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Thermal quenching of classical and semiclassical scrambling
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Quantum scrambling often gives rise to short-time exponential growth in out-of-time-ordered correlators. The
scrambling rate over an isolated saddle point at finite temperature is shown here to be reduced by a hierarchy
of quenching processes. Two of these appear in the classical limit, where escape from the neighborhood of the
saddle reduces the rate by a factor of two, and thermal fluctuations around the saddle reduce it further; a third
process can be explained semiclassically as arising from quantum thermal fluctuations around the saddle, which
are also responsible for imposing the Maldacena-Shenker-Stanford bound.
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Introduction. Scrambling refers to the spreading of dy-
namical information as a result of local and global instabili-
ties. In a quantum system, scrambling can be quantified using
“out-of-time-ordered correlators” (OTOCs) [1–3] of the form

C(t ) = 〈[Ŵ (t ), V̂ (0)]†[Ŵ (t ), V̂ (0)]〉ρ̂ , (1)

where Ŵ and V̂ are Hermitian operators representing local
quantum information and 〈·〉ρ̂ denotes an expectation value
over the density operator of the system in question. The spec-
ifications of the density operator decide the nature and rate of
the irreversible loss/spreading of quantum information. For a
certain class of systems (known as fast scramblers), the OTOC
grows exponentially at times t shorter than the Ehrenfest time
τ , before flattening due to the onset of coherence. This short-
time exponential growth is sometimes referred to as “quantum
chaos” and the exponential growth rate

λQ = d ln C(t )

dt
(2)

as a “quantum Lyapunov exponent”; this language is very
loose, since exponential growth can occur in nonchaotic sys-
tems such as the barrier-scrambling systems we focus on
below. At sufficiently high temperatures In the classical limit,
λQ is close to the exponential growth rate λcl of the corre-
sponding classical phase-space average

Ccl(t ) = h̄2〈{Wt ,V }2〉ρ, (3)

where {·, ·} denotes a Poisson bracket and 〈·〉ρ denotes the
phase-space average over the classical density distribution.
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For convenience we will often refer to expressions such as
Ccl(t ) as “classical OTOCs.”

Of particular interest in the context of quantum scrambling
are thermal OTOCs, where the density matrix in (1) is speci-
fied by the canonical ensemble:

ρ̂ := e−βĤ

Z
. (4)

In the classical limit, a thermal OTOC can in principle grow
at an arbitrarily large rate. However, at lower temperatures,
λQ is expected to reduce in line with the Maldacena-Shenker-
Stanford (MSS) bound [2]

λQ(T ) � 2πkBT

h̄
, (5)

which has been shown to be of quantum statistical origin
[4–7].

A significant body of work on OTOCs has considered
systems in which the scrambling is not classically chaotic,
but is caused by unstable dynamics around an isolated sad-
dle point. Examples of such systems include the Dicke [8],
Bose-Hubbard [9], and Lipkin-Meshkov-Glick (LMG) [10]
models, as well as simple barrier-crossing systems, in which
the scrambling takes place between two wells separated by a
barrier with imaginary frequency ωb [7,11–14]. On the basis
of (3), one might expect that the classical growth rate in a
canonical ensemble is given as λcl � 2ωb and hence that λQ

also tends to this value at high temperatures; however, it is
found [7,11–14] that λcl � ωb. This factor-of-two reduction
is passed on to λQ and, together with instanton delocalization
quantum thermal fluctuations over the barrier [7], is the reason
that barrier-scrambling systems obey the MSS bound of (5).

In this article, we start by formalizing the factor-of-two
thermal quenching of λcl, then investigate a further reduc-
tion of λcl found to occur at short times. We show that this
further reduction occurs because the exponential growth of
the OTOC has not had sufficient time to become dominated
by trajectories immediately at the saddle, but is instead an
average over thermal fluctuations around the saddle. We then
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show that quantum thermal fluctuations analogously reduce
λQ over the short times for which the quantum OTOC grows
exponentially.

The factor-of-two reduction can be understood by consid-
ering the exponential growth of the classical OTOC at long
times. Similarly to Ref. [10], we consider

C+
cl (t ) = h̄2

hZcl

∫ ∞

−∞
da+

∫ ∞

−∞
da− e−βH (a+,a− )

(
∂a+

t

∂a+

)2

a−
(6)

for a system with Hamiltonian

H (a+, a−) = a+a−

m
+ G(a+ − a−), (7)

where

a± = 1√
2

(p ± mωbq) (8)

are the stable/unstable saddle point coordinates of a parabolic
barrier and G = G(a+ − a−) is a function describing the
anharmonic part of the potential. At long times, C+

cl (t ) is
dominated by the trajectories with the fastest exponential
growth, namely, the trajectories that have remained within a
small region |a+

t − a−
t | < δ � 1 surrounding the saddle for

all times up to t , in which a±
t = exp(±ωbt )a±. Thus, we can

write

C+
cl (t ) −−→

t→∞
h̄2

hZcl

∫ ∞

−∞
da+

∫ ∞

−∞
da− e−βH (a+,a− )S(a+ − a−)

× S(a+eωbt − a−e−ωbt )

(
∂a+

t

∂a+

)2

a−
, (9)

where S(x) = 1 for −δ < x < δ and 0 otherwise. Since

H (a+, a−) = G(0)(
∂a+

t
∂a+

)
a− = eωbt

}
for |a+

t − a−
t | < δ, (10)

and at large t , S is nonzero for |a+| < δ exp(−ωbt ) and |a−| <

δ + δ exp(−ωbt ) � δ, it follows that

C+
cl (t ) −−→

t→∞
e2ωbt e−βG(0)h̄

2πZcl

∫ δe−ωbt

−δe−ωbt
da+

∫ δ

−δ

da−

=2δ2eωbt e−βG(0)h̄

πZcl
(11)

and hence that

lim
t→∞ λcl = lim

t→∞
d ln C+

cl (t )

dt
= ωb. (12)

However, for the short times t < τ (where τ is the Ehren-
fest time for the system) over which the quantum OTOC
grows exponentially, the behavior of Ccl(t ) will be very far
from the long-time limit in (12). Unless the barrier is suffi-
ciently low in energy compared to typical thermal fluctuations
at a given temperature, crossing the barrier (which results in
exponentially fast scrambling) will be a rare event. At finite
temperatures, the behavior of the thermal OTOC (6) is likely
to be dominated by a far wider spread of trajectories than those
initially (at time t = 0) contained in |a±| < δ. Consequently,
Ccl(t ) may not grow exponentially at all for t < τ , or if it
does, the growth rate λcl may be much less than the long-time

FIG. 1. Schematic plot of the potential in (13) for z = 2, showing
the minima (red dots) and the saddle (black dot) with the unstable
mode along the x direction.

limit ωb of (12). Assuming that the effect of the anharmonic
term G(a+ − a−) is to reduce the curvature away from the
barrier [15], we can expect that λcl will be smaller than ωb at
short times, and that a corresponding reduction will affect the
quantum OTOC (at least at high temperatures).

We investigated this behavior numerically for the two-
dimensional model potential

V (q) = g

(
x2 − mω2

b

4g

)2

+ D(1 − e−αy)2 + z2α2x2y2/2,

(13)

where z is a tunable coupling parameter, q = (x, y), m = 0.5,
ωb = 2, g = 0.08, α = 0.382, D = 3Vb, and Vb = m2ω2

b/16g.
This potential (shown in Fig. 1) has a saddle point at the origin
and symmetric coupling between x and y, the strength of
which can be tuned by the parameter z (z = 0 corresponds to
the 1D double well along x); the saddle imaginary frequency
is ωb. We calculated the quantum OTOC [16]

Cq(t ) = − 1

Z
〈[x̂(t ), p̂x (0)]2〉 (14)

for which the corresponding classical OTOC is

Ccl(t ) = 1

4π2Zcl

∫
dq dp e−βH (q,p)

(
∂xt

∂x

)2

(y,p)

. (15)

Figure 2(a) shows the computed classical OTOCs at T =
3Tc for z = 0 (uncoupled) and 2 (coupled), where Tc is the
instanton crossover temperature defined below in (23). Both
OTOCs behave similarly, with exponential growth dominating
after t = 2, with a growth rate λcl that is less than its long-time
limit of λcl = ωb = 2. The greater reduction of lambda for
z = 2 (λcl = 1.75) than z = 0 (λcl = 1.92) indicates that the
phase-space volume that dominates Ccl(t ) at these short times
extends sufficiently far along the y coordinate that switching
on the coupling (which reduces the Hessian on moving away
from the saddle along the y coordinate) significantly reduces
λcl. Figure 2(b) shows that there is a comparable reduction in
λQ for the quantum OTOC when z is increased from 0 to 2.
These results suggest that, at least for this system at T = 3Tc,
a change in the coupling strength z produces roughly equiva-
lent changes in the distribution of Hessians that dominate the
short-time exponential growth of Ccl(t ) and Cq(t ).

An analogous mechanism also appears to explain why λQ

is significantly lower than λcl even at T > Tc (where there are

L012204-2
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FIG. 2. Illustration of quenching in the scrambling rates of the
classical, semiclassical and quantum OTOCs. The microcanonical
OTOC in (a) was obtained from a single classical trajectory ini-
tialized very close to the phase-space origin. The thermal OTOCs
were computed at temperature T = 3Tc, with z of (13) set to 0 (no
coupling) and 2 (with coupling).

no instantons and real-time coherence effects are relatively
small [17]). In this case, the reduction in λQ is caused by
the spreading of the distribution along the quantum thermal
fluctuations, which are sampled by the quantum-Boltzmann
distribution. We can represent this distribution in the usual
imaginary-time (Euclidean-action) path integral representa-
tion, for which

Tr[e−βĤ ] =
∮

Dq[·] e−SE [q(·);β]/h̄, (16)

where

SE [q(·); β] =
∫ β h̄

0
dτ

{
m|q̇(τ )|2

2
+ V (q(τ ))

}
(17)

is the Euclidean action and
∮

represents an integral over
cyclic paths. A standard procedure [18] to quantify quan-
tum fluctuations is to decompose the path space (and the
Euclidean action) into contributions from the centroid Q0 =
(β h̄)−1

∫ β h̄
0 q(τ ) dτ and the fluctuations ξ(τ ) = q(τ ) − Q0, to

obtain

Tr[e−βĤ ] =
∫

dQ0

∮
Q0

Dξ[·] e−SE [ξ(·);β]/h̄. (18)

If we then expand SE to second order in ξ(τ ) [18] under the
assumption that large fluctuations have a large action and thus
a small weight, we obtain (assuming a one-dimensional po-
tential; a multidimensional generalization is straightforward):

∂2SE

∂Q2
0

= β h̄
∂2V

∂Q2
0

+ g̃
∫ β h̄

0
dτ |ξ (τ )|2 + · · · (19)

(where g̃ is a coupling constant dependent on the potential),
which shows that the geometric centroid of the cyclic path is
coupled quadratically (and symmetrically) to the fluctuation
modes, analogously to the (classical) coupling between x and
y in the model potential (13). This becomes more explicit if
we decompose the cyclic paths as a Fourier series q(τ ) =∑∞

−∞ Qneiωnτ , which yields 〈|ξ(τ )|2〉Q0 = ∑
n 	=0 |Qn|2.

An equivalent and numerically more efficient way to rep-
resent the quantum Boltzmann distribution is to exploit the
resemblance of the discretized action to the potential energy
of a ring polymer [19], using

Tr[e−βĤ ] = lim
N→∞

∫
d pN dqN e−βN HN , (20)

where βN = β/N and

HN =
N∑

k=1

p2
k

2m
+ UN (q), (21)

UN (q) =
N∑

i=1

V (qi ) + m

2(βN h̄)2

N∑
i=1

|qi − qi−1|2. (22)

In practice, N is treated as a convergence parameter,
making this a finite-difference approximation, in which the
quantum thermal fluctuations ξ(τ ) about the centroid manifest
as a spreading of the “ring polymer beads” qi ∀i ∈ {1, N}. For
a system with a saddle point of imaginary frequency ωb as
in (13), these fluctuations become large when the temperature
approaches a certain crossover temperature:

Tc = h̄ωb

2πkB
, (23)

below which the saddle point of the ring-polymer potential
corresponds to a delocalized geometry resembling a classical
periodic orbit on the inverted potential −V (q), which is often
referred to as an instanton [7,20].

To demonstrate the importance of fluctuation modes to
the dynamics, we propagate trajectories of the ring poly-
mers using the artificial classical dynamics generated by the
ring-polymer Hamiltonian of (21). The resulting simulation
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method, which is referred to as “ring-polymer molecular
dynamics” (RPMD), conserves the quantum-Boltzmann dis-
tribution with time and has been shown [21] to agree with
exact quantum dynamics in the harmonic, high-temperature
and t → 0 limits. We follow Ref. [7] in computing the
(RPMD) OTOC as

CRPMD(t ) = h̄2

h2N ZN

∫
dqN dpN e−βN HN

(
∂X0(t )

∂X0

)2

(24)

in which

X0 = 1

N

N∑
k=1

xk (25)

is the x centroid of N replica phase-space points (pN ; qN ) ≡
{p1, . . . , pN ; q1, . . . , qN } which are propagated classically us-
ing the Hamiltonian HN in (21), where V is as defined in
(13) (with z = 2), and ZN is the analogous partition function
obtained from HN . Clearly CRPMD(t ) is an artificial classical
construct which is not expected to reproduce the quantum
OTOC C(t ) (except in the limits t → 0 and β → 0). How-
ever, CRPMD(t ) gets one essential property right: the RPMD
trajectories that dominate the OTOC at short times are drawn
from the same distribution of Hessians around the saddle as
those sampled by the exact quantum dynamics. In Ref. [7] this
property was shown to be sufficient to make CRPMD(t ) obey
the MSS bound, and to show how the quantum statistics im-
pose the bound by shifting the saddle point on UN (q) from the
classical saddle geometry qN = 0 at T > Tc to the delocalized
instanton geometry at T < Tc.

Figure 2(a) shows CRPMD(t ) at 3Tc. There is no instanton
at this temperature, but nonetheless the RPMD exponential
growth rate λRPMD (and λq, not shown) is significantly lower
than λcl. This reduction can be explained analogously to the
drop in λcl on switching z from 0 to 2, as arising because t
is too short for the exponential growth of CRPMD(t ) to have
reached its t → ∞ limit of ωb = 2. The exponential growth is
dominated by a broad distribution of phase space around the
saddle at qN = 0, which, in this finite difference approxima-
tion, extends along the modes

Qn = (Xn,Yn) =
N∑

k=1

qkei2nπk/N , n = 0, . . . , N − 1, (26)

which for n 	= 0 describe quantum thermal fluctuations
around the centroid. Since the unstable mode at the saddle lies
along X0 and does not rotate much on moving away from the
saddle (but see below), the exponential growth of ∂X0t/∂X0

around the saddle is determined mainly by [following (19)]

−∂2UN (q)

∂X 2
0

= mω2
b −

N−1∑
n=0

(12g|Xn|2 + z2α2|Yn|2). (27)

The spread of the distribution along the Qn modes there-
fore reduces −∂2UN (q)/∂X 2

0 , which explains the reduction in
λRPMD with respect to λcl. As the temperature is decreased
from 3Tc to Tc (Fig. 3), this reduction increases, since the
amplitudes of the quantum fluctuations increase. In Fig. 3
we show the scrambling rate as a function of temperature for
RPMD. Below Tc, the dependence of −∂2UN (q)/∂X 2

0 on Qn

FIG. 3. Comparison of λRPMD with the short-time approximation
�ave of (32) over a wide temperature range. Also plotted are the
classical barrier frequency ωb, the instanton barrier frequencies ηb,
and the MSS bound (red line). The gray vertical line indicates the
instanton crossover temperature Tc.

becomes more complicated, but Fig. 3 shows that a compa-
rable reduction of λRPMD occurs with respect to its long time
limit (i.e., the instanton barrier frequency).

Having established that the exponential growth of Ccl(t )
and CRPMD(t ) is slower at short times than in the long-time
limit, we now ask whether the short-time growth can be
estimated by taking a t → 0 limit. We have found that in
general this is not true; but such a limit does seem to exist
for potentials which, like V (q) of (13), have symmetric cou-
pling between the stable and unstable modes of the saddle.
Figure 4(a) shows a plot of the quantity

Cδ
cl(t ) = 1

4π2Zcl

∫
dq dp δ(x)e−βH (q,p)

(
∂xt

∂x

)2

(y,p)

, (28)

which is an OTOC in which the initial distribution is con-
strained to a “dividing surface” along y passing through x = 0.
By filtering out the large contributions from trajectories that
originate in the wells, this OTOC grows exponentially from
an earlier time than Ccl(t ), but at a very similar rate. In the
limit t → 0, Cδ

cl(t ) grows quadratically, as 1 + ω2
avet

2, where

ω2
ave = − 1

h2mZcl

∫
dq dp δ(x)e−βH (q,p) ∂

2V (q)

∂x2
(29)

is the average of the negative hessian over the dividing surface.
Figure 4(a) shows that ωave is a much better approximation
than ωb to λcl. The accompanying histogram in Fig. 4(b) thus
gives a good estimate of the distribution of negative hessian
eigenvalues that dominate the exponential growth of Ccl(t ) at
short times.

Figure 4(a) also plots the analogous quantities

Cδ
RPMD(t ) = h̄2

h2N ZN

∫
dqN dpN δ(Q0)e−βN HN

(
∂X0t

∂X0

)2

(30)

and

�2
ave = − 1

h2N mZN

∫
dqN dpN δ(Q0)e−βN HN

∂2UN (qN )

∂X 2
0

(31)
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FIG. 4. (a) Comparison of classical and RPMD OTOCs com-
puted with an initial dividing-surface constraint (δ superscript) and
without such a constraint (no δ superscript). The classical OTOCs
were computed at T = 3Tc; the RPMD at T = 0.95Tc. (b) Distri-
bution of the maximal (negative) Hessian eigenvalue λ along the
dividing surface in the classical (top) and RPMD simulations (mid-
dle), and of the projection of the latter along X0 (bottom). The dashed
vertical lines indicate the distribution averages λavg.

[where δ(Q0) := δ(X0)δ(Y0)] for the RPMD OTOC. As for the
classical OTOC, the exponential growth of Cδ

N (t ) is a close
approximation to that of CN (t ); the Hessian average ω2

ave is
less good, but this is because we need to account for the
small rotations X0 → ξ0 of the Hessian unstable eigenvector
on moving away from the saddle; Fig. 3 shows that

�
2
ave = − 1

h2N mZN

∫
dqN dpN δ(Q0)e−βN HN

∂2UN (qN )

∂ξ 2
0

(32)

gives an excellent approximation to λRPMD across the full
temperature range tested (including below below Tc). Note
that the maximum negative hessian eigenvalue in the quantum
Boltzmann distribution about (X0,Y0) = (0, 0) [see Fig. 4(b)]
is peaked below ωb (because pairs of fluctuation modes
X±n,Y±n are doubly degenerate); this explains why quantum

fluctuations give such a significant reduction in the short-time
exponential growth rate of CRPMD(t ).

We emphasize that the short-time approximations �ave and
�ave appear to work only in the special case that the intermode
coupling in V (q) is symmetric (about the coordinates x and
y in this case). For example, if the xy-coupling term in (13)
is replaced by the asymmetric coupling used in Ref. [7], the
resulting �ave is not a good approximation to λRPMD.

Although this article is concerned with the scrambling
rate of OTOCs, we note that the findings above may help to
understand some of the properties of the multitime correla-
tion functions used in nonlinear spectroscopy, which usually
contain commutators such as [q̂t , p̂] (or the correspond-
ing ih̄ ∂qt/∂q in the classical limit) [22–24]. An interesting
question is why none of these functions appear to grow expo-
nentially, not even in the classical limit. For the simplest of
these examples, which contain a single power of ih̄ ∂qt/∂q,
integration by parts shows that any exponential growth must
cancel out. However, some of these functions contain multiple
powers of ih̄ ∂qt/∂q (evaluated at different times) for which
the lack of exponential growth cannot be so easily explained
away [24]. It may be that quenching processes similar to those
discussed above prevent exponential growth.

In conclusion, the scrambling rate over an isolated saddle
is reduced by a hierarchy of processes. First, escape from the
neighborhood of the saddle reduces the rate by a factor of
two. Second, the quantum OTOC grows exponentially only at
short times, which means that the range of negative Hessian
eigenvalues contributing to the scrambling rate is roughly as
wide as the thermal distribution around the saddle [25]. This
broad distribution slows the overall growth rate of the classical
OTOC and still more so of the quantum OTOC on account
of quantum thermal fluctuations. At temperatures below Tc,
the quantum scrambling rate is further reduced by instanton
formation, in line with the MSS bound. Finally, the quantum
scrambling rate is also affected by real-time coherence, whose
effects are difficult to predict but typically reduce it. The short-
time reduction in the scrambling rate makes it very unlikely
that any system with an isolated saddle point can saturate the
MSS bound.
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