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Machine-learning-coined noise induces energy-saving synchrony
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Noise-induced synchronization is a pervasive phenomenon observed in a multitude of natural and engineering
systems. Here, we devise a machine learning framework with the aim of devising noise controllers to achieve
synchronization in diverse complex physical systems. We find the implicit energy regularization phenomenon
of the formulated framework that engenders energy-saving artificial noise and we rigorously elucidate the
underlying mechanism driving this phenomenon. We substantiate the practical feasibility and efficacy of this
framework by testing it across various representative systems of physical and biological significance, each
influenced by distinct constraints reflecting real-world scenarios.

DOI: 10.1103/PhysRevE.110.L012203

Introduction. Noise-induced synchronization is a
widespread phenomenon observed in various physical
systems, encompassing chaotic to limit-cycle oscillators
[1–7]. Among the various paradigms of synchronization,
complete synchronization (CS) has been extensively
discussed in the presence of noise [8–12]. Since Maritan
and Banavar claimed that two chaotic systems subjected
to the same and sufficiently strong noise can achieve
synchronization [13], the mechanisms of common noise
enhancing CS and its variants have been a highly relevant
topic [4,14,15]. Apart from the common noise, the impact
of uncorrelated and correlated noise on synchronization has
garnered research attention recently [16,17].

To reveal the complicated mechanism of noise-induced
synchronization, previous work has primarily focused on in-
vestigating the local stability of the synchronization manifold
[8,18] or on exploring the global stability via analytically
designing the Lyapunov function for the synchronization error
dynamics [10,19,20]. However, all these methods are system
specific and pose challenges in devising energy-saved syn-
chronous noise for more general networked systems [21].

In this Letter, we devise and formulate the artificial-
intelligence noise (AIN) synchrony, an inaugural and scalable
framework for proficiently devising the noise controllers to
attain the CS in diverse physical systems, integrating the
stochastic stabilization theory with the machine learning tech-
niques. Indeed, the devised AIN synchrony is not only of
mathematical rigorousness, but also applicable to stabilizing
the synchronization manifold not only in both local but also in
global manners. We illustrate its efficacy and practical feasi-
bility using a wide range of representative systems, including
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chaotic and networked dynamics of limit-cycle oscillators.
The results demonstrate that the machine-learning-coined
noise can remarkably achieve energy-saving synchrony,
which consumes low energy cost in the control process. We
call this phenomenon implicit energy regularization and theo-
retically uncover the universal mechanism that produces it.

Problem setup and notations. We consider the collec-
tive dynamics of coupled oscillators, expressed in a general
form as

dxi

dt
= M0(xi,μ0) +

n∑

j=1

Ai jM1(xi, x j,μ1), (1)

where xi ∈ Rd (i = 1, . . . , n) is the oscillatory state of the
ith node, M0 represents the self-dynamics of oscillators and
exhibits a (unstable) limit cycle or chaotic attractor, de-
noted by s and satisfying ds/dt = M0(s,μ0), M1 describes
the i, j pairwise interaction, and A = (Ai j ) ∈ Rn×n captures
the interacting structure between the oscillators. Although the
systematic parameters μ0,1 characterizing the dynamics M0,1

may be potentially distributed across the systems components,
in this Letter we focus on the common μ0,1 requiring that there
exists a synchronous manifold M = {xi = s, i = 1, . . . , n}.
We further require the coupling terms to be synchronization
noninvasive, i.e.,

∑n
j=1 Ai jM1(s, s,μ1) = 0, which is satis-

fied when the interacting structure A is the Laplacian or
the coupling function vanishes at the synchronous manifold
M1(s, s,μ1) = 0. We aim at designing only noise controllers
such that (1) the network achieves the CS physically, that
is, xi(t ) → M (t → +∞) for all i, (2) the noise can act
flexibly to any experimentally feasible parts of a system
under consideration, including the parameters μ0,1, the in-
teracting structure A, and the external forces, and (3) the
controller adapts to practical requirements from the real-world
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scenarios, such as pinning control, communication con-
straints, and the common or uncorrelated noise.

AIN synchrony. For brevity of presentation, we succinctly
denote the collective dynamics (1) as dx/dt = F(x,μ) with
x = (x�

i , . . . , x�
n )� and μ = {μ0,μ1}. Consider the noise

controlled variational dynamics of ξ = x − E ⊗ s with zero
solution ξ ≡ 0 as follows:

dξ = [F(ξ + E ⊗ s,μ) − M0(s,μ0)]dt + u(ξ, s)dBt

� G(ξ, s)dt + u(ξ, s)dBt , (2)

where E = (1, . . . , 1)� ∈ Rn, ⊗ is the Kronecker product,
u ∈ Rnd×r is the state-dependent stochastic controller, and
Bt is the r-dimensional (rD) Brownian motion. The detailed
formulation of how the noise controller acts on the parameters
μ, the structure A, and the external forces are provided in
Sec. S1 in the Supplemental Material (SM) [22]. We propose
the stability theory for devising the diffusion term u to stabi-
lize the variational dynamics (2). The proof of this theory is
included in SM-S2 [22].

Theorem 1. Suppose that there exists a function V ∈
C1,2(R × Rnd ;R�0) such that V (0, t ) = 0, V (ξ, t ) � c‖ξ‖p

for constants c, p > 0, and

[∇V (ξ, t )�u(ξ, s)]2

V (ξ, t )2
− b · LV (ξ, t )

V (ξ, t )
� 0, ξ 	= 0, (3)

for some b > 2. Here, L represents Itô’s derivative satisfying
LV = Vt + ∇V �G + Tr[u�∇2V u]/2, ∇ represents the gradi-
ent operator with respect to ξ, Tr[·] represents the trace of a
given matrix, and the limit limx→0

‖∇V (x,t )�u(x,t )‖2

V (x,t )2 > 0 holds.

Then, for k > 0, we obtain lim supt→+∞
1
t ln‖ξ(t )‖ � −k b−2

2bp
in a physical sense (i.e., with probability one).

Parametrization. Manually seeking the functions pair V , u
satisfying the above conditions including (3) is impractical
due to the complexity and nonlinearity of the original dy-
namics G. To address this, we introduce the machine learning
techniques and devise an algorithm that leverages G and s to
identify the expected functions pair Vθ and uφ, where θ and φ

represent the parameters of the neural networks to be trained.
To enhance training efficacy, we establish the neural networks
such that Vθ and uφ meet specific prerequisites. Specifically,
we construct the function Vθ as Vθ (ξ, t ) = gθ (ξ, t ) + ε‖ξ‖2,
where gθ is a second-order differentiable input convex neural
network [23,24] wherein g(0, t ) = 0 and ε is a small hyper-
parameter guaranteeing the positive definite lower bound of
Vθ . To proceed, we parametrize a synchronous-noninvasive
controller with uφ(0) = 0 and limit the Lipschitz constant of
the controller using the spectral norm regularization method
[25,26]. The detailed formulation of Vθ and uφ is provided in
SM-S6. We theoretically validate the validity of the conditions
assumed in Theorem 1 for the parametrized neural networks
in SM-S2 [22].

Loss function. After parametrizing Vθ and uφ, we need
to ensure the controlled variational dynamics (2) satisfying
the conditions established in (3). As such, we can attain the
CS in the original collective dynamics (1) under noise con-
trol. To do so, we heuristically devise the loss function as
L(θ,φ) = 1

m

m∑
i=1

{ b·LVθ (ξi ,ti )
Vθ (ξi ,ti ) − [∇Vθ (ξi ,ti )�uφ (ξi ,s(ti ))]2

Vθ (ξi ,ti )2
}+, where {ξi, s(ti ), ti}m

i=1

is the training data set and {·}+ denotes the operation of
max(0, ·). To circumvent the drawback that training on the
finite data set may not guarantee the validity of the stability
condition in Eq. (3) on the whole space, we further provide a
stability guarantee theory to endow the stability guarantee to
the current framework (for more details refer to SM-S2 [22]).

Theorem 2. With the functions specified in Theorem 1,
we denote by M the maximal Lipschitz constant of ‖∇V �u‖2

and LV · V on D, where D is a bounded state space.
Further we denote by D̃ the finite discretization of D
with size r such that, for each x ∈ D, there exists x̃ ∈ D̃
with ‖x − x̃‖ < r. If there exists a constant 0 � δ � Mr
such that −‖∇V (x̃, t )�u(x̃, t )‖2 + b · LV (x̃, t )V (x̃, t ) + (2 +
b)Mr � δ for all x̃ ∈ D̃\{0}, then the controller u rigor-
ously satisfies the stability condition in Eq. (3). Therefore,
the learned noise controller rigorously satisfies the stability
condition through replacing the training data set by D̃ and
slightly modifying the loss function with the newly added
term (2 + b)Mr.

Accelerating the training process. The computational
cost for computing the Hessian matrix in Tr[u�∇2Vθu]
is O(d2), which hinders the framework from scaling to
higher dimensional tasks. To reduce the computational
cost, we establish an unbiased estimator as Tr[u�∇2Vθu] =
E[(∇(η�∇Vθ ))�uu�η], where η is a dD noise vector with
zero means, commonly referred to as Hutchinson’s trace
estimator [27]. We thus substitute this expectation representa-
tion with the Monte Carlo estimator, so that Tr[u�∇2Vθu] ≈
1
m

∑m
i=1(∇(η�

i ∇Vθ ))�uu�ηi with m noise vectors during our
training process. This approach reduces the computational
cost from O(d2) to O(md ), improving the efficiency of the
AIN synchrony in the higher dimensional task, especially
for m � d .

Except for considering the ground-truth variational dy-
namics (2), we can also apply the above-established machine
learning framework to the traditional linearization equa-
tions dξ/dt = [In ⊗ ∇M0 + A ⊗ ∇M1]ξ, which find exten-
sive application in the master stability function theories for
realizing CS [28,29] (see SM-S3). In addition, as suggested by
the stabilization theory, our framework can also be extended
to the nonautonomous dynamics, such as the coupling matrix
A = A(t ) varying temporally (see SM-S4 and SM-S6.4 [22]).

To proceed, we numerically validate the efficacy and flex-
ibility of the AIN synchrony using several representative
physical models under the realistic constraints.

AIN synchrony for driving-response Lorenz systems.
We investigate the unidirectionally coupled Lorenz
systems, where the driving and the response systems,
respectively, are dx1/dt = f (x1, σ, ρ, β ) and dx2 =
f (x2, σ, ρ, β ) + u(ξ, x1)dBt with xi = (xi, yi, zi )�, ξ =
(ξ1, ξ2, ξ3)� = (x1 − x2, y1 − y2, z1 − z2)�, f (xi, σ, ρ, β ) =
[σ (yi − xi ), ρxi − yi − xizi, xiyi − βzi]�, and i = 1, 2. The
Lorenz system is characterized by three parameters σ, ρ, β,
being proportional to the Prandtl number, the Rayleigh
number, and certain physical dimensions of the layer itself,
respectively, which are all experimentally adjustable [30].
In addition, we apply the pinning control on this system by
partially controlling some variables of the system. As shown
in Fig. 1(a), we explore both the parameters control and the
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FIG. 1. Synchronizing the driving-response Lorenz systems.
(a) Sketch on different noise controlling modes by the parameter
regulation and by the external forces. (b) The success rate of seven
combinations of the regulated parameters, compared with the pin-
ning controller AINy. The dots in the left seven bars represent the
success rate with umax ∈ {1.0, 1.2, 1.4, 1.6, 1.8, 2.0}, where umax =
maxx ‖u(x)‖∞. (c) The MSE between the driving and the response
systems under different controllers with the shaded region represent-
ing the variance. (d) The synchronization error (blue circle) at time
20 and the energy cost (orange square) in the controlling process
against the strength of the linear controller. The horizontal dashed
lines represent the corresponding values of the learned controller
AINy. (e) The stability (left bar) of the controlled trajectories and the
convexity (right bar) of the learned V function of linear controllers
compared with that of AINy. (f) The projection of VAINy − VLC10 to a
random selected 2D section. (g) The convexity (blue circle) of the V
function for the AINy and the energy cost (orange square) over the
training process, and their Pearson correlation coefficient ρ.

pinning control for synchronizing the response system to
the attractor produced by the driving Lorenz system. First,
we study whether the CS of the driving-response systems is
achieved by solely regulating the parameters of the response
system using noise. For instance, we examine the impact
of adjusting the Prandtl number with noise, employing
u = [δσ (ξ)(y2 − x2), 0, 0]� with δσ (0) = 0 as the controller.
We employ a loss function after training and the temporal
average of the mean square error (MSE) between the driving
system and the coupled response system as indicators to
evaluate the controller performance. We consider totally
seven different combinations of the controlled parameters,
including �1 = {σ }, �2 = {ρ}, �3 = {β}, �4 = {σ, ρ},
�5 = {σ, β}, �6 = {ρ, β}, and �7 = {σ, ρ, β}, with a
requirement for the scale of the learned noise umax to be
less than 2 for realizing feasible simulations. In Fig. 1(b),
we compare �1:7 with another pinning controller in the rate
of successfully synchronizing the driving-response systems
over 50 samples. The results indicate that the parameter β

dominates the behavior of the Lorenz system among all these
three parameters. Moreover, the findings imply that parameter
regulation with noise is not always as effective as external
forces, which agrees with the intuition.

Next, we delve into the intricacies of the task of pinning
control. Initially, our focus centers on the pinning controllers
that act on the nodes x2 and y2, denoted by AINx and AINy,
respectively. As shown in Fig. 1(c), AINy succeeds in this task

while AINx does not; this implies that node y exerts greater
influence on the whole dynamics compared to the node x in
the Lorenz system in the presence of the noise controller.
Additionally, we identify the pinning controller on both x and
z, denoted by AINxz, as efficacious. Furthermore, we com-
pare the AINy with the stochastic linear controllers LCk, i.e.,
u = [0, k(ξ1 + ξ2 + ξ3), 0]�, that only acts on y2 using differ-
ent strengths k (= 1, . . . , 15), in terms of the MSE and the
energy cost [we also try the linear controller u = (0, kξ2, 0)�,
but it fails to synchronize the system for any strength k;
see Sec. S6.1 of SM for more detailed discussion [22]].
Figure 1(d) reveals that the AINy is significantly more en-
ergy saving than the linear LCk for k � 6 that successfully
synchronizes the driving-response systems, hinting an implicit
energy regularization in the AIN synchrony. To gain more
insights into the observed implicit energy regularization, we
focus on the linear controller LCk and train Vθk for each
LCk within our framework. We consider the spatial convex-
ity Eξ[ 1

nd

∑nd
i=1 λi(∇2V )] defined by the eigenvalues of the

Hessian matrix of V . Numerical comparisons of the spatial
convexity of Vθk and VθAINy are presented in Fig. 1(e), reveal-
ing that the VθAINy function of the AINy boasts the greatest
convexity among successful controllers. This finding is fur-
ther demonstrated in Fig. 1(f), where the random projection
onto the 2D surface of the section of VθAINy − VθLC10 exhibits a
pronounced steepness. Figure 1(g) shows the anticorrelation
between the energy cost and the convexity of V in the training
process, which validates the implicit energy regularization
from the numerical perspective. Furthermore, the following
theorem elucidates the mechanism of these findings.

Theorem 3. Consider the controlled dynamics in (2)
with the AIN synchrony controller uφ learned accord-
ing to the stability condition in Eq. (3). Then, the loss
function in the training process is equivalent to the
control energy in the control process by norm, E =
E

∫ T
0 ‖u�

φ (x(t ), s(t ))Quφ(x(t ), s(t ))‖dt, where Q is the vari-
ance matrix of the Brownian motion.

Consequently, as we minimize the loss function, the control
energy is optimized as well, which thus results in the implicit
energy regularization. More detailed demonstrations are in-
cluded in SM-S5 [22].

AIN synchrony for subcritical Landau-Stuart oscillator.
Consider coupled Landau-Stuart oscillators governed by
the complex-valued differential equations: Ż j = (β + iγ +
μ|Zj |2)Zj + ∑n

k=1 AjkZk for Zj ∈ C, j = 1, . . . , n, β < 0,
and μ > 0. Here, the self-dynamics undergoing the subcritical
Andronov-Hopf bifurcation possesses an unstable periodic
orbit (UPO) [31]. We focus on synchronizing the coupled
oscillators to the UPO under several typical communication
constraints, e.g., (i) all oscillators communicate, (ii) half of the
oscillators communicate, and (iii) none of the oscillators com-
municate (resulting in a decentralized controller), as shown in
Fig. 2(a).

We examine the impact of communication constraints on
the energy cost, the success rate of stabilization and syn-
chronization, the transient time from initial values to the
synchronization manifold on the UPO, and the stability of the
controllers. We utilize the order parameter R1 = 1

n

∑n
j=1 eiθ j

as the synchronization indicator, where θ j is the argument of
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FIG. 2. Synchronizing the subcritical Landau-Stuart oscillators
under different communication constraints. (a) Illustration of the CS
task. (b) From left to right are bar plots of energy cost, succeeding
rate, transient time τ0.1, and stability at three different communication
modes for 50 sample trajectories and the mean first passage time τ0.1

of the controlled process. All the indices are normalized to [0, 1].
(c) Energy cost and (d) success indicator R with time, where the
vertical lines represent the corresponding values of τ0.1.

the complex variable Zj . Additionally, we employ the distance
R2 = 1

n

∑n
j=1 |Zj | between the UPO and the controlled orbits

as the stabilization indicator. We set R = (R1 + R2)/2 as the
success indicator and the transient time is assessed by the em-
pirical expectation of the stopping time τp = inf{t � 0 : 1 −
|R(t )| = p} ∨ inf{t � 0 : |R(t )| = 1 − p} over the trajectories
with a predefined accuracy p. The stability of the controllers
is captured by the reciprocal empirical average of the standard
variance of the trajectories. The results are comprehensively
presented in Fig. 2(b). Although there is no significant differ-
ence in success rate and stability, we observed an interesting
trade-off phenomenon that the energy cost increases with
the decreased communication capability while the transient
time decreases. This property is further demonstrated in
Figs. 2(c) and 2(d). The reason is that full communication
optimally allocates control resources, achieving the task with
smaller control costs. As a result, the reduced energy leads
to the prolonged transient time since they have significant
anticorrelation.

AIN synchrony for networked neuronal dynamics. Fi-
nally, we synchronize the higher-dimensional networked
dynamics using the coupled FitzHugh-Nagumo (FHN)
neuronal oscillators with two modes of artificial noise,
including direct driving force on each node and per-
turbing the coupling structure. The networked neuronal
dynamics are described by dvi/dt = (vi − v3

i /3 − wi ) +∑n
j=1 Li j/(1 + e−10v j ) and dwi/dt = 0.1(vi + 0.7 − 0.8wi ),

where (Li j )n×n = (δi j
∑n

j=1 Ai j − Ai j )n×n is the Laplacian
matrix of coupling matrix A = (Ai j )n×n [32–34]. To quantify
the synchronization of all the FHN oscillators, we employ the
order parameter introduced in [35] as R = 〈M2〉−〈M〉2

1
N

∑N
i=1(〈v2

i 〉−〈vi〉2 )
,

where M = 1
N

∑N
i=1 vi is the mean field and 〈·〉 represents

the time average. As such, R = 0 corresponds to the asyn-
chronous regime, while R = 1 indicates the CS state. For the
external noise forces, we compare the effects of the common
noise and the uncorrelated noise under different noise inten-
sities in achieving the CS; we employ the Baydry, a realistic
foodweb network [36] with n = 128. As shown in Fig. 3(a),

FIG. 3. Synchronizing the coupled FitzHigh-Nagumo oscillators
on four respective networks. (a) The order parameter R in the time
interval [150,200] under external stochastic forces at three different
types of noise intensities: low (umax = 1.0), middle (umax = 1.5),
and high (umax = 2.0), for 10 realizations in each type of noise.
Error bars indicate the variance. The bars corresponding to no noise,
common noise, and uncorrelated noise are shown from left to right in
order. (b) R150:200 of the noise perturbed system using the respective
networks over the weight perturbed strength δAmax ∈ [0, 2]. (c) The
in-degree distribution of the four networks, where the inset panel
shows the difference among the peaks and the flatnesses of these
networks. (d)–(g) The heat maps of the learned optimal weighted
perturbation structure.

common noise gets a larger order parameter while uncorre-
lated noise exhibits smaller variance over multiple realizations
in all noise scales, forming an interesting trade-off between
performance and robustness. In the latter control mode, we
perturb the structure with δA driven by the Brownian motion
(see Table S1 in SM-S1 for the detailed formulation [22]).
We investigate the influence of network structure using four
coupling matrices, viz., the Baydry, the directed Erdös and
Rényi (ER) network, and two scale-free networks (denoted by
SF1 and SF2) [37]. Figure 3(b) shows the order parameter of
the noise-perturbed dynamics under four networks against the
perturbation intensity δAmax = ‖δA‖∞. The CS performance
of the realistic network significantly exceeds the others in the
low intensity. As the intensity increases, the ER network out-
performs the Baydry foodweb slightly, and both outperform
SF1, with SF1 surpassing SF2. To uncover the mechanism be-
hind this phenomenon, we analyze the in-degree distribution
plotted in Fig. 3(c). We find that the distribution of the Baydry
foodweb is the most flat, having a heavy tail, while the peaks
of the distributions ER, SF1, and SF2 tend towards zero. This
indicates that the impact of noise decreases gradually as the
homogeneity of the networks grows, as further demonstrated
in Figs. 3(d)–3(g).

Conclusion. We have conceived and formulated a machine
learning framework to artificially generate noise controllers
for synchronizing both general chaotic systems and limit-
cycle systems. Harnessing the commutation property of the
trace estimator, our framework scales to any higher di-
mensional systems with a linear-order computational cost.
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We applied our AIN synchrony framework to successfully
synchronize several representative systems under different
constraints conforming to realistic scenarios. The results re-
veal that the machine-learning-coined noise has an implicit
energy regularization phenomenon, inducing the energy-
saving synchrony. Furthermore, a further generalization of our
current framework is anticipated to the situation where a more
general form of noise [38] is taken into account.
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