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Many natural or human-made systems encompassing local reactions and diffusion processes exhibit spatially
distributed patterns of some relevant dynamical variable. These interactions, through self-organization and
critical phenomena, give rise to power-law distributions, where emergent patterns and structures become visible
across vastly different scales. Recent observations reveal power-law distributions in the spatial organization
of, e.g., tree clusters and forest patch sizes. Crucially, these patterns do not follow a spatially periodic order
but rather a statistical one. Unlike the spatially periodic patterns elucidated by the Turing mechanism, the
statistical order of these particular vegetation patterns suggests an incomplete understanding of the underlying
mechanisms. Here, we present a self-segregation mechanism, driving the emergence of power-law scalings
in pattern-forming systems. The model incorporates an Allee-logistic reaction term, responsible for the local
growth, and a nonlinear diffusion process accounting for positive interactions and limited resources. According
to a self-organized criticality (SOC) principle, after an initial decrease, the system mass reaches an analytically
predictable threshold, beyond which it self-segregates into distinct clusters, due to local positive interactions that
promote cooperation. Numerical investigations show that the distribution of cluster sizes obeys a power law with
an exponential cutoff.
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Introduction. Nature exhibits various forms and shapes of
order, spanning from the collective flight of birds in flocks [1]
to the synchronized flashing of fireflies [2]. Self-organization
has long been recognized as the fundamental principle driving
the emergence of such captivating patterns [3–5]. Exploring
how these collective behaviors and patterns arise from the
interactions among the system’s basic units has been a vi-
brant research field for a long time. Notably, the past two
decades have witnessed a growing interest in understanding
the formation of vegetation patterns in semiarid ecosystems
[6–16] where, even in harsh environmental conditions, plants
manage to survive by clustering together. In the following,
we shall consider vegetation patterning as a prototype system,
primarily focusing on the analysis within a broader context.
In particular, we focus on the so-called irregular patterns
[7], which lack apparent spatial order. By considering the
feedback between plant biomass and resources (e.g., water),
Klausmeier proposed a reaction-diffusion model capable of
reproducing the emergence of spatially regular patterns, such
as stripes of vegetation on hillslopes, by following a Turing-
like instability [7,11]. This model also predicts the emergence
of irregular patterns; it was suggested that they arise from
the amplification of small topographic variations or quenched
disorder of some other nature [17,18]. While regular pat-
terns, understood through Turing-like instabilities [6,9,10,19],
provide a foundational context with their characteristic scale
length and spatial order, our emphasis shifts toward irreg-
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ular patterns. These consist of clusters with diverse sizes,
distributed seemingly at random and interspersed with bare
areas [7], representing a more recent area of investigation.
Despite apparent disorganization at smaller scales, irregular
patterns reveal an emergent global order. For instance, studies
across various geographical regions have demonstrated that
cluster size distributions in these patterns exhibit a power-law
behavior, often with an exponential cutoff [8,12,13,20], high-
lighting the lack of complete understanding of the formation
of irregular patterns. Differently from Klausmeier’s approach,
the organization of irregular patterns here is not affected by
the nonuniformity of the spatial support, but rather by the
positive feedback between plants and the finite size effects.

In this work, we introduce a self-segregation process re-
lying on self-organized criticality (SOC) [21]. The latter has
proved successful in explaining emergent phenomena char-
acterized by power-law scaling in various scenarios, such as
avalanches in the sand-pile model [22], forest-fire dynamics
[23], the spread of infections in epidemics [24], or in trop-
ical geometry [25]. SOC models are distinguished by their
critical state, wherein system dynamics reach a critical point
as a specific dynamical variable, such as mass [22] or en-
ergy [26], surpasses a certain threshold, instead of relying on
fine tuning of some model parameter. By considering funda-
mental principles that describe individual efforts to survive
against hostile (environmental) factors, as well as their disper-
sal in the spatial domain while considering limited resources
and cooperation, we derive a reaction-diffusion equation that
governs the temporal evolution of density in the spatial do-
main. Notably, the deterministic reaction-diffusion process
that we propose exhibits a self-organized criticality with the
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emergence of power-law scalings at the critical point. To
address the challenges of survival in a harsh environment,
we utilize a modified logistic equation with an Allee effect
[27,28]. The latter models the fact that a species can only
persist if its local population exceeds a specific threshold,
otherwise leading to extinction. Notably, the nonlinear diffu-
sion model developed in this study is reminiscent of earlier
nonlinear random walk processes introduced by the authors
in the case of network structures [29–32] and where it has
been shown that heterogeneity and social affinity lead to
self-segregation, with individuals clustering in high-degree
nodes, leaving the lower-degree nodes empty. In contrast,
the present study shifts focus to continuous spatial domains;
moreover, we emphasize how asymmetric cooperation among
neighboring individuals helps to surpass the Allee threshold,
by fostering the emergence of clusters of occupied territories
interspersed by vacant areas. Analysis of cluster size distribu-
tions reveals a power-law behavior with an exponential cutoff
at larger sizes.

Individual-based model and mean-field limit. We start by
considering the spatial domain R, where the interactions be-
tween agents occur, to be a two-dimensional square support
of unit length with periodic boundary conditions divided into
� = L × L spatial compartments or squared patches of equal
area, labeled vi for i = 1, · · · ,�. For simplicity, we assume
each patch contains the same limited amount of generic re-
sources, which sets the maximal number N of individuals
the patch can host simultaneously. The number of individuals
within patch vi at time t is denoted by 0 � ni(t ) � N, and thus
N − ni(t ) quantifies the vacancies, i.e., the additional number
of individuals the patch vi might host. The stochastic nature
of the processes at play can be modeled by using the master
equation

dP(n, t )

dt
=

∑
n′ �=n

T(n|n′)P(n′, t ) − T(n′|n)P(n, t ), (1)

which provides a detailed probabilistic description of the dy-
namics starting from the microscopic setting. Here n(t ) =
(n1(t ), n2(t ), · · · , n�(t )) is the state vector and P(n, t ) is the
probability that the system will be in such a state at time t . Fur-
thermore, T(n′|n) denotes the transition probability, per time
unit, from state n to state n′ and the summation in Eq. (1) ex-
tends over all the states different from n. We will assume that
individuals interact with each other both within each patch and
between adjacent ones. The dynamics at a purely local level
will capture the natural death process for which an agent will
be removed from the ith patch, Xi + Ei

r1−→ 2Ei, where Xi, Ei,
and r1 denote a single individual, a single vacancy, and death
rate, respectively. On the other side, the birth process of an
agent in any patch i is constrained by a strong Allee effect
[28], i.e., 2Xi + Ei

r2−→ 3Xi, with a birth rate r2 > r1 to allow
survivability. The finite carrying capacity encapsulates not
simply limited resources but all other possible factors with a
negative impact on the growth and survivability of the species,
such as the presence of predators, intra or interspecies com-
petition, lack of potential mating partners and so on, broadly
known as the Allee effect [27,28,33–39]. In conclusion, the
dynamics at the level of patch i will be described by the

following transition rates:

T (ni − 1|ni ) = r1

�

ni

N

(
1 − ni

N

)
, (2a)

T (ni + 1|ni ) = r2

�

ni

N

ni − 1

N

(
1 − ni

N

)
, (2b)

for the death and birth dynamics, respectively.
On the other side, the individuals are allowed to interact

with each other at the interpatch level, i.e., Xi + aXj + Ej
δ−→

Ei + 2Xj with a > 0, where the previous reaction, occurring
with a rate δ, models the process by which a plant sends its
seed to a neighboring patch before dying. Such an interaction
is the key point of this paper and describes the asymmet-
ric mutualistic interaction between individuals of different
patches while taking into account the finite carrying capacity
of each site [29,30,40]. Provided vi and v j are neighbor sites,
the transition from vi to v j reads

T (ni − 1, n j + 1|ni, n j ) = δ

k�

ni

N

(n j

N

)a(
1 − n j

N

)
, (3)

with k the number of neighbors per site, i.e., k = 4 in the
present setting. The dispersion of the vegetation in the spatial
domain will thus act as a trade-off between the positive inter-
actions between individuals and the finite carrying capacity.
Studies have shown that positive spatial feedbacks, such as
improved water retention under tree canopies, support tree
growth, and survival, yet the ecosystem’s limited resources,
dictated by rainfall and nutrients, keep these dynamics under
control, avoiding overgrowth or desertification [41–45]. In the
following, we will assume a > 1. This requirement implies an
asymmetry in the interaction between individuals of adjacent
sites, i.e., they will perceive a higher number of individuals
than those available on the hosting site. Inspired by the eco-
logical literature [46], we will refer to it as size-asymmetric
interaction.

Starting from the master equation (1) we will look for a
mean-field formalism, see the SM [47]. Let us here recall that
the standard approach is to consider the time evolution of the
density of agents 〈ni〉/N within the site vi in the limit N →
+∞ and then take the continuum limit in which the number of
mesh points goes to infinity, i.e., ρ = limN→+∞,L→+∞ 〈ni〉/N .
This procedure leads to the following partial differential equa-
tion for the time evolution of species density ρ ≡ ρ(x, t ) at
point x = (x, y) and time t :

∂ρ

∂t
= r f (ρ) + D [g(ρ)�ρ − ρ�g(ρ)]. (4)

Here D > 0 represents the diffusion coefficient, �= ∂2
x + ∂2

y
the Laplace operator, f (ρ) = ρ(1 − ρ)(ρ − A) the Allee re-
action term with r > 0 the growth rate and 0 < A < 1 the
Allee coefficient [48]. The function g(ρ) = ρa(1 − ρ) cap-
tures in a compact form the nonlinear interacting terms
between individuals of neighbor sites. Let us observe that if
r = 0 the total mass is conserved (see the SM [47]).

Self-segregation process as a self-organized criticality
mechanism. As a preview of our findings, we will establish
that irregular patterns arise when the total mass of the system
reaches a critical value, a characterizing feature of SOC pro-
cesses [21]. Let us first observe that a uniformly distributed
density ρ(x, t ) = β with β = 0, A, 1 represents a stationary
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solution of Eq. (4). The stability of these states can be deter-
mined by analyzing the linear evolution of the perturbation
δρ(x, t ), governed by the equation

∂δρ

∂t
= f ′(β )δρ + D[g(β ) − βg′(β )]�δρ. (5)

It can be readily verified that f ′(β ) < 0 when β = 0, 1 and
f ′(β ) > 0 when β = A, indicating the bistable nature of
the Allee model. By seeking solutions of the form δρ ∼∑

k eλkt eik·x, we obtain the dispersion relation

λk = f ′(β ) − D[g(β ) − βg′(β )]|k|2, (6)

where |k|2 = k2
1 + k2

2 is the square of the module of the vector
k. For the fixed point β = A, there will always exist a finite
interval (e.g., near the origin where |k|2 is small enough) for
which λk > 0, proving its unstable behavior. Conversely, the
other homogeneous fixed points β = 0, 1 are stable as long
as the effective diffusion coefficient Deff = D[g(β ) − βg′(β )]
is non-negative, a condition that holds true but that does not
contribute to pattern formation because they will represent
global extinction or a fully occupied domain. Furthermore,
the dynamics stemming from the unstable state β = A could
not guarantee the emergence of any nontrivial spatial pattern
organized into separate clusters as the system might converge
to the fully occupied or empty state. Equation (4) displays
other stationary solutions, whose existence and stability are
addressed in the following, by adopting an approach based
on slow-fast dynamics. Specifically, we consider the limit
r/D → 0, where the fast dynamics is solely governed by the
nonlinear diffusion process. Let us observe that this separation
of timescales is in line with SOC [21]. In general, diffusion
processes tend to homogenize the spatial distribution of mass.
However, as previously mentioned, under certain conditions,
the effective diffusion coefficient can become negative (Deff <

0). Negative diffusion exhibits the opposite effect of homoge-
nization, leading to the accumulation and localization of mass
within the spatial domain [49,50]. Motivated by this insight,
we first note that, in contrast to the full reaction-diffusion
equation, the nonlinear diffusion operator vanishes for every
uniform state ρ(x) = β > 0. At this stage, we can ascertain
the critical value βc of the average node density β below
which the equilibrium ρ(x) = β undergoes instability due to
diffusion. It can be easily shown (see the SM [47]), that this
critical value is given by

βc = a − 1

a
. (7)

This formula justifies the choice of a > 1 for heterogeneous
patterns to develop, i.e., the asymmetry in the interactions
along with the cooperation between individuals of adjacent
sites allows for the self-segregation to occur; indeed if a < 1,
then βc < 0 < β, returning ρ(x) = β to be a stable homoge-
neous solution. Any uniform state ρ(x) = β < βc becomes
unstable, while it remains stable otherwise. Upon instability,
due to mass conservation, a redistribution of mass is expected
to occur. The latter takes place in the form of clusters, hereby
referred to as connected subregions of homogeneous mass,
separated by empty patches. The size of the cluster is then
defined as the the contiguous area covered, numerically cal-
culated as the number of connected patches it contains. For

FIG. 1. (a) Site densities evolve in a square lattice, starting from
uniform densities in [0.5,0.6]. As densities cross βc = 0.5, self-
segregation occurs, with some reaching carrying capacity (pink,
ρ = 1) and others (green) converging to ρ = 0. Average node den-
sity evolution is shown by the dashed black line. (b) Final average
density, β∞, versus initial density, β0, is depicted with red points,
and the fraction of nodes above the Allee constant is represented by
a black line for comparison. Shaded red region indicates survivability
gain from self-organized criticality (SOC). Blue dashed line and
shaded region show stochastic system superiority over determinis-
tic (averaged over ten Gillespie algorithm realizations). Parameters:
A = 0.6, r = 1/6, D = 10, a = 2. Spatial mesh: 500 × 500 points.
Initial conditions: [β0 − 0.05, β0 + 0.05], rescaled for initial average
density β0.

a cluster Cs to be stable, the local density must satisfy βloc =
1

|Cs|
∫
Cs

ρ(x)dx > βc, where |Cs| is the area of the cluster Cs.
Once the (fast) diffusion creates a precursor of what will be-
come a stable uniform cluster, the (slow) reaction comes into
play by maximizing the cluster density to unity if βloc > A,

or reducing it to zero otherwise [51]. This approach uncovers
the presence of heterogeneous (stable) stationary solutions. A
more comprehensive and rigorous proof is provided in the
SM [47]. This initial finding unveils a fundamental insight:
the stability of a specific state crucially relies on the total
mass of the state itself. This property aligns perfectly with the
concept of self-organized criticality (SOC), which pertains to
the inherent self-organization of a system when it reaches a
critical threshold of a globally defining observable, such as
mass or energy [22,26].

In Fig. 1(a), we consider a slow-fast dynamics setting,
i.e., r/D 
 1, where initially, the total mass is randomly
distributed throughout the spatial domain, yet always below
the Allee threshold and above the critical value βc. The strong
diffusion tends to initially homogenize the mass, which de-
creases since it remains below the survivability threshold.
As expected in SOC dynamics, when the global observ-
able (density in our case) reaches the critical value βc, a
change of behavior occurs, leading to an overall increase in
mass across most lattice sites. The remarkable and conter-
intuitive aspect is that the species manage to survive in the
stationary state, i.e., limt→+∞ ρi(t ) = 1 for some nodes i,
although the initial density at each site is below the Allee
parameter, as confirmed by the early trend. As the average
density decreases further, a new phenomenon emerges: self-
segregation. Driven by the negative value of Deff , the mass
rapidly accumulates and localizes in different subregions of
the domain R. If the densities of the new clusters surpass
both the critical values of self-segregation and Allee (βloc >

βc, A), the species will survive in those particular clusters and
eventually reach a full carrying capacity βloc = 1, as illus-
trated in Fig. 1(a). In the SM [47] we also give evidence of
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FIG. 2. (a) Vegetation patterns for two average initial site density values: (upper) β0 = 0.445 and (lower) β0 = 0.455. (b) (Upper)
Cumulative distribution of cluster sizes, each curve for a distinct β0 (results from ten configurations). Data align with a power-law distribution
(red dashed curve) with an exponential cutoff. (Lower) Data collapse onto a universal curve by plotting sαP (S � s) against s|β̂c − β0|γ .
Deviations in the black curve from exponential fitting stem from finite size effects, manifesting at large s. Initial node densities were in
[β0 − 0.05, β0 + 0.05], rescaled for initial average density β0. Simulations on a 500 × 500 square lattice, parameters: a = 2, A = 1/6, r = 0.1,
D = 10.

intermittency, a characterizing feature of SOC models. The
benefit of self-segregation for individual survivability is sys-
tematically investigated in Fig. 1(b), where various initial
density values β0 = ∫

R ρ(x, 0)dx are considered. In all cases,
the species survive beyond intuitive expectations. Particularly,
in the interval β ∈ [βc, A], the diffusion has a homogenizing
effect by reducing the initial perturbation, thereby slowing
down the fast dynamics of the diffusion component. Conse-
quently, the final equilibrium density is lower than the initial
density. However, this outcome is an artifact of the determin-
istic mean-field approach utilized here. In a real scenario, the
presence of external or demographic noise acts as a permanent
perturbation (forcing) term, preventing a substantial decrease
in the final density compared to the critical value βc. Stochas-
tic simulations, performed using the Gillespie algorithm, are
depicted by the blue dashed line (and corresponding shaded
blue region) in Fig. 1(b), thereby substantiating our claim.

Power-law distribution in self-segregation patterns. SOC
processes are renowned for the presence of power-law dis-
tributions of some relevant variables. This is the case, for
instance, of the sandpile model where the size of generated
avalanches has a scale-free distribution [22]. Based on the
intuition that in the present model the relevant variable will
be the cluster size, we have conducted a significant number of
independent simulations of Eq. (4) with various initial values
for the density β0, closer and closer to the critical value of the
system for which patterns are expected to emerge. In the slow-
fast setting, this critical value is anticipated to be close to βc.
Figure 2, panels (a1) and (a2), show patterns with clusters of
varying sizes for two different values of the initial density β0.
In Fig. 2(b1) we show the cumulative distribution P (S � s) of

the size S of the stationary clusters resulting from Eq. (4). It
can readily be observed that they fit very well to a power-law
function with almost the same critical exponent α and are
characterized by different values of exponential cutoffs that
depend on the initial density β0. In summary

P (S � s) = κs−αes ξ (β0 ), (8)

where κ is a normalization constant and the function ξ (β0)
vanishes when β0 equals β̂c, the value for which a perfect
power-law relation is observed. Inspired by similar scenarios
as in the Ising model [52] or the percolation processes [53], we
set ξ (β0)= −C|β̂c − β0|γ , with C > 0 being an appropriately
chosen scaling constant, leading to a second exponent γ > 0
which describes the transition to a genuine power-law and thus
the independence of the exponential cutoff from the size of the
system. In Fig. 2(b1) we have shown with a red dashed line
and colored solid lines, respectively, for the power-law and the
exponential cutoff, the best fit to the empirical critical expo-
nents α ≈ 0.9 and γ ≈ 2.1. Let us observe that both fits agree
well with the numerical data except for small and large values
of s due to the finite resolution of the numerical simulations.
Since the latter two parameters are independent of the values
of the initial system mass suggests that our model belongs
to a universality class, typical of systems where power-law
distributions emerge [52]. A compact way to illustrate this
is by plotting sαP (S � s) as a function of s |β̂c − β0|γ ; the
different curves now collapse onto a single one, known in
the literature as the universal curve, shown in panel (b2). In
conclusion, we assert that while the universal power-law dis-
tribution of patch sizes is solely driven by the self-segregation
process (see the SM [47]), the reaction component is vital

L012201-4



EMERGENCE OF POWER-LAW DISTRIBUTIONS IN … PHYSICAL REVIEW E 110, L012201 (2024)

for accurately describing the resilience of individuals in harsh
conditions.

Conclusions. In this study, we presented a novel dynamical
model that addresses the emergence of spatially extended
patterns, characterized by a power-law distribution of spatial
cluster sizes. By considering positive interactions between
individuals and accounting for limited resources, we devel-
oped a self-consistent mathematical formalism. The model
encompasses a single-species evolution equation with a local
reaction term based on the Allee-logistic function. To capture
the spatial dynamics, we introduced a nonlinear diffusion term
that models the phenomenon of self-segregation. The latter
process assumes a critical role in initiating pattern formation
and establishing a mechanism of self-organized criticality.
Within this framework, we observe an initial decrease in mass,
driven by insufficient resource availability, until a threshold,

that can be analytically predicted, is reached. Beyond this
threshold, we observe the spatial organization of mass into
distinct clusters characterized by higher densities, thus foster-
ing cooperative behaviors among individuals. Consequently,
clusters with densities surpassing the Allee threshold shape
the final pattern. Numerical investigations confirm that the
distribution of cluster sizes follows a power-law function with
an exponential cutoff.
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