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The quicker freezing of hotter water, than a colder sample, when quenched to a common lower temperature,
is referred to as the Mpemba effect (ME). While this counter-intuitive fact remains a surprize since long,
efforts have begun to identify similar effect in other systems. We investigate the ME in a rather general context
concerning magnetic phase transitions. From Monte Carlo simulations of model systems, viz., the Ising model
and the q-state Potts model, with varying range of interaction and space dimension, we assert that hotter
paramagnets undergo ferromagnetic ordering faster than the colder ones. This conclusion we have arrived at
following the analyses of the simulation results on decay of energy and growth in ordering following quenches
from different starting temperatures, to fixed final temperatures below the Curie points. The general observation,
in all the considered models, without any element of frustration, is a crucial and important fact of our study.
Furthermore, we have obtained an important scaling picture, on the strength of the effect, with respect to the
variation in spatial correlation in the initial states. This behavior appears true irrespective of the nature of
order-parameter fluctuation and even order of transition. The observations are expected to be relevant to the
understanding of ME in a rather general class of systems.
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If two bodies of liquid water, differing in temperature, are
placed inside a refrigerator, operating at a subzero temperature
(<0◦ C), the most common prediction will be that the colder
one will freeze faster. The report by Mpemba and Osborne [1],
however, contradicts this expectation. There is a surge [1–32]
in interest in understanding this counterintuitive fact, which
was also mentioned by Aristotle [33], now referred to as
the Mpemba effect (ME). Recently, questions relevant to the
ME are posed in more general ways [2]: When two samples
of the same material, from two different temperatures, are
quenched to a common lower temperature, which one will
reach the new equilibrium quicker? If there exists a point of
phase transition, between the final and the initial tempera-
tures, for which starting temperature will the transformation
occur earlier? Experimental studies of colloidal systems [10],
clathrate hydrates [11], carbon nanotube resonators [12], and
magnetic alloys [13] show the presence of ME. In the theoret-
ical literature, the studied varieties [34–37] include granular
matter [14–17], spin glass [18], and few other systems of
magnetic origin [19–22]. Nevertheless, the underlying rea-
son(s) remains a puzzle. The pertaining new questions are
fundamental from several theoretical angles. Answers to these
may be exploited to much practical advantage [28].

Nucleation is strongly influenced by metastability [38], for
which the choices of the final temperature (Tf ), the type and
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the volume fraction of impurity, etc., matter. How the role of
the starting temperature (Ts) enters the picture is an impor-
tant new fundamental issue. Is it that the above mentioned
metastable aspect gets affected by the nature of the initial
thermodynamic state in an unexpected order? With in-built
frustration, some of the works perhaps set the objective of
exploring this angle. Interestingly, adding to the puzzle, even
the standard ferromagnetic Ising model, without any impurity,
is seen to exhibit the effect [21]. To understand the reason, it
is important to study the model in other situations, e.g., in
different space dimensions (d) and with varying range of in-
teractions. Crucially, it should be checked what are the effects
of the order of transitions [2,22,29]. Note that, for water, the
transition is of first order character, while for the Ising model
the problem was designed [21] to capture the influence of a
second order transition. Here we chose the q-state Potts model
[37,39], for which the order of transition varies with q.

Interestingly, we observe the ME in all the above cases.
There exists similar experimental report [13], though in the
latter magnetic case, primary reason was related to glassy
ingredients. This and other works make our finding more
interesting and the effect more general. Note that none of
our systems possess frustration or glassy features. Further-
more, we observe interesting scaling with respect to spatial
correlation in the initial states. This is valid not only for the
simple variation of q, but also with the change of the order
of transition, space dimension, and critical fluctuation. These
results are of much experimental relevance and can potentially
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provide crucial insights to the interpretation of ME in a broad
variety of systems.

As already mentioned, here we study a class of discrete
spin systems with pure ferromagnetic interactions. We investi-
gate the Ising model [37] in different dimensions, having short
and long-range intersite potentials [40]. Furthermore, gener-
alization of this two-component system into multicomponent
ones have also been considered. In general, the Hamilto-
nian can be written as H = −∑

i( �=) j J (ri j )δSi,S j ; Si, S j =
1, 2, ..., q; ri j being the separation between lattice sites i and
j. For q = 2, this Potts model Hamiltonian corresponds to
the Ising model, differing only by a factor of two. The latter,
by correcting for the factor, we have studied in d = 2 and
3, with nearest neighbor (NN) interactions, by setting the
interaction strength J to unity, on square and simple cubic
lattices, respectively. In d = 2, we have also presented results
for the long-range (LR) version of the Ising model with [40]
J (ri j ) = 1/r2+σ

i j , for σ = 0.8, again using the square lattice.
Most extensive results are obtained for the Potts model, q
varying between two and ten. The critical temperature for this
model has the q-dependence [37] Tc = J/[kB ln(1 + √

q)], kB

being the Boltzmann constant, to be set to unity. Depending on
the value of q, the order of transition can alter. For q > 4 the
model loses its “critical” character [39], the transition being of
first order. For the Ising case, the values of Tc in d = 2 and 3
are � 2.269 J/kB and � 4.51 J/kB, respectively [37]. For the
long-range case we have used [41] Tc = 9.765 J/kB.

The kinetics of transition for instantaneous quenches, of
systems in periodic L × L boxes, like some other works
[18,21], from para to ferro regions, starting with equal frac-
tions of all spin states, are studied via Monte Carlo simulations
[37], with the Glauber spin-turn mechanism [37]. The prepa-
ration of the initial configurations near a Tc encounters critical
slowing down [37]. To avoid this, we have used cluster algo-
rithms. In the case of short-range Ising or Potts models, this
is done by implementing the Wolff algorithm [42], and for
the LR Ising model, we have used the Fukui-Todo algorithm
[41,43]. The presence of the correlated spatial fluctuations
in a system and its variation with temperature can be quan-
tified via the calculation of the structure factor: S(k, t ) =
〈ψk (t ) ψ−k (t )〉, ψk (t ) being the Fourier transform of the or-
der parameter [44] ψ (�r, t ) (= exp(i θ (�r)); θ = 2πn/q, n =
1, . . . , q). In the small wave number (k) regime [∈ (0, 0.4)
or shorter], for the short-range cases, S(k, t ) is described well
by the Ornstein-Zernike relation [45,46], S(k) = kB Ts χ/(1 +
k2 ξ 2), χ being the susceptibility and ξ the correlation length.
The average length, 	(t ), of the clusters of up or down spins,
during an evolution toward a ferromagnetic state, has been
estimated via the first moment of the domain size distribution
function [47], P(	d ), i.e., 	(t ) = ∫

P(	d , t )	d d	d , where 	d is
the distance between two consecutive domain interfaces along
a given direction. Unless mentioned, we used L = 256.

In Fig. 1 we depict how the choice of Ts, in the case
of the Potts model, can influence the structural features in
the initial configurations, for different values of q. For both
the considered cases, viz., q = 2 and 5, the configurations at
higher Ts [see the snapshots at the bottom of the columns in
(a) and (b)] appear random or structureless. With the decrease
of Ts, spatial correlations emerge. This is more clearly identi-
fiable in the case of q = 2 for which one expects the critical

FIG. 1. Typical equilibrium configurations, for q = 2 and 5 state
Potts models, are shown in (a) and (b) from different starting tem-
peratures Ts, located above the respective critical temperatures Tc.
(c) Plots of the correlation lengths, ξ , versus ε (= (Ts − Tc )/Tc), for
the same Potts models. For q = 2, ξ diverges as ε−ν , with ν = 1 (see
the solid line).

divergence [45,46] ξ ∼ ε−ν , with ν = 1. For a wide range of
ε (= |Ts − Tc|/Tc) such a behavior can be appreciated from
Fig. 1(c). For q = 5, the phase transition is of first order [39],
and we do not associate any exponent with the data set. The
enhancement in the value of ξ can be appreciated for this q
as well. In this case, the bending on the log-log scale over
an extended range can well be, in addition to the finite-size
effects, due to the first-order nature of the transition. Our
expectation is that for such high q the ME will be weaker. We
proceed with the objective of quantifying it and to investigate
if there exists any scaling rule [2] for arbitrary q that can also
comply with the other considered models.

We quench the systems from different [48] Ts to Tf =
0.5 Tc, for a large set of q values. In Fig. 2 we show results
obtained during evolutions following such quenches for the
5-state Potts model. In parts (a) and (b) we show the snap-
shots at different stages of evolutions for Ts = 0.9 and 1.1,
respectively. It is evident that the system from the higher Ts

reaches the final equilibrium faster. This comparative picture
is true not only for the chosen set of initial configurations: the
trend of faster approach to equilibrium stands correct for an
overwhelmingly large number of the combinations of starting
configurations. In part (c) we look at the decay of the average
energy (E ) of the systems during the relaxation processes.
Unlike certain other cases, see, e.g., Ref. [18], energy for the
considered models and protocol appears a monotonic func-
tion of time. Thus, comparisons of this quantity at early and
late enough times, for different Ts, should help appropriately
identify the ME. We have included results for a few Ts in
Fig. 2(c). Each of the data sets is presented after averaging
over 300 000 independent initial configurations. For clarity,
we have enlarged the early and late time behavior sepa-
rately, in the upper and lower panels, respectively. The orders
of appearances of the plots, in terms of Ts, are systematic
and opposite in the two panels. This implies that there are
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FIG. 2. Demonstration of relaxation in the 5-state Potts model,
following quenches to Tf = 0.5 Tc, from different Ts, starting with
equal fractions of different spin states. In (a) and (b) we show evo-
lution snapshots, taken at different times, in units of standard Monte
Carlo steps, for the systems initially at (a) Ts = 0.9 and (b) Ts = 1.1.
Different colors represent q different Potts states. (c) Plots of energy
versus time, following quenches from several Ts values. See text for
the dashed lines and the broken frame. (d) Plots of tc,E ref,1 (upper
panel) and tc,E ref,2 (lower panel), versus Ts.

crossings amongst the energy curves, due to faster equili-
brations of configurations prepared at higher Ts. This is the
essence of the Mpemba effect [1,2,18,21]. For a clear demon-
stration of a strong systematicity, we perform the following
exercise. The dashed horizontal lines in these panels corre-
spond to two reference energy values, E ref,1 and E ref,2. We
calculate the crossing time between a dashed line and the en-
ergy curve of the systems starting from each of the Ts values.
Such a crossing time is denoted by tc,E ref,i , i = 1, 2. Part (d) of
Fig. 2 shows tc,E ref,i as a function of Ts. The early time quantity
(upper panel), i.e., tc,E ref,1 , increases with the increase in Ts,
but at late times (lower panel) we see a different behavior,
i.e., tc,E ref,2 decreases with the increase in Ts. This implies
faster relaxation of the systems with higher Ts, indicating the
presence of ME.

The faster relaxation of the higher Ts systems can also be
quantified by calculating the average domain length, 	(t ), a
key probe for investigating coarsening dynamics [47–49]. In
Fig. 3(a), we plot 	(t ) vs t , for different Ts values, for q = 5.
The early time behavior for different Ts are presented in the
lower part of the divided graph. The late time comparisons
are in the upper part. The systems starting at higher Ts tend
to approach the new equilibrium earlier. This conveys a pic-
ture the same as that derived from the energy decay, further
strongly suggesting the presence of the Mpemba effect. We
record the times at which the domain lengths of the systems
for different finite Ts (< ∞) values are crossed or overtaken by
the corresponding plots for the systems starting from Ts = ∞.
We denote this by tc,	∞ . In Fig. 3(b) we have plotted tc,	∞
as a function of Ts − Tc, for a few values of q, covering
transitions of first, as well as second order varieties. For each
q, the crossing time increases with the approach of Ts to the
corresponding Tc. Eventually, however, the plot for Ts = ∞
overtakes those for all the considered lower values of Ts. The

FIG. 3. (a) Plots of 	(t ) versus t , for the 5-state Potts model, for
quenches from various Ts to Tf = 0.5 Tc. (b) Plots of time, tc,	∞ , cor-
responding to crossing between growth curves for systems starting at
Ts = ∞ and a finite Ts, as a function of Ts − Tc, for different q values.
(c) Plot of tc,	∞ versus q, for systems prepared at Ts = 1.3 Tc.

same scenario applies to a reference Ts < ∞. This implies that
systems from all Ts values tend to approach new equilibrium
quicker than the systems starting from any lower Ts. While
this conclusion appears true for the presented cases, general
validity requires more sophisticated study and analysis.

Given that, depending upon the value of q the nature of
critical fluctuation is different, presence of any unique scaling
behavior may not emerge from Fig. 3(b). It appears, neverthe-
less, that for a given distance of Ts from Tc, the crossing time is
longer for higher q. A quantitative picture for this is shown in
Fig. 3(c). This is a signature that the ME gets weaker with the
increase of q. Considering the influence of both q and Ts, the
issue, however, is complex. Nevertheless, if a scaling picture,
as desired above, can be drawn, crucial identification of the
presence or strength of the effect can be made irrespective of
the nature of critical fluctuation and order of transition. We
will return to this important objective later.

Now we check whether the same scenario is true for the
case of the LR Ising model. Due to the demanding computa-
tion, we analyze results for this case after averaging over 100
independent initial configurations. Note that the LR systems
encounter finite-size effects much faster than its short-range
counterpart, due to faster growth [40,50,51] with the decrease
of σ . To avoid this problem, we choose big systems and a
large value of σ , viz., σ = 0.8, which, nevertheless, falls well
within the long-range interaction domain [40]. In Fig. 4(a)
we plot 	(t ) vs t , for quenches to Tf = 0.3 Tc, from three Ts

values, with L = 1024. From these plots it is clear that the
systems with the highest Ts have the largest 	(t ) at late times.
Thus, ME appears to be present in the LR Ising model as well.
Note that because of the above mentioned reasons we have
used Ewald summation [41,52], and parallelized our codes, in
this case, to speed up the output.

It should be noted that in equilibrium critical phenomena
the LR Ising model possesses values of exponents that are the
same as those from the mean-field theory [45,46] for the short-
range Ising model. Thus, one may ask, if our study confirms
ME in the corresponding mean-field dynamical model with
the same quantitative scaling features, if any, as the actual
Ising model that we further investigate below. It is worth
mentioning that there exist studies in the literature [22,26,29–
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FIG. 4. (a) Plots of 	(t ) versus t , corresponding to a few different
Ts values, for quenches to 0.3 Tc, for the LR Ising model. The value
of σ is 0.8 and we have L = 1024. (b) Same as (a) but here the results
are for the 3D nearest-neighbor (NN) Ising model with Tf = 0.6 Tc

and L = 256.

31] that report ME in mean field models. However, even if
the protocols and dynamical rules match with our studies,
e.g., those for an antiferromagnetic system in Ref. [30], it
is important to note certain interesting facts. As opposed to
the case of exponents in equilibrium critical phenomena, the
mean-field Ginzburg-Landau approach for the ferromagnetic
model provides the same asymptotic growth exponent [53] as
the one obtained from MC simulations of the short-range Ising
model. Adding to the anomaly, interestingly, for the LR Ising
case the value of this exponent depends further upon micro-
scopic details of the range of the interaction [40,50]. Thus, it is
important that one truly visits the mean-field coarsening case,
corresponding to the short-range ferromagnetic Ising model,
to make a very general remark on the scaling features in ME
against the interplay between critical and coarsening behavior,
that we discuss further below.

So far we have dealt with 2D systems. Now we present
results from the 3D NN Ising model in Fig. 4(b), where the
faster relaxation of the systems for the higher Ts value is
also quite clear. Here we have quenched the systems from
different initial Ts values to Tf = 0.6 Tc. These results are
presented after averaging over runs with 2880 independent
initial configurations, with L = 256.

Returning to the Potts results in Fig. 3, we recall that an
important objective of our work is to obtain a scaling picture
[2]. Note that for different q values, one expects differing
fluctuations in the critical vicinity. Thus, as stated above, a
unique behavior of the data sets in Fig. 3(b) may not be
expected. It is possibly more instructive to replace the abscissa
variable there by ξ . Results from such an exercise are shown
in Fig. 5(a). On a log-log scale it appears that the data sets
from different q are reasonably parallel to each other. Thus, in
Fig. 5(b), we introduce a prefactor a for the abscissa, constant
for a particular value of q, to obtain an overlap of the data sets
in Fig. 5(a). A nice collapse of the data sets can be appreciated.
In fact, the results for the 2D and 3D Ising models also comply
with that. This observation carries important meaning that
we describe below. It is worth mentioning here that accurate
estimations of the crossing times require huge statistics.

FIG. 5. (a) Plots of tc,	∞ versus ξ , for the Potts model, with a
few different q values, on a double-log scale. (b) Same as (a) but
here the abscissa of the data sets are scaled by constant factors to
obtain a “possible” overlap. In addition to the results from the Potts
cases (q � 3), here we have included data for the NN Ising model,
from different space dimensions. While presenting the results, we
tried to avoid finite-size effects very close to Tc and corrections to
critical scaling by staying within 25% from Tc. Dashed and solid lines
represent power laws.

We have investigated the presence of the Mpemba ef-
fect [1–5] during para- to ferromagnetic transitions in model
systems with discrete spin values. These include short-range
Ising models in d = 2 and 3, as well as long-range Ising
models in d = 2. A very extensive set of results are presented
for the q-state Potts model for a wide range of q values. It
is important to note that in none of the considered models
there exist in-built frustration. Despite that, very interestingly,
irrespective of the space dimension, range of interaction, and
order of transition, we have observed the ME. It has an
important connection with the extent of spatial correlations
at the considered initial temperatures. The relative delay in
approach to the final equilibrium, following quenches from
para to ferro regions, with the lowering of starting tempera-
tures, has reasonably unique dependence upon ξ . For second
order transitions we have observed this scaling feature for
models with critical exponent ν varying nearly by a factor of
1.6. Furthermore, the power-law scaling appears valid even
for a first order transition. The value of the exponent (� 1)
connecting the crossing times and ξ , in Fig. 5(b), implies
that the evolution during early transients gets severely slower
as Ts → Tc. This may be [2] because of the conversion of
fractality associated with the initial correlation to that of the
domain morphology at the early periods. It will be interesting
[2] to investigate how certain exponents from dynamic crit-
ical phenomena [54] may influence this feature. The overall
picture also signifies, for a given model, if two initial temper-
atures possess nearly the same spatial correlations, possible
for large q, configurations from these states will equilibrate
almost simultaneously at the final temperature, showing no
detectable ME, even for large differences in the Ts.

It will be interesting to compare the phase transition times
for various Ts values [22]. Note that here we compared,
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instead, the rates of ordering that lead to the identifications
of ME via crossings of relaxation trajectories. This way our
identification is of a variety similar to those in Refs. [10,14–
19]. We have used the Metropolis algorithm in this work. A
preliminary study with the Glauber transition rate, like
in Ref. [30] for the antiferromagnetic case, also suggests
presence of ME in our 2D ferromagnetic Ising model.
In the future it will be interesting to confirm ME in
other models as well, for the latter transition rate. We in-

tend also to undertake studies of boundary effects as in
Ref. [32].
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