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Harnessing density to control the duration of intermittent Lévy walks in bacterial turbulence
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Dense bacterial suspensions display collective motion exhibiting coherent flow structures reminiscent of turbu-
lent flows. However, in contrast to inertial turbulence, the microscopic dynamics underlying bacterial turbulence
is only beginning to be understood. Here, we report experiments revealing correlations between microscopic
dynamics and the emergence of collective motion in bacterial suspensions. Our results demonstrate the existence
of three microscopic dynamical regimes: initial ballistic dynamics followed by an intermittent Lévy walk
before the intriguing decay to random Gaussian fluctuations. Our experiments capture that the fluid correlation
time earmarks the transition from Lévy to Gaussian fluctuations demonstrating the microscopic reason under-
lying the observation. By harnessing the flow activity via bacterial concentration, we reveal systematic control
over the flow correlation timescales, which, in turn, allows controlling the duration of the Lévy walk.
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Examples of collective motion could be witnessed across
various scales ranging from the picturesque flocking of birds,
and huddling of penguins, to the crawling of cells and the
swarming of bacteria [1–7]. Despite the apparent differences
in their composition and length scales, dedicated efforts over
the last couple of decades revealed many similarities in
their statistical properties such as the scale dependence of
spatiotemporal correlations, and the nature of interactions
[1,2,6]. In general, a complex interplay of several factors
including decision making based on environmental cues, bio-
chemical gradients, and physical interactions may manifest as
macroscopic collective motion [1–17]. Here, the absence of
cognitive ability in lower forms of life such as bacteria reduces
the overall complexity of the problem and thus they serve
as excellent models to explore the physics underlying the
rich dynamics of collective motion [7,10–18]. The collective
behavior observed in bacterial fluids is broadly understood
on the basis of the interplay between physical interactions,
force gradients, and local alignment rules [1–3,8,9,19–21].
For example, the orientational order within the bacterial com-
munities may underlie excluded volume interactions between
the entities. On the other hand, the hydrodynamic interac-
tions between the neighboring aligned swimmers manifest as
collective dynamics exhibiting turbulence like characteristics,
viz., large-scale coherent flow structures, and emergent power
laws in the length scale dependence of the energy spectrum
[22–25]. Owing to intense efforts at the continuum scales,
the patterns formed during collective motion can be simulated
to a greater extent by just invoking the competition of active
stresses and dissipation [7,25,26].

Building on the success in capturing the overall flow dy-
namics, recent reports focus on understanding the correlations
between the emergence of turbulence like characteristics in
bacterial suspensions and the underlying microscopic dy-
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namics. Experiments on swarming colonies suggest that the
individual entities exhibit Lévy walks [27]. Recent sim-
ulations capturing the Lagrangian characteristics of active
fluids revealed a transition from initial ballistic motion to
anomalous diffusion mediated by intermittent Lévy walks
[28]. This observation starkly contrasted the inertial tur-
bulence as the initial ballistic dynamics is expected to
become Brownian at later stages [29]. Thus, the presence
of anomalous diffusion and Lévy walks allow distinguish-
ing the active and inertial turbulence [28,30]. However, to
date, experiments validating such a transition from ballis-
tic to anomalous diffusion are lacking. In addition, several
questions need our attention: What are the timescales char-
acterizing these transitions in the microscopic dynamics?
Can we harness such transitions to control the overall
dynamics?

Addressing these pertinent aspects, we report experiments
correlating the microscopic and collective dynamics observed
in dense bacterial suspensions. We systematically control
the concentration of bacteria in a sessile droplet allowing
us to pan the concentration-induced transition from isolated
to collective dynamics. We perform experiments on smooth
swimming Bacillus subtilis IITKSM1 with a diameter of
ca. 1 µm, and a length of ca. 5 µm [refer to Fig. S1 in the
Supplemental Material (SM) [31]] [36,37]. The aerotactic
nature of the B. subtilis [38,39] manifests in their migra-
tion to the liquid-air surface, thus displaying predominantly
two-dimensional dynamics. In addition, a tight focus at the
liquid-air surface allows probing only the two-dimensional
collective dynamics (see Figs. S2 and S3 in the SM [31]).
Investigating the bacterial fluids by probing the dynamics of
dispersed tracer particles will provide valuable insights into
the intricate mechanisms governing these flows [14,40–46].
We used polystyrene colloids of diameter ca. 3 µm to track
the underlying fluid flow. The resultant Lagrangian statis-
tics are compared with the two-dimensional velocity fields
of the bacterial fluid. The one-to-one correspondence of the
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FIG. 1. Microscopic dynamics underlying bacterial turbulence: (a) Mean velocities of the colloids (v̄c, closed circles) and the fluid (v̄f ,
open squares) vs bacterial concentration (c/c0). Inset: Eulerian two-dimensional velocity fields with overlaid streamlines for two different
c/c0, as indicated by the arrows. Velocities are in the units of µm/s and the scale bar is 80 µm. At lower concentrations, specific regions display
high velocities, indicating the bacteria movement in those locations. At higher concentrations, the velocity map displays larger regions of high
activity, revealing the collective motion of bacteria. (b) Double logarithmic representation of ensemble-averaged mean-square displacements
(MSDs, 〈�r2〉) of colloids as a function of time lag (�t). Dashed lines are guides to the eyes with corresponding slopes. Temporal evolution
of the exponents for suspensions with (c) c � cc and (d) c > cc, where cc = 10c0 marks the concentration defining the transition from isolated
to collective dynamics. The dashed black line in (c) and (d) corresponds to diffusive motion (α = 1). The shaded region in (d) highlights the
intermediate superdiffusive regime with a plateau at α = αs, where 1 < αs < 2. Different symbols in (b)–(d) represent different concentrations
of bacteria in the units of c/c0 as defined in (b).

Lagrangian statistics of the tracers and the Eulerian flow field
reveals that the colloidal particles act purely as tracers. Thus,
modeling the geometry of colloidal trajectories allows us to
investigate the microscopic nature of the collective dynamics.
Our experiments reveal three microscopic dynamic regimes:
short-time ballistic dynamics followed by intermittent Lévy
walks and an intriguing transition to Brownian motion at later
stages. Our results highlight the need to better understand
the collective dynamics in bacterial systems. We reveal the
flow correlation timescales earmark the transition from an
intermittent Lévy walk to Gaussian fluctuations. This obser-
vation provides crucial insight into the microscopic reason
underlying the transition.

For our systematic study, we vary c from 1c0 to 50c0,
where c0 ≈ 108 cells/mL. To obtain different concentrations
we centrifuge the base suspension of concentration c0 and
redisperse the settled part in appropriate amounts of nutrient
solution. See Fig. S4 [31] for the approximate fraction of
the bacteria at the liquid-air surface as a function of c/c0.
Using time lapse optical microscopy, we probe the dynamics
of a drop (diameter 1 cm) of bacterial suspensions, containing
0.04 wt. % polystyrene (PS) colloids, placed on hydrophilic
cover slips. Please refer to Secs. S1 and S2, in SM [31] for
experimental details and analysis protocols. Refer to Fig. S5
[31] for the statistical distribution of the velocity vc of colloids
and the velocity vf of the fluid elements. The concentration
dependence of the corresponding mean velocities v̄c and v̄f

are displayed in Fig. 1(a). Clearly, both v̄c and v̄f increase
rapidly beyond cc = 10c0 capturing the transition from iso-
lated to collective dynamics [10]. A closer look at the spatial
velocity distribution, shown in the inset of Fig. 1(a), reveals
characteristics reminiscent of inertial turbulence: the presence
of coherent flow structures, nonlinear flow fields, and the
existence of long-range streamlines. Clearly, v̄c ≈ v̄f for all
concentrations, demonstrating that colloids simply trace the
flow dynamics of the bacterial fluid. This allows us to rely on

the trajectories of colloids for understanding the microscopic
dynamics underlying bacterial turbulence.

In Fig. 1(b), we quantify the trajectories of the col-
loidal particles using the ensemble-averaged mean-squared
displacement (MSD). With an increase in the c/c0, we observe
a vertical shift of the MSDs supporting the increase in the
overall velocity. As captured in Figs. 1(c) and 1(d), we witness
systematic variations in the exponent α (where 〈�r2〉 ∼�tα)
with an increase in c/c0. Expectedly, without any added bacte-
ria, colloids exhibit Brownian motion (α = 1) throughout our
experimental time window. For low bacterial concentration
c � cc, colloids exhibit short-time superdiffusive (α > 1) mo-
tion, reflecting the increased rate of collisions with bacteria.
However, the motion eventually becomes random (α = 1) at
longer times [47]. For higher concentrations (c > cc), α ≈ 2
at short times, reflecting the long-range persistent motion of
the colloids mediated by the collective motion of bacteria.
This initial ballistic motion nicely corroborates the short-time
observations in inertial turbulence [29]. Interestingly, we ob-
serve an intermediate region displaying anomalous diffusion
with α = αs, where 1 < αs < 2 (see Fig. S6 [31] for the
time of evolution of MSD rescaled with �tαs ). This distinc-
tive characteristic of active turbulence is captured in recent
simulations [28,30], and experiments on swarming bacterial
colonies [27]. Intriguingly, with an increase in flow activity
set by c/c0, the timescales marking the transition from α = 2
to α = αs shift towards lower timescales [see Fig. 1(d)]. The
microscopic reasons underlying this observation are not yet
clear.

The colloids suspended in the bacterial fluids are subjected
to strong nonlinear velocity fields of the overall flow [see
the inset of Fig. 1(a)]. Such variations in the background
velocities may manifest in the microscopic dynamics and the
transitions observed in Fig. 1(d). To verify this, in Fig. 2(a),
we show the normalized displacement (�r) fluctuations of a
representative tracer as a function of time. The regions with
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FIG. 2. Intermittent dynamics and Lévy walks manifest as bacterial turbulence: (a) Displacement (�r) fluctuations normalized with a mean
displacement (�r) display dips of more than an order of magnitude, revealing the intermittent nature of the dynamics. (b) Double logarithmic
representation of the waiting-time (τ ) distribution of colloids for different bacterial concentrations, as defined in the respective legends in the
units of c/c0. The continuous blue line represents the Gaussian fit, and the dashed black line corresponds to τ−8/3. (c) αs + γ vs c/c0. Clearly,
αs + γ ≈ 3 demonstrates the existence of the Lévy walks

higher �r signify the lifetime of the colloids within a vortex
and the rapid jumps to lower �r correspond to the time du-
ration over which the tracer may leave the vortex. Clearly, in
several instances, the �r sharply decreases at least ten times
smaller than that of the mean value �r. This demonstrates
that the tracers experience intermittent dynamics caused by
the background fluid, which is also reflected in the anomalous
diffusion of the colloids [Figs. 1(b) and 1(d)]. Such intermit-
tencies, in turn, suggest fat non-Gaussian tails or power laws
in the distributions, as captured in recent theories focusing on
tracer diffusion in dilute active environments [48,49]. Explor-
ing the existence of such non-Gaussian deviations in relatively
denser systems studied here, we probed into the run lengths
and waiting times, the time taken between two successive
turns, for suspensions exhibiting collective dynamics (c > cc).

We obtain the waiting times (τ ) by dividing the tracer
trajectories into several segments based on the effective turn
angle between the segments. An angle change θ is recognized
as a turn if θ > θc (see Fig. S7 [31]). Refer to Fig. S8(a)
[31] for the probability distribution of θ . This approach yield
a precise analysis of the data and facilitates the calcula-
tion of waiting times corresponding to different run lengths
(d). In our analysis, we set different threshold angles, θc =
20◦, 30◦, 40◦ to show that the choice of the threshold an-
gle does not play any role in the probability distribution
[Fig. S8(b) [31]]. Figure S9 [31] shows the joint probability
distribution of the waiting time (τ ) and run length (d) in-
dicating a finite velocity. The probability distributions of τ

for different bacterial concentrations are plotted in Fig. 2(b)
(θc = 40◦). We observe important deviations in the distribu-
tion with increasing bacterial concentration (see Fig. S10 [31]
for the waiting-time distribution for c � cc). For c > cc, the
probability P(τ ) ≈ τ−γ−1 follows a power-law dependence
with waiting time. This exponent γ and the anomalous MSD
exponent αs satisfy αs + γ ≈ 3 for all c > cc [Fig. 2(c)]. This
provides compelling evidence for the existence of Lévy walk
statistics at initial timescales [50]. Intriguingly, the most active
suspensions (c � 30c0) exhibit a transition from power-law-
like behavior at short timescales, to a Gaussian distribution

a larger times. Recent theory modeling a nonlinear persistent
walk of run-and-tumble bacteria predicted such a transition
and related it to the increased frequency of collisions with
an increase in the concentration of the swimmers [51]. With
an increase in c/c0, we may expect a similar increase in
the collision frequency among the bacteria manifesting into
the transition from a Lévy walk to random dynamics. We
highlight such a concentration-dependent transition from a
Lévy-walk-like dynamics to random fluctuations has also
been observed in dense colonies of mussels [52], revealing the
universality of our observation. This suggests that the eventual
decay to Gaussian fluctuations is not a characteristic of the
bacteria and may manifest as density-induced changes in the
flow behavior.

To verify this hypothesis, we quantify the temporal corre-
lation of the underlying flow field, and its manifestation on
the trajectory of colloids. In Fig. 3(a), we show the temporal
decay of the orientation correlation (Cθθ ) of the colloids and
the velocity-velocity correlation (Cvv) of the underlying fluid.
Refer to Sec. S2 [31] for details.

Both Cθθ and Cvv systematically decayed, allowing us to
capture the corresponding decorrelation timescales (refer to
Fig. S11 [31] for Cθθ and Cvv for all c/c0). As captured
in Fig. 2(a), the displacement of the tracers showed sudden
dips suggesting highly driven dynamics i.e., the decorrelation
could choose a more efficient relaxation route than a simple
exponential process. In addition, assuming a separation of the
scales, we may expect two independent relaxations: (a) for
the random fluctuations of the tracers, and (b) the collective
relaxations driven by the velocity fields of the underlying
fluid. Thus, we modeled our data using the form below,

Cθθ = A1e−�t/τ1 + A2e−(�t/τc )βc
, (1)

where A1 and A2 define the dynamic ranges corresponding
to the respective relaxations. Clearly, Eq. (1) nicely captures
the decay of Cθθ and Cvv (refer to Figs. S12–S14 [31]).
As expected, the faster relaxation times τ1 in Cθθ (�t ) de-
duced for all bacterial concentrations are comparable to the
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FIG. 3. Harnessing density (activity) to control microscopic dy-
namics: (a) Semilogarithmic representation of time (�t) dependent
orientational correlation function Cθθ of colloidal trajectories, and
(inset) velocity-velocity correlation Cvv of the underlying fluid. Dif-
ferent symbols represent different bacterial concentrations as defined
in the units of c/c0. Continuous lines are best fits to the data.
(b) Persistent time of colloids (τc, closed circles) and flow correlation
time (τf , open squares) as a function of c/c0. Inset: Compressed
exponent (βc, βf ) vs c/c0. Dashed black lines are guides to the eyes.
(c) Rescaled waiting-time distribution for the concentrations c > cc,
where the y axis is rescaled by τ−γ−1, and the x axis is normalized by
correlation time (τf ) of underlying flow. The horizontal dashed line
represents a zero-slope line. The vertical dashed line corresponds to
τ/τf = 1.

Brownian decorrelation times deduced from our experiments
on pristine colloids (see Fig. S12 [31]). The relaxation times
corresponding to the collective mode τc (for tracers), and
τf (for the background fluid) are shown in Fig. 3(b). The
corresponding compressed exponents βc, βf are shown in the
inset of Fig. 3(b). Refer to Fig. S11 [31] for τc, τf , βc, and
βf for all c/c0. Interestingly, we observe a decrease in τc

[and persistence length lc, Figs. S15(a) and S15(b) [31]] and
τf with bacterial concentration for all suspensions exhibiting
collective dynamics. These results nicely corroborate recent
simulations on pusher-type bacteria [53]. For all suspensions

with c > cc, we observe compressed exponential relaxation
as expected. In addition, βc and βf follow a concentration de-
pendence similar to τc and τf . As reported earlier [10,13,54],
irrespective of flow activity, the lateral correlation length (ξ )
of the background fluid is similar for all concentrations ex-
hibiting collective dynamics [see Figs. S16(a) and S16(b)
[31]]. We expect that the constant ξ and increasing v̄f man-
ifest as curlier trajectories of the tracer particles (as shown
in Fig. S2) and an overall reduction in the characteristic
timescale ξ/v̄f ≈ τc ≈ τf (Fig. S17 [31]). Conceivably, these
timescales will define a threshold for the transition from a
persistent Lévy walk to random fluctuations. To capture this,
in Fig. 3(c), we show a normalized version of Fig. 2(b), where
the y axis is rescaled with τ−γ−1 and the waiting times nor-
malized by the flow correlation time (τf ). We witness a nice
overlap of all the data. For τ/τf < 1, the data displayed a con-
stant behavior revealing a Lévy walk for all times less than the
flow correlations. However, for τ/τf > 1, we revealed a tran-
sition from a Lévy walk to random fluctuations demonstrating
that the transition is a characteristic of the flow. In less active
suspensions (c = 15c0 and 20c0), the flow remains correlated
for a longer time than our experimental window, and thus
we could not capture the transition to Gaussian statistics. At
higher activity, this critical timescale characterizing the flow
correlation appeared within our experimental window. This, in
turn, allowed us to capture the transition. These observations
demonstrate that harnessing activity allows controlling the
duration of the Lévy walk in bacterial turbulence.

To conclude, we report experimental results capturing all
three different microscopic dynamic regimes underlying bac-
terial turbulence: initial ballistic, intermittent Lévy walks,
and the eventual Brownian dynamics. In addition to provid-
ing quantitative agreements with existing theory [51] and
simulations [28], our experiments reveal crucial insight into
the microscopic reasons. We reveal that the flow correla-
tion timescales earmark the transition from an intermittent
Lévy walk to Gaussian fluctuations. We believe our sys-
tematic results will attract theoreticians to develop a unified
model integrating the observations at both microscopic and
macroscopic scales. Interestingly, our approach to control the
activity, via the concentration of bacteria, provides a different
way to control the microscopic dynamics underlying bacterial
turbulence.
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