fig. 3(a)], fractal points will be found only in windows with
radii of the same order of the lateral size of that hole. In such
cases, the MSD will have normal scaling because the walker
moves in the matrix almost all the time. A similar situation
occurs when the time averaged MSD is measured [Eq. (11)]:
the starting point of this measurement may be in the matrix
or in the fractal, but, as the trajectory time increases, the
probability of a starting point in the matrix increases. Thus,
for sufficiently long trajectories [large T in Eq. (11)], normal
scaling of 〈δ2(τ )〉 is expected for τ � T .

Finally, our RW model in E = 1 can be related to a contin-
uous model with the diffusion coefficient varying as a power
law of the position x: D(x) ∼ xα with α > 0 [54,57]. In the
RW model, consider a coarse-grained region of width w (w/a
sites) around position x and with a � w � x. Inside this
region, the fraction of sites with inclusions is f ≈ C(x/a)−�

with C ∼ 1 [Eq. (2)], whereas the remaining sites (fraction
1 − f ) are matrix sites. Diffusion coefficients D0 and pD0 are
associated to matrix and inclusion sites, respectively. Consid-
ering the association in series of the diffusion coefficients in
that region, the equivalent diffusion coefficient is

D(x) ≈
[

f

(
w

a

)
1

pD0
+ (1 − f )

(
w

a

)
1

D0

]−1

. (12)

For p � 1, the first term inside the brackets is dominant and,
using the above form for f , we obtain

D(x) ≈ apD0

wC
(x/a)�. (13)

This gives α = � in the framework of Cherstvy et al.
[54,57], who showed that ν obeys Eq. (7) with α replac-
ing �. Notably, that work also showed ergodicity breaking.
The above arguments may be extended to E = 3, in which
Hernandez-Coronado et al. [58] showed superdiffusion in an
advective-dispersive equation when the diffusion coefficient
increases with the distance from the origin [with an exponent
also consistent with Eq. (7)].

In summary, we introduced a model for tracer diffusion
in composite materials where fractal networks of inclusions
with low diffusivity are embedded in 2D or 3D matrices
with high diffusivity. To comply with these conditions, we
proposed a simple RW model on lattices in which the hopping
rate from inclusion sites is much smaller than the hopping
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rate from matrix sites and stuck to cases where the diffusing
tracers are released at the inclusions. A scaling approach pre-
dicted superdiffusion (RW exponent >1/2) in a number of
time decades that increases with the diffusivity contrast and
predicted the crossover to asymptotically normal diffusion.
The superdiffusion exponent is universal because it depends
only on the dimensions of the fractal and of the matrix. To
our knowledge, such a result was not formerly obtained in
isotropic lattice RWs with hops to neighboring sites. The
result is in striking contrast with the nonuniversal subdiffu-
sion of RWs whose motion is restricted to a fractal network
embedded in an impermeable solid. Numerical simulations
with regular and stochastic fractals embedded in 2D and
3D matrices confirmed the superdiffusion and the predicted
exponents with accuracy better than 10%. The numerical
test of a dynamic scaling relation shows that the diffusion

anomaly may appear in 5 to 15 time decades for diffusivity
contrasts between 10−4 and 10−3. Depending on the choice
of porous materials to form a composite, tracer diffusion
coefficients may actually differ by two or more orders of
magnitude [2,4], so it is plausible that superdiffusion in this
type of heterogeneous media can be observed. However, these
results are applicable to ensemble averages only, while the
time averaged MSD in a single trajectory has normal behavior
because its calculation considers most starting points in the
matrix.
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