
PHYSICAL REVIEW E 110, L012102 (2024)
Letter

Learning minimal representations of stochastic processes with variational autoencoders

Gabriel Fernández-Fernández ,1 Carlo Manzo ,2,3 Maciej Lewenstein ,1,4

Alexandre Dauphin ,1 and Gorka Muñoz-Gil 5,*

1ICFO–Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology,
Av. Carl Friedrich Gauss 3, 08860 Castelldefels (Barcelona), Spain

2Facultat de Ciències, Tecnologia i Enginyeries, Universitat de Vic–Universitat
Central de Catalunya (UVic-UCC), C. de la Laura, 13, 08500 Vic, Spain

3Bioinformatics and Bioimaging, Institut de Recerca i Innovació en Ciències de la Vida i de la Salut a la
Catalunya Central (IRIS-CC), 08500 Vic, Barcelona, Spain
4ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain

5Institute for Theoretical Physics, University of Innsbruck, Technikerstr. 21a, A-6020 Innsbruck, Austria

(Received 31 July 2023; revised 19 March 2024; accepted 29 May 2024; published 18 July 2024)

Stochastic processes have found numerous applications in science, as they are broadly used to model a
variety of natural phenomena. Due to their intrinsic randomness and uncertainty, they are, however, difficult
to characterize. Here, we introduce an unsupervised machine learning approach to determine the minimal set
of parameters required to effectively describe the dynamics of a stochastic process. Our method builds upon an
extended β-variational autoencoder architecture. By means of simulated data sets corresponding to paradigmatic
diffusion models, we showcase its effectiveness in extracting the minimal relevant parameters that accurately
describe these dynamics. Furthermore, the method enables the generation of new trajectories that faithfully
replicate the expected stochastic behavior. Overall, our approach enables the autonomous discovery of unknown
parameters describing stochastic processes, hence enhancing our comprehension of complex phenomena across
various fields.
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Introduction. The recent advances in machine learning
(ML) have not only impacted everyday life but also the devel-
opment of science. In physics, the predictive power of ML has
been used to get insights from theoretical and experimental
physical systems with unprecedented accuracy [1,2]. Indeed,
ML can easily extract knowledge from a plethora of data types
with no prior information about its source.

It has broadly been argued that, if a machine can make
predictions over a given physical process, the properties of
the latter must be encoded in the internal representation of the
machine [3]. Therefore, beyond its predictive nature, ML can
also be helpful for scientific discovery. Several examples in
biology [4], quantum matter [5,6], quantum information [7],
lattice field theory [8], mathematics [9], or experiment design
[10,11] show that deep neural networks (NN), despite being
often considered as black boxes, can guide scientists to under-
stand complex phenomena or to design involved experiments.

Various techniques exploit the information encoded in the
trained model, e.g., by defining a notion of similarity between
the different training examples and the test examples [12,13].
Alternatively, the study of the internal representation of the
NN allows mapping the statistics of the training and test
examples onto a vectorial space. An example of such embed-
ding is the encoding produced at the bottleneck layer of an
autoencoder (AE) [14], NN architectures trained to compress
and decompress data to and from a given vectorial space. The
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abstract representation obtained at this level is very useful
for unsupervised applications and machine interpretability.
For instance, AE representations, and in particular those of
variational autoencoders (VAE) [15,16], are currently crucial
for the efficient training of some of the most powerful ML
models, from image generation with diffusion models [17]
to reinforcement learning [18]. Beyond such downstream ap-
plications, focused on enhancing the power of ML methods,
VAEs can be used to discover hidden factors of variation in
an unsupervised way [19–21]. These models create disentan-
gled representations and isolate the generating factors of input
data sets. Achieving this objective is not trivial and great ef-
fort is currently invested into improving such representations
[22,23]. This application is particularly interesting in physical
systems, as the generating factors translate to the relevant
physical parameters of the system. Their utility has been ex-
tensively proven in a variety of scenarios, in particular in the
analysis of dynamical systems [24,25]. These seminal works
mainly focused on deterministic systems, raising questions
about their applicability to a wider range of real-world scenar-
ios, especially those involving stochastic processes. Similar
approaches have also been proposed for stochastic processes
(see, e.g., Refs. [26,27]), but they rely on the preprocessing or
averaging of the data, such that the input to the ML model is
effectively a deterministic signal. Therefore, the efficiency of
the representation achieved depends not only on the accuracy
of the ML model but also on the statistical relevance of its
inputs. Thus, it would be beneficial to develop models that
can treat raw stochastic data. This kind of approach has been
explored by several ML methods with great success. However,
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FIG. 1. Interpretable autoregressive β-VAE. Given the dis-
placements �x(t ) of a diffusion trajectory, the encoder (orange)
compresses them into an interpretable latent space (blue), in which
few neurons (dark blue) represent physical features of the input data
while others are noised out (light blue). An autoregressive decoder
(green) generates from this latent representation the displacements
�x′(t ) of a new trajectory recursively, considering a certain receptive
field RF (light green cone).

these methods rely on prior information about the system such
as, e.g., the underlying physical model [28,29] or a basis of
preselected functions [30,31]. Similarly, symbolic regression
approaches can find the governing equations of stochastic
processes [32] but necessitate a meaningful set of initial terms
to build a proposed expression. This further impedes their
application to systems involving parameters that cannot be
expressed in closed form.

In this work, we aim at determining whether a machine can
extract, in an unsupervised way, the minimal parametric rep-
resentation of a stochastic process from trajectories without
any prior knowledge of the system. Extending previous works
on unsupervised learning approaches to diffusion [33,34], we
train a β-variational autoencoder (β-VAE) [19] to generate
trajectories with the same properties as the ones used as
inputs. The architecture presents an information bottleneck
constructed to represent conditionally independent factors of
variation. Using an adaption of the original β-VAE [35], we
successfully train the architecture with various sets of data
corresponding to diffusion processes with different charac-
teristics. Our results show that only the minimal necessary
properties describing the motion of the particles arise in the
bottleneck and can be directly related to the known theories
describing these models. Moreover, the training provides a
generative model that can produce new trajectories with the
same properties as the training data set, thus allowing for an
in-depth study of their statistical properties. Besides its funda-
mental value, this work offers a valuable tool for the study of
molecular diffusion from individual trajectories, such as those
obtained with single-molecule imaging techniques [36,37],
for which extensive ML methods have been developed [38].
In contrast to the latter, rather than predicting known parame-
ters with increasing accuracy, we aim here at solving a more
fundamental question: learning the most efficient description
of a given stochastic process.

Interpretable generative model. We aim to construct a
machine learning (ML) architecture capable of (i) extracting
interpretable physical variables from stochastic time series,
and (ii) modeling the probability distribution function of the
input data. To this end, we consider a β-variational autoen-
coder (β-VAE) architecture [19], schematically depicted in
Fig. 1 (see Supplemental Material (SM) [39] and Ref. [40] for
further details). In this architecture, an encoder (depicted in
orange in Fig. 1) compresses displacements from an input tra-
jectory x into a latent space z (shown in blue), for which each

neuron is parameterized via a normal distribution N (μzi , σzi ).
Throughout this work, we consider |z| = 6 latent neurons. A
sample is then drawn from the latent space and fed into the
decoder (depicted in green), which generates a distribution
function from which the displacements of new trajectories
x′ can be sampled. The training of this architecture is based
on a loss function that consists of two terms: a reconstruc-
tion loss that compares the model’s inputs and outputs, and
a second loss term that measures the dissimilarity between
the distribution of the latent variables and their prior. For the
prior, a standardized normal distribution N (0, 1) is typically
considered. A parameter β is used to control the relative
weight of the two loss components and, through an ad hoc
annealing schedule, can be tuned in such a way that only the
minimum number of latent neurons remains informative (i.e.,
σzi � 1). In a physical context, only the pertinent properties
governing the process will manifest in the latent space and
serve to reproduce the input [24].

Traditional approaches for representation learning typi-
cally focus on deterministic decoders and use a reconstruction
error to directly compare the input and output of the autoen-
coder [24,41]. However, when dealing with stochastic signals,
any form of compression inevitably leads to significant in-
formation loss in the reconstructed trajectory. Therefore, we
adopt a distinct approach based on a probabilistic decoder
to model the distribution of displacements p(�x) through
pθ (�x|z), where θ represents the trainable parameters from
which the individual displacements �xi of the trajectories are
sampled. We thus use the maximum likelihood estimation to
compare the resulting pθ with the samples of the training
data set, assumed to be representative of the distribution p.
Notably, the stochastic signal that corresponds to the input
may exhibit various types of correlations, which play a crucial
role in modeling important physical processes. To ensure that
these properties are preserved at the autoencoder output, we
follow the architecture proposed in Ref. [35] and construct
the decoder using an autoregressive (AR) convolutional net-
work known as WaveNet [42]. WaveNet models the output
distribution according to the following recursive conditional
probability

pθ (�x|z) =
T∏

t=1

pθ (�xt |�xt−1, . . . ,�xt−RF; z), (1)

where T is the length of the trajectory and RF is the receptive
field, i.e., the number of past displacements used to predict the
forthcoming one (light green cone in Fig. 1).

Extracting physical variables from stochastic data. To test
the ability of the architecture to extract relevant physical
variables from stochastic data, we train it on four data sets,
constructed with three paradigmatic models of diffusion. First,
we consider Brownian motion (BM) [43,44], used to describe
the stochastic motion of a particle suspended in a fluid. The
diffusion of a Brownian particle is characterized by a single
parameter, the diffusion coefficient D, hence serving as an
initial benchmark for our study. More precisely, BM can be
expressed as a Langevin equation of the form ẋ(t ) = ξ (t ),
where ξ (t ) is a Gaussian noise with autocorrelation function

〈ξ (t )ξ (t ′)〉 = 2Dδ(t − t ′). (2)
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FIG. 2. Interpretation of the latent space. Distribution of latent
neuron activations zi for four data sets: (a) BM; (b), (c) FBM; (d),
(e) SBM; and (f) BM with confinement. Only surviving neurons
are shown (i.e., σzi � 1). For all data sets, the number of surviving
neurons agrees with their respective number of degrees of freedom.

To train the autoencoder, we generate a data set of trajectories
with D ∈ [10−5, 10−2] using the andi_datasets library [45].
As training proceeds, the model improves its generative ca-
pabilities while minimizing the KL divergence of the latent
neurons with respect to their prior N (0, 1). After training, a
single neuron of the six available survives, i.e., differs drasti-
cally from its purely noisy prior. Figure 2(a) shows a direct
relation between such neuron and D, highlighting that the
autoencoder has learned that the only information needed by
the decoder to generate a new trajectory is its diffusion coeffi-
cient. Furthermore, the correlation between z1 and D extends
beyond the training set range (gray shaded area), indicating
the model’s ability to generalize the representation of diffusive
parameters beyond the specified training range.

Next, we consider two extensions of BM, namely frac-
tional Brownian motion (FBM), and scaled Brownian motion
(SBM). These are paradigmatic models of anomalous diffu-
sion, i.e., diffusion that deviates from the typical Brownian
behavior. These models have found extensive application in
describing motion in different biological scenarios at vari-
ous scales [46–49] and thus constitute a valuable benchmark
to demonstrate the method’s utility in experimental settings.

Both models are characterized by only two parameters: the
diffusion coefficient and the anomalous diffusion exponent α.
However, the source of anomalous diffusion is different in
each model.

FBM can be derived from the Langevin equation and ex-
pressed as ẋ(t ) = ξ f Gn(t ), where ξ f Gn(t ) represents fractional
Gaussian noise with the autocorrelation function

〈ξ f Gn(t )ξ f Gn(t ′)〉 = α(α − 1)D
∣∣t − t ′∣∣α−2

, (3)

where D is here referred to as a generalized diffusion coeffi-
cient with dimensions [l]2[t]−α . Importantly, Eq. (3) implies
that FBM displacements are correlated. This feature provides
an interesting benchmark for the autoregressive properties of
the decoder, as we will discuss in the following section. We
train an autoencoder with a data set consisting of FBM trajec-
tories with α ∈ [0.2, 1.8] and D ∈ [10−5, 10−2]. In Figs. 2(b)
and 2(c) we show the only two surviving neurons: one (z1)
shows a nearly linear relation with the anomalous diffusion
exponent α, whereas the other (z2) has a monotonic depen-
dence on the log(D). These results prove the model’s ability to
only retain minimal information to correctly reproduce FBM
trajectories through the probabilistic decoder.

SBM extends Brownian diffusion by considering an aging
diffusion coefficient D(t ), which is usually considered to scale
as Dα (t ) = αD0tα−1, where α is the anomalous diffusion ex-
ponent and D0 is a constant with dimensions [l]2[t]−α . After
training, we again observed that only two neurons survived.
However, in contrast to earlier cases, these two neurons ex-
hibit a more intricate relationship with α and D0, as depicted
in Figs. 2(d) and 2(e). It must be pointed out that the only
constraint imposed by the β-VAE loss in order to obtain these
results is that the representation in the latent space is minimal,
while still achieving good reconstruction loss. Hence, nothing
prevents the network to learn a minimal representation based
on combinations of the independent factors (meaningful phys-
ical variables in this case) [50,51]. Nonetheless, the number
of surviving neurons should never exceed the number of inde-
pendent factors (or degrees of freedom), a situation that would
not correspond to a minimal representation.

In many scenarios, the factors of variation may not be
inherently linked to a closed-form equation, unlike the exam-
ples previously mentioned. In such cases, phenomenological
models are frequently employed to accurately capture the
dynamics of the system by defining a few relevant parame-
ters. The methodology we propose is particularly useful for
deriving these parameters in situations where no prior in-
formation about the physical process exists. As an example,
we examine the behavior of a Brownian particle subjected to
random confinement, a phenomenon prevalent in numerous
biological contexts [52,53]. This scenario involves a particle
freely diffusing in a medium containing circular compart-
ments of random sizes, where the particle reflects off the
boundaries with a certain probability [Fig. 2(f) inset and SM].
Each particle’s behavior can be characterized by two factors:
its diffusion coefficient D and, if applicable, the confine-
ment radius r of the compartment it enters. Unlike D and
α, identifying r poses a greater challenge. Given the random
radius distribution and the boundaries’ partial transmittance,
it is necessary to isolate the confined segments within the
overall trajectory and then compute their confinement radius
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[54,55]. Remarkably, the autoencoder is able to overcome
such challenge and not only identifies this factor [Fig. 2(f)],
but achieves it with remarkable precision. This suggests
that the encoder has learned to segment the input trajectory
autonomously and derive r without any supervised guidance.
For sufficiently large values of D, the surviving neuron cor-
relates with the confinement radius. Expectedly, for smaller
D values, the particle’s motion within the compartment is too
limited, making the accurate determination of r unfeasible.

Generating trajectories from meaningful representations.
An essential feature of the presented architecture is its ability
to generate trajectories with the same physical properties as
the training samples. Moreover, the representational power
of the latent space allows one to set the properties of the output
trajectories by tuning the value of the latent neurons. Inference
is then done directly from the latent space, without any need
of the encoder.

As expressed in Eq. (1), the decoder predicts the proba-
bility of each displacement �xt by means of a conditional
probability related to previous displacements and, most im-
portantly, the latent vector z. In practice, by means of the
reparameterization trick [15], the decoder outputs the mean
μt and variance σ 2

t of a normal distribution N (μt , σ
2
t ), and

we then use the latter to sample each displacement �xt . In the
case of BM trajectories, the autoencoder correctly learns to
set μt = 0 and σ 2

t = 2D ∀ t , as the displacements of such tra-
jectories are independent and stationary. Hence, the decoder
only needs to properly learn the exact transformation from z1

in Fig. 2(a) to σ 2
t .

Next, we analyze the more complex cases of FBM and
SBM. In this sense, a fundamental feature of FBM trajectories
is the correlation of displacements, which has a characteristic
power-law behavior directly connected to Eq. (3). As com-
mented, the architecture includes an autoregressive decoder
to preserve this feature in generated trajectories. In fact, in
Fig. 3(a), we show that when generating trajectories for a
given α, the power-law correlation is preserved in a range
defined by the architecture’s receptive field (RF) and then
lost, as expected from Eq. (1). Since power-law correlations
produce anomalous diffusion in FBM, their loss affects the
anomalous diffusion exponent of the generated trajectories,
as shown in Fig. 3(b) (see SM [39] for details). While the
exponent is correct for �t < RF , it rapidly converges to one at
longer times. In our experiments, increasing the RF hindered
training substantially. A possible solution is to consider a
transformer-based decoder [56], where extensive efforts to
enlarge context length are currently being pursued [57].

With respect to the SBM data set, the β-VAE must encode
into the latent space the time-dependent diffusion coefficient
Dα (t ) in order to generate trajectories with anomalous diffu-
sion exponent α. We have shown that the latent space obtained
for the model trained on SBM trajectories has a complex
relationship with the input parameters α and D0. To simplify
the analysis, instead of generating trajectories directly from
the latent space as we did with FBM, we feed trajectories
with a given ground-truth α and D0 to the decoder, extract
their latent representation z, and use it to generate new trajec-
tories. As shown in Fig. 3(c), the generator is able to correctly
reproduce trajectories with the correct exponent for various
D0 and a wide range of α. In Fig. 3(d), we show Dα (t )

FIG. 3. Statistical properties of generated anomalous diffusion.
Top (bottom) row corresponds to the FBM (SBM) data set.
(a) Displacements correlations C = |〈�xt�xt+�t 〉|/�x2

0 for the input
(dotted) and generated data (solid) with α = 0.6, 1.8 (blue and green,
respectively). (b) Anomalous exponent αg of the generated FBM data
fitted from the time-averaged mean-squared displacement at different
�t for different input α. Insets show the two-dimensional histograms
of the input vs. generated anomalous exponent at the highlighted �t ,
before (blue) and after (orange) the receptive field RF. (c) Anomalous
exponent αg of the generated SBM data vs. the input exponent α

for various D0. (d) Evolution of the diffusion coefficient for gener-
ated SBM trajectories at various α. Dotted lines show the expected
scalings.

calculated as the variance of the displacements for different t .
The β-VAE perfectly reproduces the expected behavior over
all generated times, confirming the generative capabilities of
the architecture.

Conclusions. In this work, we have explored the ap-
plication of machine learning (ML) techniques to provide
interpretable representations of stochastic processes from time
series. We have shown that a method based on a β-variational
autoencoder with an autoregressive decoder can retrieve the
minimal parametric representation of trajectories correspond-
ing to different processes describing diffusion.

The architecture has been specially developed to account
for common features present in stochastic data. First, the
output of the network is probabilistic. Due to the stochastic
nature of diffusion trajectories, trajectory reconstruction after
compression is effectively unfeasible. Hence, instead of re-
constructing, as done typically in AE, we aim at generating
new trajectories via a parameterized distribution optimized
to match the input data distribution. Second, the decoder
is autoregressive, a feature introduced in order to model
distributions with correlations, as for the case of FBM
trajectories.

In contrast to the predominantly employed supervised
methods, our study showcases the potential of unsuper-
vised machine learning techniques to uncover the intrin-
sic structure of stochastic processes and determine the
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minimal parametrization required for accurate characteriza-
tion. As such, it offers a promising avenue for uncovering
previously unknown physical degrees of freedom inherent in
stochastic physical processes. A significant advantage of this
approach is its ability to operate without prior information
about the data or the underlying physical process. This makes
it particularly well suited for experimental settings. In this
sense, a promising avenue is the one related to interven-
tional causal representation learning [50,58], which considers
scenarios in which actions (interventions) are applied into a
system, changing its properties and facilitating better repre-
sentations. In this sense, one could leverage such strategies to
study the impact of changes in experimental conditions to both
understand their influence into the system and better extract
the underlying physical model [51,59].

The results of our study also offer practical implications
for model simplification and computational efficiency. In
phenomenological models, characterized by multiple input
parameters, the reduction of the dimensionality of the param-
eter space can significantly decrease the computational cost
associated with the modeling and simulation of stochastic
processes, thus enabling more efficient analysis and predic-
tion of their behavior. Thus, the proposed approach offers a
promising avenue for advancing the modeling and analysis
of stochastic systems, enabling researchers to gain deeper
insights into physical processes.

Acknowledgments. G.M.-G. acknowledges fund-
ing from the European Union. C.M. acknowledges
support through Grant No. RYC-2015-17896 funded
by MCIN/AEI/10.13039/501100011033 and “ESF
Investing in your future,” Grants No. BFU2017-
85693-R and No. PID2021-125386NB-I00 funded by
MCIN/AEI/10.13039/501100011033/ and “ERDF A way
of making Europe,” and Grant AGAUR 2017SGR940 funded
by the Generalitat de Catalunya. G.F.-F., A.D., and M.L.
acknowledge support from: European Research Council AdG
NOQIA; MCIN/AEI (PGC2018-0910.13039/501100011033,

CEX2019-000910-S/10.13039/501100011033, Plan
National FIDEUA PID2019-106901GB-I00, Plan National
STAMEENA PID2022-139099NB, I00, project funded by
MCIN/AEI/10.13039/501100011033 and by the “European
Union NextGenerationEU/PRTR” (PRTR-C17.I1), FPI);
QUANTERA MAQS PCI2019-111828-2); QUANTERA
DYNAMITE PCI2022-132919, QuantERA II Programme
co-funded by European Union’s Horizon 2020 program
under Grant Agreement No. 101017733); Ministry for
Digital Transformation and of Civil Service of the Spanish
Government through the QUANTUM ENIA project call
- Quantum Spain project, and by the European Union
through the Recovery, Transformation and Resilience Plan
- NextGenerationEU within the framework of the Digital
Spain 2026 Agenda; Fundació Cellex; Fundació Mir-Puig;
Generalitat de Catalunya (European Social Fund FEDER
and CERCA program, AGAUR Grant No. 2021 SGR
01452, QuantumCAT\U16-011424, co-funded by ERDF
Operational Program of Catalonia 2014-2020); Barcelona
Supercomputing Center MareNostrum (FI-2023-3-0024);
(HORIZON-CL4-2022-QUANTUM-02-SGA PASQuanS2.1,
101113690, EU Horizon 2020 FET-OPEN OPTOlogic,
Grant No. 899794), EU Horizon Europe Program (This
project has received funding from the European Union’s
Horizon Europe research and innovation program under
Grant Agreement No. 101080086 NeQST Grant Agreement
101080086 NeQST); ICFO Internal “QuantumGaudi”
project; European Union’s Horizon 2020 program under the
Marie Sklodowska-Curie Grant Agreement No. 847648; “La
Caixa” Junior Leaders fellowships, La Caixa” Foundation
(ID 100010434): CF/BQ/PR23/11980043. Funded by the
European Union. Views and opinions expressed are, however,
those of the author(s) only and do not necessarily reflect those
of the European Union, European Commission, European
Climate, Infrastructure and Environment Executive Agency
(CINEA), the European Research Executive Agency nor any
other granting authority. Neither the European Union nor any
granting authority can be held responsible for them.

[1] G. Carleo, I. Cirac, K. Cranmer, L. Daudet, M. Schuld, N.
Tishby, L. Vogt-Maranto, and L. Zdeborová, Machine learning
and the physical sciences, Rev. Mod. Phys. 91, 045002 (2019).

[2] A. Dawid, J. Arnold, B. Requena, A. Gresch, M. Płodzień,
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