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There are conflicting reports in the literature regarding the finite-size scaling of the Liouvillian gap and
dynamical fluctuations at discontinuous phase transitions, with various studies reporting either exponential or
power-law behavior. We clarify this issue by employing large deviation theory. We distinguish two distinct
classes of discontinuous phase transitions that have different dynamical properties. The first class is associated
with phase coexistence, i.e., the presence of multiple stable attractors of the system dynamics (e.g., local minima
of the free-energy functional) in a finite phase diagram region around the phase transition point. In that case,
one observes asymptotic exponential scaling related to stochastic switching between attractors (though the onset
of exponential scaling may sometimes occur for very large system sizes). In the second class, there is no phase
coexistence away from the phase transition point, while at the phase transition point itself there are infinitely
many attractors. In that case, one observes power-law scaling related to the diffusive nature of the system
relaxation to the stationary state.
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I. INTRODUCTION

The dynamics of many-body systems exhibits certain char-
acteristic features at equilibrium or nonequilibrium phase
transitions, which manifest themselves already for finite
system sizes. In systems described by Markovian master equa-
tions, one of the dynamical signatures of the phase transition is
the closing of the Liouvillian gap with the increase in system
size. This gap is the smallest relaxation rate of the system and
is given by the second dominant eigenvalue of the Liouvillian
generator of the dynamics of the system [1,2]. This observa-
tion has recently been generalized to the non-Markovian case
[3,4]. The Liouvillian gap closing is related to the presence of
degenerate steady states of the system, which correspond to
different phases that are separated by a phase transition point.
When the system possesses a unique steady state for finite
system sizes, the Liouvillian gap asymptotically approaches
zero with increasing system size and closes exactly in the
thermodynamic limit. Studies of both continuous and dis-
continuous phase transitions have revealed certain universal
features of this asymptotic scaling behavior. In the first case,
the Liouvillian gap was shown to exhibit a power-law scaling
[5,6]. This is related to the well-known phenomenon of critical
slowing down. In particular, for classical stochastic systems,
the power-law scaling of the slowest relaxation timescale has
been explained by using van Kampen’s expansion of the mas-
ter equation [7,8]. The situation is less clear for discontinuous
phase transitions. Such transitions often occur in the phase
diagram region which admits multiple attractors of the system
dynamics, e.g., local minima of the free-energy functional. In

*Contact author: krzysztof.ptaszynski@ifmpan.poznan.pl
†Contact author: massimiliano.esposito@uni.lu

this case, an exponential scaling of the Liouvillian gap has
been predicted, since the slowest timescale of the system is
related to stochastic switching between the attractors, which
is exponentially suppressed with the system size [9–11]. This
prediction was confirmed by certain numerical simulations
[6,12]. However, some other numerical studies of discontin-
uous phase transitions have instead observed a power-law
scaling [13,14]. Furthermore, recently an experimental study
of a superconducting qubit-cavity setup reported a power-law
scaling of transition rates between the attractors [15], which,
as mentioned above, are directly related to the Liouvillian gap.

Although the Liouvillian gap is a rather abstract concept,
its scaling properties manifest themselves in the corre-
sponding scaling of measurable quantities. In particular, as
discussed in Sec. III, at the phase transition point, the scaling
of the Liouvillian gap can determine the scaling of dynam-
ical fluctuations of the system observables. Indeed, previous
studies demonstrated the power-law scaling of fluctuations
for continuous phase transitions [16,17] and the exponential
scaling for discontinuous ones [17–20], in complete analogy
to the scaling of the Liouvillian gap. (Although in quantum
systems an exponential scaling of certain types of fluctuations
may also be observed at continuous phase transitions due to
quantum measurement effects [20].) The power-law behav-
ior at continuous phase transitions is caused by the critical
slowing down of the dynamics at the phase transition point, as
recently discussed in Ref. [17]. At discontinuous phase transi-
tions, as in the case of the Liouvillian gap, the exponential
scaling of fluctuations has been related to the correspond-
ing scaling of the timescale of stochastic switching between
the system attractors. Indeed, in many cases fluctuations can
be quantitatively described using an effective two-state model
based on this assumption [17–19,21].
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In this paper, we characterize the scaling of the Liouvillian
gap and of fluctuations at discontinuous phase transitions.
To that end, we make use of large deviation theory [22–26].
Within this framework, different equilibrium or nonequilib-
rium phases of the system correspond to different attractors
of the system dynamics. These attractors further correspond
to the minima of the large deviation rate function describing
the rare fluctuations of the system observables. The global
minimum corresponds to the stationary state of the system,
called the absolutely stable attractor, while the local minima
correspond to the metastable attractors. We classify arbitrary
discontinuous phase transitions into two classes. The first is
associated with phase coexistence, i.e., the presence of mul-
tiple attractors in a finite phase diagram region around the
phase transition point. At the phase transition point, one of
these attractors becomes absolutely stable at the expense of
the other. In that case, one observes an exponential scaling
of the Liouvillian gap and fluctuations, associated with
stochastic switching between the attractors. In the second
class of discontinuous phase transitions, there is no phase
coexistence. When crossing the phase transition point, the pre-
viously existing absolutely stable attractor becomes unstable,
i.e., the associated minimum of the rate function vanishes. At
the phase transition point itself, there are infinitely many sta-
ble attractors, and the rate function becomes constant. In this
case, the Liouvillian gap and fluctuations exhibit a power-law
scaling related to the diffusive nature of the system relaxation
to the stationary state. These conclusions hold unless one
considers systems where, at the phase transition point, the
stationary state is not unique, and thus the Liouvillian gap is
closed for any system size.

We draw our conclusions from the study of several
open systems. We first consider a simple model that ex-
hibits a discontinuous phase transition at equilibrium, the
molecular zipper [27], which provides important analytical
insights. The generality of our conclusions is then illus-
trated with two nonequilibrium open quantum systems: the
dissipative quantum Ising model [6] and the anisotropic
Lipkin-Meshkov-Glick (LMG) model [3,28]. We also briefly
discuss the squeezed decay model [29–31], where the Liou-
villian gap is closed for any finite system size at the phase
transition point.

The paper is organized as follows. In Sec. II we dis-
cuss the spectral decomposition of the Liouvillian and define
the concept of the Liouvillian gap. In Secs. III and IV we
briefly review the spectral theory of fluctuations and the
large deviation theory of discontinuous phase transitions.
Sections V–VIII present the results for the molecular zipper,
open quantum Ising model, anisotropic LMG model, and the
squeezed decay model, respectively. Finally, Sec. IX draws
the conclusions from our results. The Appendix presents the
derivation of the Liouvillian gap formula for the molecular
zipper in the phase coexistence region.

II. SPECTRAL PROPERTIES AND GAP
OF THE LIOUVILLIAN

Let us first briefly review the description of the open
system dynamics in terms of spectral properties of the Liou-
villian and then introduce the concept of the Liouvillian gap.

To simplify the discussion, we start from the classical case.
Consider a Markovian system consisting of M discrete states
i ∈ {1, . . . , M} with probabilities pi. The dynamics of state
probabilities can be described by the master equation

ṗ = W p, (1)

where p = (p1, . . . , pM )T is the vector of state probabilities,
and W is the rate matrix, also called the Liouvillian. The
off-diagonal elements of the rate matrix Wi j (i �= j) are the
transition rates from the jth to the ith state, while the diagonal
elements Wii = −∑

j �=i Wji are responsible for the probability
conservation. In our paper, we further focus on the systems
whose rate matrix is irreducible, i.e., every state i can be
reached from every other state j by a sequence of Markov
jumps. In such a case, by virtue of the Perron-Frobenius the-
orem, for finite state spaces, the system has a unique steady
state pss (with all state probabilities being strictly positive),
corresponding to the solution of the equation

W pss = 0. (2)

This description can be generalized to open quantum systems
with dynamics described by the Lindblad equation (we take
h̄ = 1)

ρ̇ = −i[H, ρ] +
∑

k

γkD[Lk](ρ), (3)

where the two successive terms on the right-hand side corre-
spond to the unitary and dissipative dynamics of the system,
respectively, H is the effective Hamiltonian of the system, γk

are the jump rates, and

D[Lk](ρ) ≡ LkρL†
k − 1

2 {L†
k Lk, ρ}, (4)

where Lk are the Lindblad jump operators. The Lindblad
equation is often written in short as

ρ̇ = Lρ, (5)

where generators of unitary and dissipative dynamics are
merged into one superoperator, called the Liouvillian.

We now rewrite the Lindblad equation (3) in the matrix
form analogous to the classical master equation (1). To this
end, we employ the Liouville space representation [32,33].
Within this approach, the d × d density matrix ρ (where d
is the Hilbert space dimension of the system) is represented
by the d2 column vector |ρ〉〉,

ρ → |ρ〉〉, (6)

such that element ρi j of the density matrix corresponds to the
[i + ( j − 1)d]th element of the vector |ρ〉〉. Operators in the
Liouville space can be represented as

Â → Ā = 1 ⊗ Â, (7)

and their expected values can be calculated as

Tr(Âρ) = 〈〈1|Ā|ρ〉〉, (8)

where 〈〈1| is the row vector with elements equal to 1 at
positions i + (i − 1)d , and 0 otherwise. The dynamics of the
vector |ρ〉〉 is given by the equation

d

dt
|ρ〉〉 = L̄|ρ〉〉, (9)
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where

L̄ = − i(1 ⊗ H − HT ⊗ 1)

+
∑

k

γk

[
L∗

k ⊗ Lk − 1

2
1 ⊗ L†

k Lk − 1

2
(L†

k Lk )T ⊗ 1

]
(10)

is the matrix representation of the Liouvillian [2,34–36]. Note
that ∗ here denotes the complex conjugate, while † is the
Hermitian conjugate. Analogously to the classical case, the
steady state is given by the solution of the equation

L̄|ρss〉〉 = 0. (11)

For finite Hilbert spaces, the steady state of the system is
unique and faithful (spanned over the whole Hilbert space of
the system) if and only if its dynamics is Davies irreducible,
i.e., when the condition

∀ρ̂,t : eLt P̂ρ̂P̂ = P̂(eLt P̂ρ̂P̂)P̂, (12)

where P̂ is a Hermitian projection operator fulfilling P̂P̂ = P̂,
is satisfied only for P̂ = 1 and P̂ = 0| [37,38]. In other words,
there is no subspace of the Hilbert space such that, for an
initial state confined to that subspace, the final state will also
be confined to that subspace. An example where this is not
true is considered in Sec. VIII.

We now discuss how dynamics of the system can be
described in terms of the spectral decomposition of the Li-
ouvillian. For a time-independent Liouvillian, the state of the
system at time t can be written as

|ρ(t )〉〉 = eL̄t |ρ(0)〉〉, (13)

where |ρ(0)〉〉 is the initial state and eL̄t is the propagator of
the dynamics. It can be spectrally decomposed as1 [2,7,25]

eL̄t = |ρss〉〉〈〈1| +
∑
j �=0

eλ j t |x j〉〉〈〈y j |, (14)

where |x j〉〉 and 〈〈y j | are right and left eigenvectors of the
Liouvillian corresponding to the eigenvalue λ j :

L̄|x j〉〉 = λ j |x j〉〉, 〈〈y j |L̄ = λ j〈〈y j |. (15)

The eigenvectors are normalized as 〈〈y j |x j〉〉 = 1. The eigen-
values of the Liouvillian are here ordered in the decreasing
order of their real parts: Re(λ0) � Re(λ1) � · · · � Re(λd2−1).
When the steady state is unique, the Liouvillian has a single
dominant eigenvalue λ0 equal to 0, and the associated right
and left eigenvectors correspond to |ρss〉〉 and 〈〈1|, respec-
tively. Consequently, Eq. (13) can be rewritten as

|ρ(t )〉〉 = |ρss〉〉 +
∑
j �=0

eλ j t |x j〉〉〈〈y j |ρ(0)〉〉. (16)

1Here we assume that the Liouvillian is diagonalizable, and thus its
right and left eigenvectors form a complete basis. The opposite situa-
tion, when the Liouvillian becomes defective and some eigenvectors
become degenerate, may occur for certain points in the parameter
space, called the exceptional points [39]. However, such points are
rare and are not relevant in the context of the present paper.

Now, we can see that the real parts of the eigenvalues
λi (i > 0) describe the relaxation rates of the system to the
stationary state. In particular, the absolute value of the slowest
relaxation rate is known as the Liouvillian gap,

λ ≡ |Re(λ1)|. (17)

When the steady state is unique, the Liouvillian gap is strictly
positive. Instead, when the steady state is n-fold degenerate,
the Liouvillian has n dominant eigenvalues equal to 0 [2,25],
and thus the Liouvillian gap is closed (λ = 0). This may occur
in two situations:

(1) When the system dynamics is not irreducible for finite
system sizes [see discussion below Eqs. (1) and (11)].

(2) When the system dynamics is irreducible for finite
system sizes, but the Liouvillian gap closing and the steady-
state degeneracy emerges in the thermodynamic limit of an
infinite system size [2] (where the Perron-Frobenius theorem
and its quantum generalizations [37,38] do not apply, as they
are formulated for finite-dimensional Liouvillians).

In our work, we mostly focus on the latter case, though the
former case is briefly reviewed in Sec. VIII.

Finally, we note that despite corresponding to the slowest
relaxation rate of nonstationary eigenvectors of the Liouvil-
lian, the Liouvillian gap cannot always be simply identified
with the slowest relaxation timescale of the system, as the
latter may result from the interplay of several relaxation pro-
cesses [40–44].

III. SPECTRAL THEORY OF FLUCTUATIONS

As spectral decomposition of the Liouvillian fully char-
acterizes the system dynamics, it also provides a convenient
way to determine the properties of dynamical fluctuations
of system observables described by Hermitian operators ô
[7,25,45]. They can be characterized by means of the noise
spectral density [46]

Soo(ω) ≡
∫ ∞

−∞
dt eiωt 〈ô(t )ô(0)〉, (18)

where 〈ô(t )ô(0)〉 is the two-time correlation function. For
Markovian open quantum systems, this function can be cal-
culated using the quantum regression theorem [47]

〈ô(t )ô(0)〉 = Tr(ôeLt ôρss), (19)

which is applicable for t � 0. The correlation function
for negative times is given by the relation 〈ô(−t )ô(0)〉 =
〈ô(t )ô(0)〉∗ [25]. The noise spectral density can thus be cal-
culated as

Soo(ω) =
∫ ∞

0+
dt eiωt Tr(ôeLt ôρss) + c.c. (20)

Using Eq. (14), the two-time correlation function can be writ-
ten as

Tr(ôeLt ôρss) = 〈〈1|ō|ρss〉〉2 +
∑
j �=0

eλ j t 〈〈1|ō|x j〉〉〈〈y j |ō|ρss〉〉.

(21)
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Inserting this expression into Eq. (20), we obtain the spectral
decomposition of the noise spectral density [7,25]

Soo(ω) = −
∑
j �=0

1

iω + λ j
A( j)

oo + c.c., (22)

where we define the overlap functions

A( j)
oo ≡ 〈〈1|ō|x j〉〉〈〈y j |ō|ρss〉〉. (23)

In particular, zero-frequency noise can be expressed as

Soo(0) = −
∑
j �=0

1

λ j
A( j)

oo + c.c. (24)

This expression enables us to relate the finite-size scaling
of fluctuations in systems exhibiting phase transitions to the
scaling of the Liouvillian gap. Let us focus on the case where
the eigenvalue λ1 is real (which is the case for the models
considered in this paper, and other discontinuous phase tran-
sition models known to us). It can now be argued that when
the Liouvillian gap closes (λ ≈ 0), which occurs at the phase
transition point, fluctuations are dominated by the term related
to λ:

Soo(0) ≈ 1

λ
2 ReA(1)

oo . (25)

Thus, either exponential or power-law closing of the Liouvil-
lian gap should be reflected in the exponential or power-law
divergence of the noise spectral density. More precisely, this
is true provided that the overlap function A(1)

oo is nonvanish-
ing; an example where this is not the case is presented in
Sec. VI B 2.

Equation (24) can also be rewritten in a concise form [48]

Soo(0) = −2 Re〈〈1|ōL̄Dō|ρss〉〉, (26)

where L̄D = ∑d2−1
j=1 λ−1

j |x j〉〉〈〈y j | is the Drazin inverse of the
Liouvillian [49]. This formula is convenient for numerical cal-
culations. Finally, while we focus on system observables, an
analogous spectral decomposition can be applied for current
fluctuations [50–52] (see Ref. [48] for a recent tutorial paper).

IV. DISCONTINUOUS PHASE TRANSITIONS

Before focusing on specific models, let us first briefly
review a general theory of discontinuous phase transitions,
applicable both in and out of equilibrium. Consider a generic
system characterized with a probability distribution P(m) of
some intensive observable m (e.g., magnetization or concen-
tration of a chemical species). Let us also take the size of the
system (e.g., number of spins or volume) to be parametrized
by a scaling parameter N . In many physical situations, for
large system sizes, the probability distribution P(m) takes an
asymptotic large deviation form [22–26]

P(m) 
 e−NV (m), (27)

where V (m) is the scale-independent rate function. In particu-
lar, for equilibrium systems, the rate function may correspond
to the free-energy density functional. The formula above
implies that for a large system size the probability distribu-
tion P(m) becomes narrowly peaked around the position of
the global minimum of the rate function. Then, the average

m1

m2

h=hc

Coex.

m1 m2

FIG. 1. (a) Schematic presentation of the steady-state rate func-
tion in the phase coexistence region for different values of h.
(b) Schematic presentation of the discontinuous phase transition for
the observable m (black solid line). The black dashed lines represent
the metastable attractors, and the vertical blue dotted lines denote the
borders of the phase coexistence region (Coex.). Small inset plots in
the bottom of the graph (red solid lines) present the behavior of the
rate function V (m) in different phase diagram regions.

value of the observable m corresponds to the position of this
minimum:

〈m〉 
 arg minmV (m). (28)

(For simplicity, here we take the global minimum to be
unique; one needs to be more careful in the case of de-
generacy.) In some physical situations, the rate function can
have several minima, which is schematically represented in
Fig. 1(a). This is called multistability or phase coexistence.
The minima of the rate function then correspond to attractors
of the system dynamics [23,25,26]. In particular, the global
minimum corresponds to the absolutely stable attractor, which
tends to be occupied with probability 1 in the thermodynamic
limit N → ∞. The local minima correspond instead to the
metastable attractors of the system. For finite system sizes, the
metastable attractors tend to relax over time to the absolutely
stable attractor. However, the relaxation timescales (called the
lifetimes of metastable states) increase with the system size N
and diverge for N → ∞ [9–11,25].

Let us further assume that the rate function V (m) depends
on some control parameter h (e.g., magnetic field, tempera-
ture, pressure, or concentration of other chemical species).
The range of parameter h in which the system possesses
multiple attractors is called the phase coexistence region. The
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parameter h further determines which of the minima of the
rate function is global, and thus which attractor is absolutely
stable. Specifically, in the case presented in Fig. 1(a), the
average value of the observable m takes the value m1 (m2)
for h < hc (h > hc), where hc is called the critical value of
the parameter h, or the phase transition point. At h = hc,
both minima have the same value and thus the absolutely
stable attractor becomes degenerate. Consequently, when the
parameter h is tuned, in the thermodynamic limit N → ∞
the observable m exhibits a discontinuous phase transition at
h = hc, that is, its average value exhibits a discontinuous jump
from m1 to m2. This is schematically illustrated in Fig. 1(b).
We note that here we refer to the behavior of the stationary
value of the observable m, assuming that the system relaxes
to the stationary state. When the parameter h is swept fast
compared to the relaxation time of the metastable attractor,
the system exhibits rather a hysteretic behavior, staying in the
metastable attractor after crossing the phase transition point.

However, while the picture presented here is quite common
in physical systems, in some instances a discontinuous phase
transition point is not surrounded by the phase coexistence
region. Instead, the phase transition point separates the phase
diagram regions with distinct attractors (i.e., when crossing
the phase transition point from one side, all previously ex-
isting attractors vanish) [14,27,29–31,53,54]. In the examples
considered in this paper, the rate function V (m) becomes con-
stant, and thus there are infinitely many attractors (i.e., every
value of m corresponds to some attractor). As we will see, both
scenarios (with and without phase coexistence) are associated
with a qualitatively different behavior of the Liouvillian gap
and fluctuations. In the former case, their finite-size scaling is
dominated by stochastic switching between attractors, which
is exponentially suppressed with the system size. Instead,
in the latter case, this scaling is dominated by the diffusion
between attractors and thus exhibits a power-law behavior.

V. MOLECULAR ZIPPER MODEL

A. Equilibrium thermodynamics of the model

Let us now analyze the finite-size scaling of the Liouvillian
gap and fluctuations in an equilibrium system exhibiting a
discontinuous phase transition. We consider a generalization
of the molecular zipper proposed by Kittel [27], a toy model
of the unwinding transition in DNA molecules. Due to its
simplicity and analytic tractability, it has received interest
in other physical contexts, such as large deviation theory
[55,56], nonequilibrium dynamics and thermodynamics [57],
or melting of thin films [58]. We emphasize, however, that
our intention here is not to describe the behavior of any
specific real-world system. Instead, our goal is to develop
an analytically tractable toy model of discontinuous phase
transitions that will shed light on the phenomena observed in
the microscopically justified but much more complex models
discussed in the following sections.

The model consists of a double-stranded macromolecule,
rigidly connected at one end, stabilized by N parallel links
that can be either closed or open (Fig. 2). The ith link can
close only if the i − 1 preceding links are also closed. Closing
of the ith link decreases the energy of the system by εi. (This

FIG. 2. Scheme of the molecular zipper with n = 10 closed links
and N − n = 10 open links. The scheme corresponds to the case
of g = 2, with open links taking two orientations: “inward” and
“outward.”

generalizes the original model, where all energies εi were
equal to each other.2) The energy of the system with n closed
links is then equal to

En = −
n∑

i=1

εi. (29)

It is also assumed that the link can be opened in g different
energy-degenerate ways (e.g., open links can be oriented in
different directions). Thus, the system with n closed links cor-
responds to g(N−n) different microscopic configurations of the
system. Consequently, the Boltzmann entropy of the system
with n closed links is equal to

Sn = kB ln g(N−n) = (N − n)kB ln g. (30)

The system is also coupled to an ideal thermal bath with
a temperature T . For convenience of notation, we often also
use the inverse temperature β = 1/(kBT ). We define the free-
energy functional of the system Fn ≡ En − T Sn:

Fn = −
n∑

i=1

εi − (N − n)kBT ln g. (31)

The probability that n links are closed is then given by Boltz-
mann distribution

pn = Z−1e−βFn , (32)

where Z = ∑N
m=0 e−βFm is the partition function.

We now parametrize the link energies εi such that the
model exhibits the large deviation behavior of probabilities
pn, given by Eq. (27). To do that, we take the energies εi to be
given by a scale-invariant function f (x):

εi = f

(
i

N

)
. (33)

We then consider the limit of the large system size N and
parametrize n with the rescaled variable q = n/N ∈ [0, 1]. We

2The original model has also used a different convention, where an
open link was characterized with a positive energy ε. Our convention
is more convenient in the case where the energies of closed links can
vary.
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define the free-energy density functional

F (q) ≡ lim
N→∞

Fn

N
for q = n

N
. (34)

Taking a continuous limit of Eq. (31), the free-energy density
functional can be expressed as

F (q) = −
∫ q

0
f (x)dx − (1 − q)kBT ln g. (35)

Let us now consider the equilibrium behavior of the sys-
tem. In the large N limit, the absolutely stable attractor,
corresponding to the equilibrium state, can be found by mini-
mizing the free-energy density functional F (q). Indeed, using
Eqs. (32) and (34), the probabilities that n links are closed
scale in the large N limit as

pn ∝ e−NβF (n/N ) ≡ e−NV (n/N ), (36)

where V (q) = βF (q) is the rate function defined in Sec. IV.
Consequently, using theory from Sec. IV, the equilibrium
average number of the closed links takes an asymptotic form

〈n〉eq 
 Nqeq, (37)

where qeq is the value of q minimizing F (q):

qeq = arg min
q∈[0,1]

F (q). (38)

We note that minimization is restricted to the domain of q, that
is, the interval [0, 1].

We then focus on a particular model where the energies of
closed links are given by a linear function:

f (x) = ε(1 + 2ax), (39)

with a � 0. Using Eq. (35), the free-energy density functional
becomes a quadratic function of q:

F (q) = (kBT ln g − ε)q − εaq2 − kBT ln g. (40)

Minimizing F (q), we find that in the thermodynamic limit the
system exhibits a discontinuous phase transition: the zipper is
closed (qeq = 1) below the critical temperature

Tc = (1 + a)ε

kB ln g
, (41)

while it is open (qeq = 0) above this temperature. Further-
more, in a finite-temperature window below and above Tc

one observes the phase coexistence: the free-energy density
functional has two minima at q = 0 and q = 1. As discussed
in Sec. IV, the global minimum corresponds to the absolutely
stable attractor (i.e., the equilibrium state), while the local
minimum corresponds to the metastable attractor. The lower
and upper borders of the temperature window of the phase
coexistence read as

T1 = ε

kB ln g
, T2 = ε(1 + 2a)

kB ln g
. (42)

The schematic presentation of the thermodynamic behavior
of the order parameter qeq is presented in Fig. 3. As one may
observe, for T1 < T < Tc (Tc < T < T2) the thermodynamic
equilibrium corresponds to the closed (open) state, while the

FIG. 3. Schematic temperature dependence of the order parame-
ter qeq (black solid line). The dashed lines represent the metastable
attractors related to local minima of the free-energy density func-
tional. The letter C (O) denotes the temperature region in which only
the closed (open) attractors exist. The letters C + O (O + C) denote
the region in which the closed (open) attractor is absolutely stable,
while the open (closed) attractor is metastable. Small inset plots in
the bottom of the graph (red solid lines) present the behavior of the
free-energy density functional F (q) (for q ∈ [0, 1]) in different phase
diagram regions.

open (closed) state is metastable. In contrast, for T < T1 (T >

T2) the free-energy density functional has a single minimum
that corresponds to the closed (open) attractor.

We recall that the original molecular zipper model corre-
sponds to the case of a = 0. In this case, Tc = T1 = T2, and
thus the phase coexistence region vanishes. Furthermore, at
the phase transition point, the probability distribution {pn}n

becomes uniform, and thus the free-energy density functional
F (q) and the rate function V (q) = βF (q) become constant.
As we later show, this has huge consequences for the scaling
of the Liouvillian gap and fluctuations.

B. Master equation

Let us now present the dynamical description of the model
using the Markovian master equation. In fact, there is an
infinite number of dynamical models which are consistent
with the equilibrium description presented in the previous
subsection. For the sake of simplicity, we use the following
assumption: As mentioned, every link can be opened in g de-
generate ways. We assume that when the ith link opens, each
of these degenerate states is generated with equal probability.
Analogously, for every state of an open link, the transition rate
to close the link is the same. Then, the system can be described
using a coarse-grained mesoscopic master equation [59] for
probabilities pi that i links are closed,

ṗi =
∑

j

(Wi j p j − Wji pi ), (43)

where Wi j is the transition from the state with j closed links
to the state with i closed links. We recall that each state with
i closed links, associated with probability pi, corresponds
to g(N−i) equally probable microscopic configurations of the
system. To provide consistency with thermodynamics, the
transition rates must satisfy the detailed balance condition
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FIG. 4. The ratio of the asymptotic Liouvillian gap λas, given
by Eq. (48), and the exactly calculated Liouvillian gap λ for the
molecular zipper with a = 0.

[59]3

ln
Wi−1,i

Wi,i−i
= β(Fi − Fi−1), (44)

where Fi is the free-energy functional defined in Eq. (31).
Therefore, the ratio of rates related to the opening and closing
of the ith link is related to the free-energy cost to close the
ith link. As a specific choice of transition rates that fulfill this
condition, we use Arrhenius rates

Wi,i−1 = � exp(βεi/2) (i = 1, . . . , N ),

Wi−1,i = g� exp(−βεi/2) (i = 1, . . . , N ),

Wi j = 0 otherwise for i �= j. (45)

Recall that the diagonal rate matrix elements read Wii =
−∑

j �=i Wji.

C. Liouvillian gap scaling

1. a = 0: Power-law scaling

Let us now consider the finite-size scaling of the Liou-
villian gap at the critical temperature T = Tc. We first focus
on the case of a = 0, where all energies εi are equal to each
other. As mentioned, in this case the phase coexistence region
vanishes. At the critical temperature Tc all nonzero transition
rates are equal and can be expressed as

Wi,i+1 = Wi+i,i = �
√

g. (46)

Spectral decomposition of the rate matrix with such transition
rates is known in the theory of Laplacian matrices. Specifi-
cally, the eigenvalues of the rate matrix read [60]

λ j = −4�
√

g sin2

[
π j

2(N + 1)

]
. (47)

Using the Taylor expansion and focusing on the leading order
of N , it is now clear that in the large N limit the Liouvillian

3This condition can be generalized to a multiple-bath nonequi-
librium scenario, where a similar local detailed balance condition
holds [59].

gap exhibits an asymptotic power-law scaling:

λ 
 λas = π2�
√

g

N2
. (48)

Figure 4 presents the ratio of this asymptotic power-law for-
mula and the exact result. We can observe that the Liouvillian
gap follows the asymptotic ∝N2 behavior very well for large
enough system sizes N � 400.

Diffusive mechanism of power-law scaling. Let us now
rationalize this result using another approach. In the large N
limit, instead of the discrete probability distribution {pn}n, one
can use the probability density ρ(q) = N pn with q = n/N .
Using the Kramers-Moyal expansion of the master equa-
tion [61,62], the equation of motion for ρ(q) can be written
as [23]

∂tρ(q) = − ∂

∂q
[μ(q)ρ(q)] + ∂2

∂q2
[D(q)ρ(q)] + O(N−3),

(49)

where μ(q) = [w+(q) − w−(q)]/N is the drift term and
D(q) = [w+(q) + w−(q)]/(2N2) is the diffusion coefficient.
The functions w±(q) are here the transition rates Wi±1,i for
i = qN and N → ∞:

w±(q) = �
√

gexp

[
± f (q)

2kBT
∓ ln g

2

]
, (50)

with the function f (q) given by Eq. (39). For a = 0, at the
phase transition point, w+(q) = w−(q) = �

√
g, and thus the

drift term μ(q) disappears for all q. In other words, all q
are the attractors of the system dynamics. Consequently, the
system does not converge to a stationary state with a well-
defined q, corresponding to the minimum of the free-energy
density functional, but rather to a uniform probability distri-
bution. Due to vanishing of the drift term, the relaxation to the
uniform state is purely diffusive. Consequently, the slowest
relaxation timescale of the system, which is related to the
Liouvillian gap, is determined by the diffusion term, which
scales as N−2. This scaling corresponds to our analytic result
(48) for the Liouvillian gap.

We note that here we tacitly neglected higher-order terms
of the Kramers-Moyal expansion [of order O(N3)]. This is
justified as the drift term vanishes, and thus the diffusion term
is dominant in the system dynamics. However, in a generic
case where the drift term does not vanish, the higher-order
terms become important when considering rare fluctuations
far from the system attractors [25,63–65] (among others, their
neglect violates the thermodynamic consistency [21,23]). In
particular, they strongly influence the transition rates between
attractors considered in the next paragraph [66]. We further
note that similar arguments based on a diffusive mecha-
nism have been used to explain the critical slowing down
at continuous phase transitions, where the slowest relaxation
scale also scales as a power law with the system size [7,8], or
the power-law scaling of the Liouvillian gap in systems with
periodic attractors [67–70]. Although in those cases the drift
term is nonvanishing (in contrast to our example), the slowest
relaxation timescale is determined by dynamics close to the
system attractors, where the higher-order terms beyond the
diffusive one can be neglected.
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FIG. 5. The Liouvillian gap, plotted in the logarithmic scale, as a
function of N for different values of a calculated numerically (dots)
and approximated using Eq. (51) (lines). Parameter: g = 2.

2. Large a: Exponential scaling

We now focus on the opposite regime where a is relatively
large, and thus the temperature window of the phase coexis-
tence is wide. In such a case, the Liouvillian gap is determined
by the slowest process, namely, the stochastic switching be-
tween the coexisting closed and open attractors. As shown in
Refs. [9,10], in the large N limit, the Liouvillian gap is then
asymptotically given by an Arrhenius-like formula

λ 
 A exp(−Nβc�F ), (51)

where A is the preexponential factor, dependent on system
kinetics, and

�F ≡ F (qmax) − F (qeq) for T = Tc (52)

is the free-energy density barrier separating the closed and
open attractors. Here, qeq given by Eq. (38) corresponds to
the minimum of the free-energy density functional, while

qmax ≡ arg max
q∈[0,1]

F (q) (53)

corresponds to its maximum. In our case, we have two de-
generate minima with qeq ∈ {0, 1}, and qmax = 1/2. Using
Eq. (40), the free-energy density barrier reads

�F = β−1
c

a ln g

4(1 + a)
. (54)

The preexponential factor A can be approximated analytically
using the theory presented in Ref. [10] as

A ≈ 2�
√

g√
πN

(
a ln g

1 + a

)3/2

. (55)

For details of the derivation, see the Appendix. As implied
by Eq. (51), the Liouvillian gap closes exponentially with the
system size.4 To illustrate that, Fig. 5 shows the scaling of the
numerically calculated Liouvillian gap for different values of
a, which is compared with the asymptotic formula (51) with

4We also note that the preexponential factor, being proportional to
1/

√
N , brings a subexponential correction to the exponential scal-

ing. Arrhenius law with subexponential correction is known as the
Eyring-Kramers formula [61,71].

FIG. 6. The Liouvillian gap as a function of N for a relatively
small a = 0.05 plotted in the log-log scale (a) and the logarithmic
scale (b). Black solid lines in (a) and (b) represent the power-law and
exponential fit for small and large values of N , respectively. Expo-
nential scaling is characterized by the factor c ≈ 0.0097. Parameter:
g = 2.

A given by Eq. (55). The agreement for large system sizes is
very good, which confirms the exponential character of the
Liouvillian gap scaling in the considered regime.

3. Small a: Crossover from power-law to exponential scaling

As discussed above, for a = 0 the Liouvillian gap exhibits
a power-law scaling, related to the diffusive nature of system
relaxation to the stationary state, while for large a it exhibits
an exponential scaling, related to stochastic switching be-
tween attractors. The natural expectation is that, by increasing
a from 0 to finite values, one should continuously interpolate
between those regimes. To illustrate that, in Fig. 6 we plot the
scaling of the Liouvillian gap for a relatively small a = 0.05
in the log-log scale (a) and the logarithmic scale (b). As may
be observed, for small N the system exhibits a power-law
behavior, with the Liouvillian gap scaling approximately as
N−2, as in the case of a = 0. This is represented by the black
solid line in Fig. 6(a). On the other hand, for large N it starts
to exhibit an exponential scaling, which is represented by the
black solid line in Fig. 6(b). Thus, one observes a crossover
from power-law to exponential scaling with increasing N . As
implied by comparison with Fig. 5, the onset of exponential
behavior shifts toward the higher values of N as a decreases.

We can qualitatively relate the crossover behavior to the
fact that the free-energy density barrier �F is relatively low
for small values of a, and thus the switching between closed
and open states does not determine the slowest timescale of
the system for small values of N . Rather, as for a = 0, the
diffusive mechanism appears to be dominant. Consequently,
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for small �F , the onset of exponential behavior can shift to-
ward very large values of N . This may hinder the observability
of exponential scaling when the system sizes accessible in
simulations or experiments are limited.

D. Fluctuations scaling

As discussed in Sec. III, eigenvalues of the Liouvillian,
including the Liouvillian gap, are strictly connected to the
properties of dynamical fluctuations of observables. In this
section, we investigate whether the scaling of the Liouvillian
gap manifests itself in the corresponding scaling of fluctua-
tions. Specifically, we analyze the zero-frequency noise of the
number of closed links. It can be calculated using Eq. (24),
with the observable ō being the number operator defined as

n̄ ≡ diag(0, 1, 2, . . . , N ). (56)

1. a = 0

We first focus on the case of a = 0, where the spectrum
of the rate matrix can be found analytically. To apply the
methods from Sec. III, we use a quantumlike bra-ket notation
with pss ≡ |ρss〉〉. The steady state and the corresponding left
eigenvector read as

|ρss〉〉 = (1, . . . , 1)T /(N + 1), (57)

〈〈1| = (1, . . . , 1). (58)

The other right eigenvectors of the rate matrix (for j > 0) read
[60]

|x j〉〉 = (
x( j)

0 , . . . , x( j)
N

)T
, (59)

where

x( j)
k =

√
2

N + 1
cos

[
π j

(
k + 1

2

)
N + 1

]
. (60)

They correspond to elements of the discrete cosine transform
(DCT-II) matrix defined in the theory of cosine and sine
transforms. The left eigenvectors read simply 〈〈y j | = (|x j〉〉)T .
Using that, we calculate the overlap functions given by
Eq. (23) as

A( j)
nn =

[1 − (−1) j] sin2
(

π j
N+1

)
csc6

[
π j

2(N+1)

]
16(N + 1)2

. (61)

For j � N , they can be approximated using the Taylor expan-
sion as

A( j)
nn ≈ 4[1 − (−1) j]N2

π4 j4
. (62)

Using the spectral decomposition of noise [Eq. (24)], it can be
observed that the noise components −A( j)

nn /λ j decrease very
quickly with j. Thus, at the first level of approximation, noise
is given by the component related to the Liouvillian gap:

Snn(0) ≈ 2A(1)
nn

λ
≈ 16N4

π6�
√

g
. (63)

FIG. 7. The ratio of the asymptotic noise formula Sas
nn(0), given

by Eq. (65), and the exactly calculated noise Snn(0) for the molecular
zipper with a = 0.

A more refined asymptotic formula for Snn(0) is obtained
by calculating the limit

Snn(0) 
 −N4 lim
N→∞

1

N4

N∑
j=1

2A( j)
nn

λ j
. (64)

This yields

Snn(0) 
 Sas
nn(0) = N4

60�
√

g
, (65)

which is just about 1.0014 times larger than the approximate
formula (63). Thus, analogously to the Liouvillian gap, fluctu-
ations exhibit a power-law scaling. Figure 7 presents the ratio
of this asymptotic power-law formula and the exact result as
a function of N . We can observe that the noise follows the
asymptotic ∝N4 behavior very well already for small system
sizes (with the relative error below 0.1%), and converges very
fast to the asymptotic formula.

2. Large a

Let us now consider the opposite case of large a. In this
situation, the noise is mostly determined by the slowest pro-
cess, namely, the switching between the closed and open
attractors. This switching can be described as a Markovian
process described by an effective rate matrix Weff acting on
the probability vector peff ≡ (pO, pC )T , where pO (pC) is the
probability of the open (closed) attractor. Using the theory
presented in Ref. [10], the effective rate matrix can be approx-
imated as

Weff ≈ λ

T+ + T−

(−T− T+
T− −T+

)
, (66)

whose Liouvillian gap is equal to λ. The parameters T± are
defined in Eq. (A3) in the Appendix; as shown there, for the
case considered T+ = T−. Following Ref. [18], fluctuations
can then be characterized using an effective two-state model.
This is done using the approach from Sec. III, with the total
rate matrix replaced by the effective matrix Weff, and using the
effective number operator n̄eff ≡ diag(0, N ). Noise can then
be approximated as

Snn(0) ≈ N2

2λ
. (67)
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FIG. 8. The zero-frequency noise Snn(0) as a function of N for
different values of a calculated numerically (dots) and approximated
using Eq. (67) (lines), plotted in the logarithmic scale. Parameter:
g = 2.

Since the Liouvillian gap closes exponentially, one may ex-
pect an exponential divergence of fluctuations.

In Fig. 8 we present the scaling of the numerically calcu-
lated zero-frequency noise with N for different values of a
(dots), compared with the approximate formula (67), with the
Liouvillian gap evaluated using Eq. (51) (lines). As in the case
of the Liouvillian gap, we observe a very good agreement,
which confirms the exponential scaling of fluctuations in the
regime considered.

3. Small a

Finally, let us consider the regime where the parameter a is
relatively small (here a = 0.05). The scaling of fluctuations
in such a case is presented in Fig. 9. Let us just briefly
comment that we can see the same crossover from power-law
to exponential behavior as for the Liouvillian gap, with the
exponential scaling becoming clearly apparent only above a
certain threshold N ≈ 200.

VI. OPEN QUANTUM ISING MODEL

A. Description of the model

To illustrate the generality of our observations, we now turn
to a nonequilibrium quantum scenario. Specifically, we focus
on the open quantum Ising model [6] (a special instance of
the dissipative LMG model [3,14,28,72–74]) described by the
master equation

ρ̇ = −i[H, ρ] +
∑
±

γ±
N

D[Ŝ±](ρ) (68)

with the effective Hamiltonian

H ≡ − J

N
Ŝ2

x + hŜz. (69)

Here, Ŝx,y,z are spin-N/2 operators, J � 0 is the Ising-type
ferromagnetic coupling, h is the magnetic field, Ŝ± = Ŝx ± iŜy

are spin raising and lowering operators, and γ± are the asso-
ciated dissipation rates. This model can be realized using an
ensemble of N spins 1/2 undergoing a collective dissipation,
which preserves the total angular momentum. We note that
here we generalize the original model where γ+ = 0. We note

FIG. 9. The zero-frequency noise Snn(0) as a function of N for
a relatively small a = 0.05 plotted in the log-log scale (a) and the
logarithmic scale (b). Parameter: g = 2.

further that in Ref. [6] the Liouvillian was expressed in terms
of Pauli matrices rather than spin operators (which differ by
a factor of 2), and thus the expressions presented there may
differ by some scale factors.

The nonequilibrium phase transitions in the system have
been thoroughly studied in Ref. [6]. Let us just review some
of the most important aspects. In the large N limit, the system
dynamics can be described using mean-field equations for
normalized magnetization components mx,y,z ≡ 2〈Ŝx,y,z〉/N .
They read

ṁx = −hmy + γ mxmz/2,

ṁy = Jmxmz + hmx + γ mymz/2,

ṁz = −Jmxmy − γ
(
m2

x + m2
y

)
/2. (70)

Here we used the effective dissipation rate

γ ≡ γ− − γ+, (71)

which (in contrast to the original model with γ+ = 0) can be
either positive or negative. The equations preserve the total
magnetization m =

√
m2

x + m2
y + m2

z ; here we focus on the
case of m = 1. We further define the magnetization vector
m = (mx, my, mz ).

As discussed in Ref. [6], the mean-field equations admit
several stable and unstable fixed points. We focus only on the
stable points. For simplicity, we restrict ourselves to the case
of h � 0. Then, for γ < 0, the system has a unique fixed point
N with

mN = (0, 0, 1). (72)

044134-10



DYNAMICAL SIGNATURES OF DISCONTINUOUS PHASE … PHYSICAL REVIEW E 110, 044134 (2024)

FIG. 10. Phase diagram representing the stable fixed points of
mean-field equations for the open quantum Ising model. The symbols
within the curly braces denote the fixed points that are stable in a
given region. The horizontal blue dotted line corresponds to h = 0.1J
used in the magnetization plot in Fig. 12.

N corresponds therefore to the “north pole” of the Bloch
sphere. For γ > 0 this solution is unstable. The opposite
“south pole” fixed point S is associated with the vector

mS = (0, 0,−1). (73)

This solution is stable for γ > 0 except for 0 � γ � 1 and
B− � h � B+, where

B± = J

2
(1 ±

√
1 − γ 2/J2). (74)

Additionally, there are two other fixed points P± with finite
magnetization components in the x and y directions. Their
components read

mP±
x = ±

√(
B+ − 4h2

γ 2
B−

)/
J,

mP±
y = γ

2h
mP±

x mP±
z ,

mP±
z = − h

B+
. (75)

These solutions are stable for 0 � γ � 1 and h � B+. The
phase diagram representing the stable fixed points is pre-
sented in Fig. 10. The symbols within the curly braces denote
the fixed points that are stable in a given region. In par-
ticular, we note that for 0 < γ < J and h < B+ there are
three stable fixed points: S , P+, and P−. The mean-field
approach (which corresponds to taking the thermodynamic
limit N → ∞ before the long-time limit t → ∞) admits the
presence of multiple stable fixed points. In contrast, the master
equation predicts the presence of a unique stationary state,
corresponding to a definite value of expected values of ob-
servables. This apparent discrepancy, known as the Keizer’s
paradox [75], can be resolved by noting that when the mean-
field equations admit three fixed points S , P+, and P−, the
probability distribution of the normalized magnetization mz

has a bimodal structure, with the peaks of the probability
distribution approximately corresponding to the mean-field
solutions (Fig. 11). For large system sizes, this leads to the
double-minimum structure of the rate function (see Sec. IV),

FIG. 11. The probability distribution of the normalized magne-
tization mz ≡ 2〈Ŝz〉/N in the phase coexistence region for h = 0.1J ,
γ+ = 0.25J , γ− = J , and N = 120. The vertical solid lines represent
the mean-field solutions mS

z = −1 and mP±
z ≈ −0.12. The dashed

line is added for eye guidance.

and the attractors of the mean-field dynamics correspond to
the minima of the rate function [23,25]. As discussed before,
the lifetimes of metastable attractors become infinite in the
thermodynamic limit, which corresponds to the presence of
multiple stable fixed points of the mean-field equations.

Let us now analyze the behavior of the normalized mag-
netization mz as a function of the parameter γ , for a fixed
h = 0.1. This is presented in Fig. 12. As shown, magnetiza-
tion exhibits two rapid jumps at γ = 0 and γ = γc ≈ 0.782J
(the latter value has been estimated by finding the crossing
point of magnetization curves for N = 60 and N = 80). These
jumps become increasingly sharp with N and thus, in the
thermodynamic limit, they correspond to discontinuous phase
transitions. The first transition occurs at the point where two
opposite dissipation rates γ+ and γ− compensate. At this
point, the fixed point N becomes unstable at the expense of
two fixed points P±, and thus the magnetization jumps from
mN

z to mP±
z . Notably, this transition does not occur within

a phase coexistence region: only the fixed point N is stable

FIG. 12. The normalized magnetization mz ≡ 2〈Ŝz〉/N as a func-
tion of γ for h = 0.1J (denoted by blue dotted line in Fig. 10). The
black solid lines denote the fixed points of mean-field equations,
while the dots denote the numerical results for finite N . γc ≈ 0.782J
denotes the position of the second discontinuous phase transition.
Parameter: γ+ = 0.25J .
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FIG. 13. The finite-size scaling with N of the Liouvillian gap
(a) and fluctuations (b) for γ = 0, plotted in log-log scale. The results
are denoted by dots and black solid lines correspond to power-law fits
for large N . Parameters: h = 0.1J , γ+ = 0.25J .

below γ < 0, and only fixed points P+, and P− are stable for
γ > 0. Furthermore, at the phase transition point itself, the
effective dissipation rate γ vanishes, and thus the system has
an infinite number of stable periodic orbits corresponding to
purely unitary dynamics. In the master equation picture, the
density matrix of the system becomes fully mixed at this point.
This is analogous to the molecular zipper model with a = 0.

The second transition occurs, instead, within the phase
coexistence region where three fixed points of the mean-field
equations, S , P+, and P−, are stable. At the phase transition
point γc, the attractor S becomes absolutely stable (i.e., prob-
abilistically dominantly occupied) at the expense of P±, and
thus the stationary magnetization jumps from mP±

z to mS
z . This

is analogous to the molecular zipper with a > 0.

B. Scaling of the Liouvillian gap and fluctuations

1. γ = 0: Power-law scaling

Let us now consider the finite-size scaling of the Liouvil-
lian gap and fluctuations at the mentioned phase transition
points. Specifically, we analyze the zero-frequency noise of
magnetization in the z direction, denoted as Szz(0), which
corresponds to taking ô = Ŝz in Eq. (18). We first focus on the
transition without phase coexistence, that occurs at γ = 0. As
shown in Fig. 13, the Liouvillian gap and fluctuations exhibit
then a power-law scaling for large N . This is analogous to
the molecular zipper with a = 0, where the phase transition
also occurs without phase coexistence. We further note that a
power-law scaling has also been reported for a discontinuous
phase transition without phase coexistence in a similar model
[14]. Thus, one may draw a quite general conclusion that

when the discontinuous phase transition does not occur within
a finite coexistence region, it is associated with a power-law
scaling of the Liouvillian gap and fluctuations. However, we
will add a certain reservation to this conclusion in Sec. VIII.

We can rationalize the power-law scaling of the Liouvillian
gap using a diffusive mechanism analogous to that used for the
molecular zipper. To this end, we note that the system dynam-
ics can be described by a partial differential equation for some
quantum quasiprobability distribution χ (m), e.g., Glauber,
Wigner, or Husimi distribution [76–81]. Independent of the
choice of distribution considered, such an equation has a
general form resembling the Kramers-Moyal expansion of the
classical master equation,

∂tχ (m) = −
∑

i∈{x,y,z}

∂

∂mi
[μi(m)χ (m)]

+
∑

i, j∈{x,y,z}

∂

∂mi

∂

∂mj
[Di j (m)χ (m)] + O(N−2).

(76)

Here, m is the magnetization vector defined below Eq. (71),
μi(m) are the elements of the drift vector of order O(1),
related to the mean-field equations (70) as ṁi = μi(m), and
Di j (m) are the elements of the diffusion matrix of order
O(1/N ), whose form depends on the quasiprobability distri-
bution considered. We recall that, at the phase transition point,
the mean-field equations have an infinite number of stable
periodic orbits, while the master equation approach predicts
relaxation to a fully mixed state. Therefore, in analogy to
the molecular zipper, the system relaxation to the stationary
state has a purely diffusive character, i.e., it corresponds to
longitudinal diffusion along the periodic orbits and transverse
diffusion between them [76–78]. Thus, one may expect a 1/N
scaling of the Liouvillian gap, corresponding to the scaling
of the diffusion coefficient. The numerical results presented
in Fig. 13(a) show a scaling that is close but not exactly
proportional to 1/N ; however, this discrepancy may be a result
of the finite system sizes considered in the simulations.

2. γ = γc: Exponential scaling

Let us now turn to the transition with phase coexistence,
that occurs at γ = γc. In this case, we observe that both the
Liouvillian gap and the eigenvalue λ2 asymptotically converge
to 0 and exhibit a similar scaling behavior. This is related
to the coexistence of three attractors, S , P+, and P−, in the
region around the phase transition point [82]. The finite-size
scaling of the Liouvillian gap and −λ2 is plotted in Fig. 14. As
in the case of a molecular zipper, the scaling of both quantities
exhibits a crossover behavior, becoming exponential for large
N . This is consistent with the results from Ref. [6] for the case
of γ+ = 0.

In Fig. 15 we present the finite-size scaling of the magne-
tization noise. It appears that for large N it also exhibits an
exponential scaling. However, this may not be fully clear for
the range of N we are able to simulate. To demonstrate it more
convincingly, let us note that for large N the noise becomes
dominated by the contribution −2A(2)

zz /λ2, associated with the
eigenvalue λ2. This contribution is plotted with red circles in
Fig. 15. (Interestingly, the overlap function A(1)

zz , associated

044134-12



DYNAMICAL SIGNATURES OF DISCONTINUOUS PHASE … PHYSICAL REVIEW E 110, 044134 (2024)

FIG. 14. The finite-size scaling with N of the Liouvillian gap
λ (a) and the eigenvalue λ2 (b) for γ = γc ≈ 0.782J , plotted in
logarithmic scale. The results are denoted by dots and black solid
lines correspond to exponential fit for large N . Parameters: h = 0.1J ,
γ+ = 0.25J .

with the Liouvillian gap, vanishes. It may thus be inferred
that this overlap function corresponds to the switching pro-
cess between P+ and P− attractors, which does not affect
magnetization in the z direction.) As shown in Fig. 16, the
overlap function A(2)

zz exhibits a power-law scaling. (We note,
however, that the estimated power-law behavior differs from
the quadratic scaling, which can be predicted based on the
two-state model from Sec. V D 2. We are unsure whether this
is just a finite-size effect or this scaling is sustained for larger
N .) Thus, one may infer that for large N the fluctuation scaling
becomes dominated by the exponential scaling of λ2.

FIG. 15. The finite-size scaling with N of the zero-frequency
noise Szz(0) (black dots) and the noise contribution −2A(2)

zz /λ2 (red
circles) for γ = γc ≈ 0.782J , plotted in logarithmic scale. Parame-
ters: h = 0.1J , γ+ = 0.25J .

FIG. 16. The finite-size scaling with N of the overlap function
A(2)

zz for γ = γc ≈ 0.782J , plotted in log-log scale. The results are
denoted by dots and the black solid line corresponds to the power-law
fit. Parameters: h = 0.1J , γ+ = 0.25J .

VII. TRANSITION TO TIME-DEPENDENT ATTRACTORS:
ANISOTROPIC LMG MODEL

Thus far, we analyzed the situations in which the mean-
field equations exhibit only fixed-point attractors. We now
consider the case where the system undergoes a discontinuous
phase transition without phase coexistence between the phases
with fixed-point and time-dependent mean-field attractors.
This is the anisotropic LMG model with collective decay,
described by the master equation [3,28]

ρ̇ = −i[H, ρ] + γ

N
D[Ŝ−](ρ) (77)

with the effective Hamiltonian

H ≡ J

N

(
Ŝ2

x − Ŝ2
y

)
. (78)

Here, as previously, Ŝx,y,z are spin-N/2 operators, J is the
interaction energy, and γ - is the dissipation rate. In the
thermodynamic limit, the system is described by mean-field
equations

ṁx = −Jmymz + γ mxmz/2,

ṁy = −Jmxmz + γ mymz/2,

ṁz = 2Jmxmy − γ
(
m2

x + m2
y

)
/2. (79)

For γ > γc = 2J , the system has a unique south pole fixed
point mS = (0, 0,−1) [see Eq. (73)]. Instead, for γ � γc,
the mean-field equations do not have a unique attractor, but
rather infinitely many periodic orbits corresponding to differ-
ent initial conditions (see Ref. [28] for a detailed analysis). For
each orbit, the time-averaged magnetization in the z direction
mz(t ) = 0. In the master equation picture, this corresponds to
a discontinuous phase transition at γ = γc, with the average
magnetization changing from mz = 0 for γ < γc to mz = −1
for γ > γc. This is illustrated by finite-size results in Fig. 17,
which asymptotically converge to such a behavior.

In Fig. 18 we present the finite-size scaling of the Liou-
villian gap and the zero-frequency noise Szz(0) at the phase
transition point γ = γc. Both quantities exhibit a power-law
scaling; intriguingly, the Liouvillian gap appears to be exactly
given by the formula λ = J/N . This is yet another example
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FIG. 17. The normalized magnetization mz ≡ 2〈Ŝz〉/N as a func-
tion of γ . The black solid line represents the mean-field (MF)
predictions for the time-averaged magnetization, while the dots rep-
resent the master equation results for finite system sizes N .

of such behavior for systems exhibiting a discontinuous phase
transition without phase coexistence, this time in a model with
time-dependent attractors. As in the previous example, the
scaling behavior can be explained by the diffusion along and
between the periodic orbits.

Finally, let us consider the properties of the probability
distribution of the system magnetization mz at the phase
transition point. We recall that the probability distribution
P(q) for the molecular zipper with a = 0 and the distribu-
tion P(mz ) for the quantum Ising model were uniform at
discontinuous phase transitions without phase coexistence.
In the case analyzed now, this is no longer true. However,
we show that the probability distribution becomes uniform

FIG. 18. The finite-size scaling with N of the Liouvillian gap
(a) and fluctuations (b) for γ = γc, plotted in log-log scale. The
results are denoted by dots and black solid lines correspond to power-
law fits for large N .

FIG. 19. The probability density ρ(mz ) (a) and the estimator of
the rate function V (mz ) (b) for γ = γc.

in the large deviation sense, i.e., the rate function becomes
constant, which corresponds to the presence of infinitely many
attractors. According to large deviation theory, in the large N
limit, the probability density ρ(mz ) = NP(mz ) of the system
magnetization is described by the asymptotic expression [23]

ρ(mz ) 
 A(mz )e−NV (mz ), (80)

where, in addition to the rate function V (mz ) defined in
Sec. IV, we introduce the scale-independent subexponential
prefactor A(mz ). We can further define the estimator of the
rate function for a finite N ,

V (mz ) ≡ −N−1 ln ρ(mz ), (81)

which converges to V (mz ) for N → ∞. In Fig. 19 we plot
ρ(mz ) and V (mz ) at the phase transition point for different
system sizes. As shown, with increasing system size, the
probability density becomes approximately scale independent
(with certain deviations in the vicinity of mz = −1). The
estimator V (mz ), instead, gradually approaches zero in the
whole domain of mz. Thus, one may expect that in the large N
limit the rate function becomes constant [V (mz ) = 0], and the
nonuniformity of the probability density is only determined
by the subexponential prefactor: ρ(mz ) 
 A(mz ). The latter
is determined by the drift term, which determines the time
spent in different segments of periodic orbits, as well as by
the diffusive term, which determines the diffusion between
orbits. An analogous behavior has been observed for the coop-
erative fluorescence model that undergoes a continuous phase
transition to the phase with infinitely many periodic orbits
[31,76–78].
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FIG. 20. The normalized magnetization mz in the squeezed decay
model as a function of the squeezing parameter ζ for different values
of N .

VIII. STEADY-STATE DEGENERACY: LIOUVILLIAN GAP
CLOSING FOR FINITE SYSTEMS

So far we have focused on the cases where the Liou-
villian has a unique steady state for finite system sizes,
and thus the Liouvillian gap closes only asymptotically in
the thermodynamic limit. Here, at the end of our discus-
sion, we note another possibility in which the steady state
becomes degenerate at the phase transition point, and thus
the Liouvillian gap closes for any system size. A notable
example is the squeezed decay model, which has been thor-
oughly studied in Refs. [29–31]. It is described by the master
equation

ρ̇ = γ

N
D[Ŝx − iζ Ŝy](ρ), (82)

where γ is the dissipation rate, and ζ ∈ [−1, 1] is the squeez-
ing parameter. The model can be experimentally realized
using an ensemble of N atoms irradiated by the broadband
squeezed light [29,30] or subjected to two-photon Raman
transitions [83]. The steady state of this model has been de-
termined exactly. In particular, for even N , the normalized
magnetization mz ≡ 2〈Ŝz〉/N can be expressed by the exact
formula [31]

mz = − I1(ζN )

I0(ζN )
, (83)

where Ik is the kth modified Bessel function of the first kind.
For odd N , this formula is approximate, with accuracy increas-
ing with N . The dependence of mz on ζ for different values of
N is plotted in Fig. 20. As shown, in the thermodynamic limit
N → ∞ the system exhibits a discontinuous phase transition
at ζ = 0, with the normalized magnetization jumping from
mz = 1 to mz = −1. We further note that this transition is not
associated with phase coexistence. Indeed, the system can be
described by the same mean-field theory as in Sec. VI, with
h = J = 0 and γ → ζγ . Therefore, it has a unique attractor
mz = 1 (mz = −1) for ζ < 0 (ζ > 0).

At the same time, it is easy to see that for ζ = 0 the
Liouvillian commutes with the Ŝx operator. Therefore, the
system dynamics is not irreducible, since each of the N + 1
eigenstates of Ŝx is a steady state of the system. Qualitatively,
based on microscopic derivations of the model [29,30,83], this

can be interpreted as a result of the suppression of quantum
jumps between eigenstates of Ŝx due to negative quantum
interference. As a result, the system does not relax to a unique
stationary state but rather undergoes a pure dephasing to
the statistical mixture of eigenstates of Ŝx that depends on
initial conditions. Consequently, the dominant eigenvalue of
the Liouvillian is (N + 1)-fold degenerate: λ0 = λ1 = · · · =
λN = 0. Therefore, the Liouvillian gap exhibits no finite-size
scaling but is instead equal to 0 at the phase transition point
for any system size. Furthermore, since the stationary state is
not unique, stationary fluctuations are not well defined, which
is called the zero-frequency anomaly [25].

IX. CONCLUSIONS

We have shown that the finite-size scaling of the Liouvil-
lian gap and dynamical fluctuations at discontinuous phase
transitions depends on whether the transition is associated
with the phase coexistence or not. In the former case, when
the phase transition point is surrounded by a finite phase coex-
istence region, one observes an exponential scaling, related to
stochastic switching between the system attractors. In the lat-
ter case, where the phase transition point separates the phase
diagram regions with distinct attractors, the Liouvillian gap
and fluctuations exhibit instead a power-law scaling, related to
the diffusive nature of the system relaxation to the stationary
state. Thus, the exponential scaling of the Liouvillian gap and
fluctuations is associated with phase coexistence rather than
with the discontinuous nature of the phase transition itself.

Furthermore, even in the presence of phase coexistence, the
scaling of the Liouvillian gap and fluctuations exhibits actu-
ally a crossover from power-law to exponential scaling, rather
than a purely exponential behavior. This is most apparent
when the coexisting attractors are relatively strongly coupled
(e.g., when the free-energy density barrier between them is
relatively small). In such a case, the onset of exponential
scaling may occur only for very large system sizes. This may
hinder the observability of exponential scaling in experiments
and simulations, which are often confined to relatively small
system sizes. Consequently, this may explain the observations
of power-law scaling in certain simulations [13] and experi-
ments [15].

Finally, we note that, in some cases, the Liouvillian gap
can close at the discontinuous phase transition point even for
finite system sizes. This occurs when the steady state becomes
degenerate at this point. We illustrate this on the squeezed
decay model discussed in Sec. VIII.
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APPENDIX: DERIVATION OF EQS. (51) AND (55)

Here we derive the Arrhenius-like formula for the Liou-
villian gap [Eq. (51)], with the preexponential factor given by
Eq. (55). To do so, we use the approach presented in Ref. [10].
Let us first recall the rate function V (q) = βF (q) defined
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below Eq. (36) (we note that in Ref. [10] the rate function was
defined with an opposite sign). At the critical temperature Tc

given by Eq. (16) it takes the form

V (q) = a(q − q2)

1 + a
ln g − ln g. (A1)

We denote the positions of the minima of V (q) as q− and q+,
while the position of the maximum as qmax. For the model
considered q− = 0, q+ = 1, and qmax = 1/2. The asymptotic
value of the Liouvillian gap can then be found by equating
Eqs. (4.14) and (4.15) from Ref. [10], which yields

λ ≈ e−NV (qmax )

√ −γ0

2πN

(
1

T−
+ 1

T+

)
, (A2)

where

T± ≈ ±N
∫ q±

qmax

dq
e−NV (q)

√
w+(q)w−(q)

, (A3)

γ0 = w′
−(qmax) − w′

+(qmax)

w+(qmax)
. (A4)

The rates w±(q) given by Eq. (50) are evaluated at T = Tc.
The term γ0 takes then the form

γ0 = −2a ln g

1 + a
. (A5)

To calculate the terms T±, we use the Laplace method. We
note that for large N the integral of the exponent exp[−NV (q)]
is dominated by the region where V (q) is smallest, that is,
close to q±. In this region, the function V (q) can be expanded
as

V (q) = V (q±) + V ′(q±)(q − q±) + O[(q − q±)2], (A6)

with V ′(q±) = ∓a ln g/(1 + a). Here we apply linear rather
than quadratic expansion, as in the standard Laplace method,
because the minima of V (q) are located at the boundaries of
its domain, where the derivatives V ′(q) do not disappear [10].
Inserting this into Eq. (A3) one gets (in the large N limit)

T+ = T− ≈ 1 + a

a

e−NV (q− )

�
√

g ln g
. (A7)

Finally, inserting Eqs. (A5) and (A7) into Eq. (A2), we obtain
the expression for the Liouvillian gap:

λ ≈ 2�
√

g√
πN

(
a ln g

1 + a

)3/2

e−N[V (qmax )−V (q− )]. (A8)

This corresponds to Eq. (51), with the preexponential factor A
given by Eq. (55).
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