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Landau free energy of small clusters beyond mean-field approach
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Landau free energy determines the landscape of order parameter fluctuations that occur in a physical system
at thermal equilibrium and, in particular, characterizes the critical phenomena. We propose a semianalytical
approach based on the fluctuating local field method, which allows us to estimate Landau free energy for small
clusters with discrete (Ising model) and continuous (Heisenberg model) order parameter.
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Introduction. Landau free energy (LFE) is a powerful tool
for describing the critical phenomena and fluctuations of the
order parameter in many quantum and statistical systems. This
concept was first introduced by Lev Landau in 1937 to de-
scribe a second-order phase transition [1]. Near the transition
point the free-energy potential FL(β, η) at certain inverse tem-
perature β is expanded in Taylor series of an order parameter
η up to fourth order assuming the inversion symmetry:

FL(β, η) = C + a(β )η2 + b(β )η4 + . . . . (1)

The potentials of a similar type are used to study various
phases and material properties. For example, for the ferro-
electric systems the Landau-Devonshire theory provides the
phenomenological description of the relationship between the
polarization and applied electric field, as well as other prop-
erties such as the dielectric constant and the strain of the
material [2–7]. This concept is also important in the study
of such statistical systems as molecular magnets [8], liquid
crystals and nematic polymers, where it is known as Landau-
de Gennes [9–11] theory. In the theory of collective quantum
phenomena, the Ginzburg-Landau functional is widely used
for the phenomenological description of superconductivity
and Bose-Einstein condensation [12–15].

It is commonly accepted that the fourth-order expansion (1)
is indeed a good approximation in many cases for the FL(η)
dependence, given β. This is, e.g., supported by the experi-
mental studies of ferroelectric and magnetic materials, where
the coefficients in the expansion (1) can be extracted [16–19].
However an estimation of the temperature dependence of the
polynomial coefficients a(β ), b(β ) is still a hard task. This
dependence shows a nonanalyticity at the transition point
for bulk materials. For small clusters, the sharp transition is
suppressed by fluctuations, but the temperature dependence
of the Landau coefficients is still nontrivial.

Landau free energy can be obtained from the numerical
simulations. For small systems with a discrete order parameter
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it can be calculated directly by an enumeration of all states;
however, the computational complexity grows exponentially
with the system size. Methods based on the Monte Carlo ap-
proach, coarse-graining and molecular-dynamics simulations
apply for a more general situation [20–23]. In particular, the
Wang-Landau algorithm [24–28] proposed about 20 years ago
allows us to calculate the Landau free energy for systems with
both continuous and discrete order parameter.

Much less is achieved when it comes to analytical calcula-
tions. Actually the only method at hand is mean-field theory
(MFT). In this approach the interacting system is replaced by
the noninteracting one in a certain effective potential. MFT-
like methods provide a basic tool for describing the collective
behavior of correlated systems. However, the MFT description
of critical phenomena is very limited, because the essentially
important physics of fluctuations is almost neglected at the
MFT level. Furthermore, it is quite hard to construct an im-
provement of the MFT result, because the theory does not
contain an explicit small parameter.

The fluctuating local field (FLF) method was introduced
several years ago for a more quantitatively accurate estimation
of the thermodynamics properties of the classical lattices [29].
Later, the FLF method was applied to fermionic systems such
as Hubbard chains [30] and two-dimensional clusters [31],
[32], as well as to the disordered Ising model [33]. The main
idea of this approach is to introduce the additional fluctuating
degrees of freedom conjugated with the order parameter. This
allows us to take into account the most important modes of
the fluctuations in the system, regardless of their magnitude.
The remaining part of the fluctuations is treated perturbatively.
At the same time, similarly to the MFT, the FLF description
greatly simplifies the form of the Hamiltonian of the system,
which makes it possible to obtain good quantitative results
without using complex technical procedures.

In this paper, we report that the FLF method allows
us to reconstruct the landscape of Landau free energy of
small classical lattices with a discrete (Ising) and continu-
ous (Heisenberg) order parameter. We compare the results
obtained with the numerically exact data as well as with
the MFT predictions. We observe that the second-order FLF
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method outperforms the MFT one, both qualitatively and
quantitatively.

Model and method. We consider the planar square Ising
and Heisenberg periodized L × L site lattices with the nearest
neighbor of the results obtained for a single mode interaction.
Energy of the lattice spin configuration s takes the form:

E (s) = −J
∑
〈i j〉

(si, s j ), (2)

where (., .) is a scalar product, the sum 〈..〉 runs over nearest-
neighboring sites i, j, and J > 0. For the Ising model si takes
values ±1, and for the Heisenberg case si is a three-component
vector with ‖si‖ = 1.

The order parameter defined as η(s) = N−1 ∑
i si is a

three-component (single-component) vector for the Heisen-
berg (Ising) lattice. We define the Landau free energy:

FL(η) = − 1

β
ln

∫
η(s)=η

e−βE (s)dN s, (3)

where N = L2 is the number of sites. The integration (sum-
mation in the Ising case) goes over all these states with the
order parameter equal to η.

In the following we consider the system (2) placed in the
external field h. The energy of such a system reads:

Eh(s) = −J
∑
〈i j〉

(si, s j ) −
∑

i

(h, si ). (4)

The partition function in the external field equals:

Zh =
∫

e−β[FL (η)−N (η,h)]dη. (5)

Mean-field approach. The main idea of the MFT-like meth-
ods is to replace the system (4) with a noninteracting one,
placed in the effective field h̃. The energy of the noninteracting
ensemble reads:

EMFT = −
∑

i

(h̃, si ), h̃ = h + 4Jη. (6)

The noninteracting ensemble allows for a simple solution
for the order parameter. This leads to a self-consistent equa-
tion, relating the external field h and the order parameter η,

η = η(h + 4Jη). (7)

Typically the solution of self-consistent equation is presented
as a dependence η(h). For our purposes we are interested in
the inverse function, h(η). This function appears to be single
valued and well defined within the entire range of η.

Now the estimation for Landau free energy can be ob-
tained. In the thermodynamic limit the partition function (5)
can be approximated by the saddle-point value at η = η̄. The
first derivative of the integrand at the saddle point vanishes,
that is:

∂FL

∂η
(η̄) = Nh. (8)

We substitute the dependence h(η), defined from the Eq. (7),
to the right-hand side of the latter formula. After that, the
value of the antiderivative can be found by the straightforward

integration:

FL(η) = N
∫

|η̄|<η

h(η̄)d η̄. (9)

In the case of the Ising lattice, all calculations can be
performed analytically. The relation between the external
field and the order parameter takes the form h = 1

β
[atanh η −

4Jβη]. Landau free energy is equal to:

FL(η) = N

β

(
1

2
ln (1 − η2) + η atanh η − 2Jη2

)
. (10)

Fluctuating local field approximation. To introduce the
fluctuation local field method, we write the partition function
for the system (4) in the form

Zh =
∫

dν

∫
e
−β

[
Eh (s)+ N

2λ ( λ
N

∑
i si+h−ν)2

]
dN s, (11)

where the integration over the auxiliary variable ν is intro-
duced. Likewise, the order parameter ν is a three- (single)
component vector for the Heisenberg (Ising) system. As one
can observe, the integration over ν leads, up to a prefactor, to
the expression Zh = ∫

e−βEh dN s, corresponding to the parti-
tion function of (4).

That form of the partition function could be considered
as an ensemble of the lattices placed in an external field.
Interaction in these lattices is given by the expression:

Ẽh(s, ν) = −
∑

i

(ν, si ) + N (ν − h)2

2λ

+ λ

2

(∑
i si

)2

N
− J

∑
〈i j〉

(si, s j )

︸ ︷︷ ︸
W

. (12)

Compared to the system (2), the interaction between the spins
includes now a long-range part (

∑
i si )2. As one can observe,

this part disfavors the spin ordering at the lattice.
One can formally integrate the partition function (11) over

all the spin variables si:

Zh =
∫

Z̃h(ν)dν =
∫

e−βFλ,h (ν)dν. (13)

The main idea behind the FLF approach is that the param-
eter λ can be at the particular value λ0 taken in such a way
that the free energy Fλ,h can be calculated perturbatively. The
series expansion is in powers of the spin-spin interaction part
of (12), which is marked as W .

We choose such λ0 that the new “artificial” long-range
interaction ∝ (

∑
i si )2 compensates, on average, the term

coming from the original Hamiltonian ∝ −∑
〈i j〉(si, s j ). At

the mean-field level, each spin of the system (12) is subjected
to the force (λN−1

N − 4J )〈s〉 from others. This suggests to take
λ0 = 4NJ

N−1 .
After choosing this value for λ0, the thermodynamic per-

turbation theory [34] in powers of W can be used to calculate
the approximation of Fλ0,h(ν). In zeroth-order approximation,
one deals with a noninteracting sites subjected to an external
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field ν. Zeroth order gives:

F 0
λ0,h(ν) = −N

β
ln zν + (N − 1)(ν − h)2

2J
. (14)

The single-site partition function zν equals zν = 2 cosh νβ and
zν = 2 sinh νβ

νβ
for the Ising and Heisenberg model, respectively.

Our choice of λ0 leads to the vanished first-order correc-
tion, whereas the second-order gives:

F 2
λ0,h(ν) = −N

β
ln zν + (N − 1)(ν − h)2

2J

+ 1

2
‖gν‖2

∑
i �= j

J̃2
i j︸ ︷︷ ︸

〈W 2〉FLF

, (15)

where ‖gν‖2 = ∑
i j (

N2

β2
∂2 ln zν

∂νi∂ν j
)2; the quantity J̃i j equals J (1 −

4
N−1 ) for the nearest neighbors and − 4J

N−1 otherwise.
Free-energy flow. The partition function (11) could be ex-

pressed using the FLF in the following way:

Zh =
∫

e−β[Fλ(η)−N (η,h)+ N
λ

h2

2 ]dη, (16)

where we introduce the new integration variable η = ν
λ

and
Fλ is free energy defined by (13) in the absence on external
field h = 0. The reason we denote the integration variable by
η is that the expression (16) can be seen as an extension of the
formula (5) integrated in respect to the order parameter. These
two formulas become identical at the limit λ−1 → 0.

Let us consider a continuous change of λ−1 leaving Zh in-
variant. This corresponds to certain flow of the function Fλ(η).
Our goal is to trace this flow between the point λ−1 = λ−1

0 ,
where we have the FLF result and λ−1 = 0. Knowledge of
Fλ(η) at the point λ−1 = 0 will give us the Landau free energy
we are interested in.

Consider the infinitesimal shift λ−1 → λ−1 + δλ−1 and re-
quire that the partition function remains unchanged, so that
δZh = 0. It gives:∫

(∂λ−1 Fλ)e−β[Fλ(η)−N (η,h)+ N
λ

h2

2 ]dη

= −Nh2

2

∫
e−β[Fλ(η)−N (η,h)+ N

λ
h2

2 ]dη. (17)

To solve it, let us consider Schwinger-Dyson equations for the
Zh. Consider an infinitesimal shift of the integration variable
η → η + δη. This step should also preserve the partition func-
tion. Collecting the terms linear in δη, we obtain∫

∇Fλ · e−β[Fλ(η)−N (η,h)+ N
λ

h2

2 ]dη

= Nh
∫

e−β[Fλ(η)−N (η,h)+ N
λ

h2

2 ]dη, (18)

where ∇ = ∂
∂η

has three (one) components for the Heisenberg
(Ising) model.

Expanding the second order in δη gives:

β

∫
(∇Fλ − Nh)2e−β[Fλ(η)−N (η,h)+ N

λ
h2

2 ]dη

= −
∫

�Fλ · e−β[Fλ(η)−N (η,h)+ N
λ

h2

2 ]dη, (19)

where � = (∇,∇) is the Laplace operator.
Expanding the parentheses in (19) and using the expres-

sions (17) and (18), we obtain the equation

2βN (∂λ−1 Fλ) = (�Fλ) − β(∇Fλ)2. (20)

This formula can be easily reformulated in terms of the
density of states g(λ−1, η) = e−βFλ(η), where it takes the form
of the heat equation:

∂λ−1 g = 1

2βN
�g. (21)

Optimization problem. We deal with a Cauchy problem
with the final condition given by FLF approximation:

∂λ−1 g(λ−1, η) = 1

2βN
�g(λ−1, η)

g
(
λ−1

0 , η
) = e−βFλ0 . (22)

It is important to observe that the FLF result Fλ0 describes the
final state of the evolution under the heat equation. Modelling
such a backward evolution is the ill-posed problem: Direct
integration of (22) from λ−1 = λ−1

0 to λ−1 = 0 appears to be
very numerically unstable.

To get rid of possible instabilities, we introduce a
finite-order polynomial approximation for the Landau free
energy (1):

Fa(η) = a0 + a2η
2 + · · · + apη

p. (23)

Even polynomials of the order from p = 4 to 8 were used
in practical calculations. For the Heisenberg system, this
approximation was used within the range |η| � 1; out-
side this interval the density of states vanishes. For the
Ising lattice, Fa(η) was defined at the discrete grid η =
0,±2N−1,±4N−1, . . . ,±1 (see the next section for details).

Given the initial density of states e−βFa , we solve the
heat equation and compare the result for ga(λ−1

0 , η) with
the FLF prediction. The coefficients a0, a2, . . . are adjusted
to minimize the tolerance ‖ga(λ−1

0 , η) − e−βFλ0 (η)‖. A simple
gradient-descent method was used to obtain the minimum.

Results. Here we consider the Ising and Heisenberg small
ferromagnetic clusters of the size 4 × 4 and 6 × 6 with the in-
teraction constant J = 1. For these systems, the reference data
for the Landau free energy can be obtained numerically. In the
case of the 4 × 4 Ising lattice, we used an exact enumeration;
in other cases the Wang-Landau algorithm was employed to
estimate the density of states.

For the Ising case the order parameter takes discrete values,
and therefore the initial density of states could be expressed as
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FIG. 1. Comparison of the evolved reference density of states g(λ−1
0 , η) and the prediction by local fluctuating field method for the Ising

(a) and Heisenberg (b) 6 × 6 periodic lattices. The curves labeled FLF-0 and FLF-2 refer to different orders of the FLF approximation.

delta functions sum. The evolved function reads:

g(0, η) =
∑
η′

g(η′)δ(η − η′)

⇓

g
(
λ−1

0 , η
) =

√
Nβ

4πλ0

∑
η′

g(η′) exp

[
− (η − η′)2Nβ

2λ0

]
.

(24)

For the Heisenberg lattice due to the spherical symme-
try of the problem, the three-dimensional heat equation (22)
can be reduced to a one-dimensional one by the replacement
g(ηr ) → ηr · g(ηr ), where ηr is a radial component of η. Since
the states exist only for the order parameter η � 1, we suppose
g(0, η > 1) = 0.

In Fig. 1, we present the evolved density of states g(λ−1
0 , η).

The FLF results are compared to the numerically exact ref-
erence data. The βc refers to the critical inverse temperature
predicted by the MFT. The predictions obtained by the fluc-
tuation local field method are in a good agreement with the
functions g(λ−1

0 , η) obtained by evolving the initial condi-
tion g(0, η). For relatively high temperatures (β = 0.8βc), all
curves almost coincide. In this case the FLF approximation
perfectly captures the fluctuation arising in the system even at
zeroth order. At low temperatures (β = 2βc), the approxima-
tion also works well, but a visible difference appears between
the orders of approximation. As expected, the second order
gives a more accurate prediction, matching better with the
density of states landscape.

In both cases the FLF method shows a qualitatively correct
behavior for the g(η) dependence. As β increases, the max-
imum position moves from the disordered state η = 0 to the
polarized one with η = 1. The only qualitative artifact seen
in the FLF-2 curves at low temperature is a local maximum
at η = 0. It signals a divergence of the perturbation series at
lower temperatures. However, within the range of tempera-
tures considered in our calculation, this issue is not crucial.

Figure 2 shows the estimated Landau free energy obtained
as a solution of the optimization problem. The results are
compared with the numerical simulation, as well as with the
MFT predictions. The MFT curves are calculated using the
Eqs. (9) and (10). We used an expression (23) with degree
p = 4 as an ansatz for the Ising model. For the Heisenberg
model the Landau free energy curve shows a more complex
behavior, so the p = 4 degree polynomial is not sufficient,

and we increase its order to p = 8. The zeroth-order FLF and
MFT curves show a similar accuracy. However, there are two
quantitative issues about the MFT. First, it gives the results
independent of the lattice size. Second, it predicts two local
minima for the dependence F (η) well below the transition
point. However, such a picture is supported by the reference
data for the Heisenberg model only. For the Ising case, F (η)
takes the minimal value at the edge of its domain, η = ±1.
It should be also noted that we do not know a simple way to
improve the MFT result. The FLF-0 curve has a dependence
on the lattice size and reproduces the qualitative behavior of
F (η) in a correct way. The second-order correction greatly im-
proves the FLF results for all types of lattices. An interesting
feature of both cases is that for the Heisenberg model near the
critical point β = βc, the FLF-0 shows a minimum at η �= 0,
but the second-order FLF-2 eliminates this artifact.

Conclusion and outlook. Let us discuss the domain of
applicability, limitations, and possible generalization of our
method. First, in this paper we limited ourselves to small
lattices. This is because we consider one mode of the fluc-
tuation field ν, we can apply our results only to the systems
with the homogeneous order parameter value, considering
only small size systems. For larger systems the uniform de-
pendency or the order parameter cannot catch all collective
modes of fluctuations presented in the system. For medium-
size lattices several Fourier modes ηk of the order parameter
η(r) = ∑

i ηkeikr should be estimated, corresponding to sev-
eral modes of the fluctuating local field ν(r) = ∑

i νkeikr [29].
Such a generalization of the formalism looks straightforward
but makes numerical simulation harder.

In the most general case including infinite lattices, it is
necessary to take into account the heterogeneity of the order
parameter value η(r) by switching from the Landau theory
(1) to the Ginzburg-Landau functional [35]. To construct the
Ginzburg-Landau functional, one basically should integrate
over the high-energy degrees of freedom leaving only the
variables related to the long-range fluctuations of the order pa-
rameter. This procedure can be carried out using the so-called
cluster methods or coarse-grained modeling [22,23,36,37].
The key ingredient of this approach resembles the study pre-
sented in our paper—one performs calculations for a small
lattice, called a cluster. The obtained collective properties of
the cluster are later propagated to a large system. Thus the
short-range phenomena are taken into account while solv-
ing the cluster model, and the entire system is described
using the collective (coarse-grained) variables. In particular,
constructing a Ginzburg-Landau functional, as well as coarse-
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FIG. 2. Landau free energy obtained by the optimization procedure for the Ising (a) and Heisenberg (b) 4 × 4, 6 × 6 periodic lattices. The
resulting curves are compared with the values obtained by numerical simulation. For better visualization, the curves are shifted by a constant
for different temperatures.

grained equations of lattice motion, requires finding the
Landau free energy of a cluster.

Since the fluctuation local field formalism allows us to
calculate thermodynamical values such as free energy, magne-
tization [29], and Landau free energy, it could be also applied
as a cluster solver for coarse-grained studies [38–40]. This
makes possible extension of the present approach to fermionic
systems particularly important, because it would contribute
ab initio to computation, e.g., dynamics of large molecules
[38,41].

In conclusion, we applied the fluctuation local field method
to calculate Landau free energy landscape for the classical

Heisenberg and Ising small periodical lattices. Our approach
establishes an unambiguous relationship between the Lan-
dau free energy and the equations of the fluctuating local
field method. We propose a way to reduce an arising ill-
posed backward Cauchy problem for the heat equation to
a minimization problem. This way, we formulate a control-
lable series of approximations for the Landau free energy
of small systems. The scheme is benchmarked by a com-
parison with the results obtained by the numerically exact
simulations.
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