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Bifractality in the one-dimensional Wolf-Villain model
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We introduce a multifractal optimal detrended fluctuation analysis to study the scaling properties of the one-
dimensional Wolf-Villain (WV) model for surface growth. This model produces coarsened surface morphologies
for long timescales (up to 109 monolayers) and its universality class remains an open problem. Our results for
the multifractal exponent τ (q) reveal an effective local roughness exponent consistent with a transient given by
the molecular beam epitaxy (MBE) growth regime and Edwards-Wilkinson (EW) universality class for negative
and positive q values, respectively. Therefore, although the results corroborate that long-wavelength fluctuations
belong to the EW class in the hydrodynamic limit, as conjectured in the recent literature, a bifractal signature of
the WV model with an MBE regime at short wavelengths was observed.
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Introduction. Various surface morphologies can be ob-
served in film growth processes under nonequilibrium con-
ditions [1–3]. Understanding the microscopic mechanisms
behind these morphologies is crucial, and lattice models have
proven to be valuable tools for elucidating their formation.
Additionally, they can be described, in the continuous limit,
by stochastic equations [1,4–6]. Nevertheless, these lattice
models may exhibit long transients due to, for example, the
presence of mounded surface topographies of the deposit.
Mounds here mean coarsened structures with a typical length
that can be clearly resolved in a surface, differently from in-
terface fluctuations. Hence, their universality classes, formally
found in the hydrodynamic limit of large scales and long
times, are not easily achieved from the scaling of statistical
quantities of interest such as global or local roughness [7,8].
A clear example whose universality class is challenging to
access is the Wolf-Villain (WV) model [9]. It was proposed
to mimic surface adatom diffusion during film growth for
low deposit temperatures and has been studied for decades
[10–19]. The WV model favors the aggregation of adatoms
at points on the surface with higher coordination (local mini-
mization of energy).

The squared global surface roughness of the deposit is

defined by W 2(L, t ) ≡ 〈h2(x, t ) − h(x, t )
2〉, where h(x, t ) is

the height of a column of a deposit at the position x and time
t , L is the lateral size of the substrate of dimension d , and
overbars and brackets indicate the spatial and configurational
averages, respectively. In the hydrodynamic limit, one expects
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W 2 ∼ t2β , where β is the growth exponent. At sufficiently
long times, W (L, t ) is expected to reach a steady state with
saturated roughness that scales as Ws ∼ Lα , where α is the
global roughness exponent. The crossover between growth
and saturation regimes is separated by a characteristic time
that scales as tc ∼ Lz, where z = α/β is the dynamic exponent
given by the Family-Vicsek ansatz [20–22].

Surface fluctuations can be analyzed locally using the
local squared surface roughness, defined by ω2(r, t ) =
〈〈[h(x, t ) − hr]2〉r〉 [7,23], where hr is the average height
within a window of size r and 〈·〉r is the average over different
windows of size r. If Family-Vicsek scaling is observed, then

ω(r, t ) ∼ tβ f
( r

t1/z

)
∼

{
tβ, for t � rz,

rαl , for t � rz,
(1)

with αl = α, where αl is the local roughness exponent. Oth-
erwise, an anomalous scaling regime with α �= αl is at work
[24,25].

The WV model was proposed initially as a model for
molecular beam epitaxy (MBE) where the leading mechanism
is diffusion [9]. Předota and Kotrla [12] derived analytically,
using the regularization procedure for d = 1, the corre-
sponding Langevin equation for the WV model, identifying
that it belong to the Edwards-Wilkinson (EW) universal-
ity class [26] with exponents α = 1/2, β = 1/4, and z = 2.
A hydrodynamic limit and its crossovers can be addressed
using phenomenological Langevin equations. A general equa-
tion takes the form [21]

∂h

∂t
= −K∇4h + λ̃∇2(∇h)2 + ν∇2h + η, (2)

where the first and second terms are linear and nonlinear
contributions due to surface diffusion, the third one is due to
surface tension, and η is an uncorrelated white noise. For K =
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λ̃ = 0, Eq. (2) becomes the EW equation [26], for ν = λ̃ =
0 the Mullins-Herring (MH) equation [27], and finally, for
ν = 0 the Villain–Lai–Das Sarma (VLDS) equation [28,29].
Scaling analysis implies that the surface tension is the leading
term in hydrodynamic limit, followed by nonlinear and linear
diffusion terms in this sequence [21]. However, for small
surface tension, an MBE regime is observable asymptotically
and the EW scaling emerges only for extremely long times.
Indeed, Costa et al. [30] observed a significant reduction in the
effective global roughness and dynamic exponents in d = 1,
indicating asymptotic values consistent with the EW class.
Crossovers from the MH [27] to the VLDS [28,29] models,
reaching the EW class [26], were also reported [16,17].

An intrinsic anomalous scaling has been considered in
the WV model in d = 1 with αl �= α [31]. However, Xun
et al. [19] studied the WV model in d = 1, and claimed an
asymptotic dynamic scaling given by α = 0.50(2) and β =
0.25(2), consistent with the one-dimensional EW equation,
considering sizes L � 2048 and times up to 109 monolayers.
Nonetheless, in the determination of a local roughness ex-
ponent, they used the height difference correlation function,
assuming a scaling in distances of the same order as the
correlation length of the interface, ξ . However, the height
difference correlation function scaling is strictly applicable for
distances r � ξ in the hydrodynamic limit [6,8,32,33]; see
Fig. S1 in the Supplemental Material (SM) [34]. Therefore,
the WV model scaling remains incompletely understood and
exhibits a complex behavior at the time scales reported in the
literature. For example, adding a perturbation to the WV rules
where surface diffusion in the direction normal to the substrate
is allowed, destroys the self-affine properties of the surface,
leading to a mounded morphology [18].

Motivated by the aforementioned discussion and consider-
ing that the WV model exhibits a mounded-type morphology,
we introduce the multifractal optimal detrended fluctuation
analysis (MF-ODFA) to investigate the scaling properties for
both small and large wavelength fluctuations. It is an exten-
sion of the optimal detrended fluctuation analysis (ODFA),
recently introduced in Ref. [35], that enables the extraction
of the local roughness exponents at scale lengths r � ξ and
was successfully applied to investigate lattice models in the
VLDS class in d = 1 [36] and d = 2 [35]. Furthermore, the
ODFA method does not alter the scaling for length scales
r � ξ , preserving the global exponents [35,36].

Methods. The model is defined on a one-dimensional lat-
tice with parameter a, with a constant flux of atoms F in the
direction perpendicular to the substrate. All spatial quantities
discussed here are given in units of a. In the WV model, a
site of the substrate is randomly chosen and, subsequently, a
particle is irreversibly attached at the top of a column chosen
among the incident site and its nearest neighbors that leads
to the largest number of lateral neighbors. In the case of a
tie between the neighbors, one of them is selected randomly.
Time unity is commonly given in units of F−1, i.e., in units of
deposited monolayers. In our simulations, periodic boundary
conditions are considered. The rules for this model are illus-
trated in Fig. 1(a) for d = 1, as considered in this Letter.

A typical interface with a mounded envelope generated for
the WV model at t = 108 is shown in Fig. 1(b). The mounded
morphology is confirmed with the autocorrelation function,
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FIG. 1. (a) Deposition rules for the WV model in d = 1.
(b) Schematic representation of the ODFA method. The solid (red)
line represents the regression used to detrend an interval of the
interface depicted in black. The inset displays the (shifted) whole
profile for the WV model at t = 108.

which is defined as �(r, t ) = 〈h̃(x + r, t )h̃(x, t )〉, where h̃ ≡
h − h̄ and h̄ is the mean height of the profile, that presents
oscillations as a function of distance; see Fig. S2 of the SM
[34]. Of course, �(0, t ) = W 2(L, t ). A characteristic mound
width ξ0(t ) can be defined as the position of the first zero of
�(r, t )/�(0) [�(0) ≡ �(0, t )] [35–39].

MF-ODFA is based on a generalization of the ODFA de-
scribed in Ref. [35]. Let us consider a discrete interface of
height h. We divide the interface into Nr windows of equal
sizes r. For each window (labeled by 1 � ν � Nr), a polyno-
mial of degree n, Pn

ν (x : A(0)
ν , A(1)

ν , . . . , A(n)
ν ), is obtained using

the least-squares method [40] providing the the coefficients
A(0)

x , A(1)
x , . . . , A(n)

x . For each position x within the window,
the minimal distance between the interface height h(x) and
the polynomial regression, represented by δn

x , is calculated, as
schematically shown in the Fig. 1(b).

The qth-order dispersion of a window ν with size r is
calculated as follows,

Fn
q (r, ν) = 〈(

δn
x

)2〉q/2

ν
, (3)

where 〈·〉ν is the average over the window ν. Note that q
serves as a parameter to investigate the complexity of the in-
terfaces across different scales, enhancing the shorter (q < 0)
and larger (q > 0) height fluctuations in an interface. The
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FIG. 2. (a) Local roughness analysis for one-dimensional WV model with t = 108, L = 214, −10 � q � 20 increasing from bottom to top
curves, through the MF-ODFA method with n = 2. Averages were computed over 2000 independent realizations. (b) Local slope analysis of
αeff

l (q). The vertical line denotes the value of the characteristic mound width ξ0(t = 108) = 808; see Fig. S2 of the SM [34]. Dotted (red) and
dashed (black) lines correspond to −10 � q � −4 and 6 � q � 20, respectively. Solid (blue) curves (−3 � q � 5 with q �= 0) do not present
scaling. The shaded regions indicate the scaling range from which αl (q) were extracted. (c) Multifractal exponent τ (q) for MF-ODFA analysis
of the WV model. Error bars are smaller than symbols. The slopes of the dashed (red) and solid (black) lines correspond to the roughness
exponents for a transient MBE regime [α ≈ 1.141(9)] and EW class in d = 1 (α = 0.5), that are associated with the scaling for q � 0 and
q � 0, respectively. The shaded region represents the values of q consistent with the MBE regime. The inset illustrates the corresponding
singularity spectrum.

qth-order fluctuations for the different sizes are calculated as

ωn
q(r) = [〈

Fn
q (r, ν)

〉
r

]1/q
. (4)

One expects the scaling ωn
q(r) ∼ rαl (q). There exist differ-

ent methods for extracting αl (q), for example, through the
generalized height-height correlation function [21], or the
multifractal detrended fluctuation analysis (MF-DFA) [41].
Indeed, Eq. (4) yields the local roughness of a undetrended
interface when q = 2 and P0

x = A0
x = hr .

The multifractal exponent τ (q) is connected with the
generalized local roughness exponent, αl (q), through of the
relation [42]

τ (q) = qαl (q) − 1. (5)

Another way to describe the multifractality is the singular-
ity spectrum f (), where  is the singularity strength [43].
These two variables are related through a Legendre transform
[43–45] and described by the following relation,

f () = q − τ (q), (6)

where

 = dτ (q)

dq
. (7)

The ODFA method is a consistent methodology for
analyzing mounded interfaces [35,36]. Furthermore, MF-
ODFA, which also works for self-affine models, confirms the
monofractal feature of a well-known restricted solid-on-solid
(RSOS) model [46] that belongs to the Kardar-Parisi-Zhang
class [47]; see Fig. S3 of the SM [34].

Results and discussion. For a multifractal structure, a typi-
cal τ (q) approaches asymptotically τ (q) = αmax

l q when q →
−∞ and τ (q) = αmin

l q when q → +∞ [45]. These asymp-
totic regimes are smoothly connected by τ (q). In Fig. 2(a), the
qth-order fluctuations as a function of various scale lengths
are shown for −10 � q � 20. The corresponding local slope
analyses, given by αeff

l (q) ≡ d ln ωn
q(r)/d ln r, are presented

in Fig. 2(b) for the WV model with n = 2 and t = 108. Fig-
ures 2(a) and 2(b) show different scaling regimes for q � 0
and q � 0, characterized by the plateaus of αeff

l (q) for length
scales that are smaller or larger than the correlation length
of the interface. So, the MF-ODFA method detects different
scale regimes considering length scales that are smaller or
larger than the correlation length of the interface. This feature
was not observed previously, including the MF-DFA, high-
lighting the advantage and efficiency of the MF-ODFA.

For each q value, a least-squares fitting in the range of r
where the plateau of αeff

l (q) is constant defines αl (q), which
is then used to compute τ (q) in Eq. (5). The multifractal
exponent shows a crossover between two scaling regimes for
negative and positive q while the absence of scaling is found
for q close to 0. Figure 2(c) depicts τ (q) vs q, confirming
the presence of two linear segments for q � 0 and q � 0,
pointing to a bifractal structure where two self-affine scaling
regimes occur at distinct scales. This bifractal feature is fur-
ther supported by the inset of Fig. 2(c), which indicates that
the singularity exponent  concentrates around two values.

Our study regarding the exponent τ (q) demonstrates an
effective local roughness exponent in agreement with the
MBE growth across q � 0. On the one hand, a two-loop
renormalization group theory for nonlinear MBE theory,
given by Eq. (2) with ν = 0, yields the scaling expo-
nents for the VLDS equation as αVLDS(d ) = (4 − d )/3 −
ζ (d ), and zVLDS(d ) = (d + 8)/3 − 2ζ (d ) [48], where ζ (d ) =
0.01361(2 − d/2)2. Hence, for d = 1, ζ = 0.0306, yield-
ing αVLDS ≈ 0.97 and βVLDS = αVLDS/zVLDS ≈ 0.33. Recent
studies using the ODFA technique have shown that the lo-
cal roughness exponents numerically calculated for a variety
of models, where diffusive dynamics were dominant, exhib-
ited values very similar to the global roughness exponent
for the VLDS class in d = 1 and 2 [35,36]. On the other
hand, the linear MBE theory stated by the MH equation pro-
vides α = 1.5 and β = 0.375. The scaling analyses for q <

0 are consistent with α = 1.141(9) which lies between the
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FIG. 3. Local roughness ωn
q (r = ξ∗, t ) vs t , for n = 2 and dif-

ferent q values. The dashed-dotted (red), solid (green), and dashed
(blue) lines represent the slopes βVLDS ≈ 0.33, βMH = 3/8, and
βEW = 0.25, respectively. In the case of the VLDS class, the growth
exponent is derived from a two-loop RG analysis [48]. For q = 15
(q = 20), the effective growth exponent, calculated by least-squares
fitting of the numerical data, was 0.24(2) [0.23(2)]. For q = −5
(q = −10), the effective growth exponent was 0.404(8) [0.40(1)].
The correlation length ξ∗(t ) is defined by �(ξ∗, t )/�(0) = 0.3.

linear and nonlinear MBE theories. So, we conjecture that the
short-scale regime is a crossover between linear and nonlinear
MBE universality classes. A crossover for the leading VLDS
class is expected for even more asymptotic regimes.

For q > 0, the scaling properties associated with long-
wavelength fluctuations are in agreement with the EW regime,
and consistent with previous observations [12,19,49]. Inter-
estingly, EW scaling for long-wavelength fluctuations was
observed at a time (t = 108), that is one order of magnitude
smaller than the recent analysis of WV models [19]. However,
as short-wavelength fluctuations scale as in the transient be-
tween MH and VLDS classes (i.e., MBE growth), we present
here evidence of a bifractal pattern for the WV model, which
contrasts with the hypothesis of monofractality in this model.

We also investigate the time scaling in the growth regime
of the local roughness, computing the roughness at length

scales equivalent to a correlation length determined by the
condition �(ξ∗, t )/�(0) = 0.3; see Fig. S2 of the SM [34].
The reliability of the definition of ξ∗ to calculate the dynamic
exponent z was demonstrated also for several interface growth
models [8,50]. The choice of this length scale is justified
by the observation of concomitant local roughness exponents
corresponding to MBE growth and EW class for q < 0 and
q > 0, respectively, when r = ξ∗; see Fig. 2(b). We calcu-
late ωn

q(r = ξ∗, t ), with n = 2, as a function of time for both
negative and positive q values as shown in Fig. 3. For long
times t � 105, two temporal scaling regimes are observed,
depending on the sign of q. For negative q, the effective
growth exponent β = 0.40(1) is close to the linear MBE
theory β = 0.375, being a consistent scaling regime before
the dominance of the nonlinear terms. Indeed, the growth
exponents of linear and nonlinear MBE universality classes
are relatively close such that resolving between them demands
scaling above those we were able to achieve. For positive q,
the growth exponent β = 0.24(2) is fully consistent with the
EW universality class.

Summary and conclusions. In summary, we introduced
the MF-ODFA method, a powerful tool for studying multi-
fractality in film growth models, resulting in interfaces with
characteristic lengths over long time intervals. We applied our
method to the WV model in d = 1, demonstrating a bifractal
morphology, contradicting the hypothesis that the model, at
least within the reported times, is monofractal. For short-scale
lengths, the MF-ODFA methods provide scaling exponents
consistent with the MBE universality class whereas the EW
exponents are observed for large scales, in agreement with
the conjecture that these models belong to the latter class in
the hydrodynamic limit [12]. We emphasize that our method
can be effectively applied to analyze other models exhibiting
long transient mounded morphologies, where determining the
universality class remains uncovered.
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