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Phase-field-based lattice Boltzmann method for containerless freezing
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In this paper we first propose a phase-field model for the containerless freezing problems, in which the volume
expansion or shrinkage of the liquid caused by the density change during the phase change process is considered
by adding a mass source term to the continuum equation. Then a phase-field-based lattice Boltzmann (LB)
method is further developed to simulate solid-liquid phase change phenomena in multiphase systems. We test
the developed LB method by the problem of conduction-induced freezing in a semi-infinite space, the three-phase
Stefan problem, and the droplet solidification on a cold surface, and the numerical results are in agreement with
the analytical and experimental solutions. In addition, the LB method is also used to study the rising bubbles
with solidification. The results of the present method not only accurately capture the effect of bubbles on the
solidification process, but also are in agreement with the previous work. Finally, a parametric study is carried out
to examine the influences of some physical parameters on the sessile droplet solidification, and it is found that
the time of droplet solidification increases with the increase of droplet volume and contact angle.
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I. INTRODUCTION

Solidification or freezing, as a common solid-liquid phase
change phenomenon, is of significant importance in nature
and industrial applications [1,2], such as refrigeration [3],
aerospace [4], additive manufacturing [5], and food process-
ing [6]. In the past decades, many theoretical and experimental
studies have been conducted to investigate the fluid flows
and heat transfer during solidification process. However, the
solidification often occurs in an ambient fluid, where the phase
change process and interaction with the surrounding fluid
need to be considered [7,8]. This process involves the gas,
liquid, and solid phases, and the dynamic evolution of the
phase interfaces, as well as the coupling of flow and heat
transfer, brings some significant challenges to the study of
solidification in multiphase systems.

A single droplet freezing on the cold substrate has been
widely considered as a fundamental problem to explore the
underlying freezing mechanism. Up to now some experimen-
tal work has been performed to investigate the droplet freezing
process on the cold substrate [9–17]. In 1996 Anderson et al.
[9] first discovered that the freezing droplet forms a tip and
reported that only a dynamic growth angle could predict the
inflection point of a freezing droplet. Subsequently, Schultz
et al. [10] found that the droplet tip results from a com-
bination of expansion and phase boundary curvature during
freezing. Then Ajaev and Davis [11] extended this work to
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the pendant droplets. Recently, Hu et al. [12] experimentally
studied the the droplet freezing on the cold substrate based
on the molecular labeling thermometry technique. The results
show that the volume of water droplet expands during freez-
ing and the expansion mainly in the upward direction rather
than the radial direction. Chaudhary et al. [13] experimentally
investigated the freezing of water droplet on a cooled surface.
They used an infrared camera and thermocouple to measure
the temperature evolution of the frozen droplet and observed
four distinct processes: liquid cooling, recalescence, freezing,
and solid cooling. Enríquez and Marin [14,15] found that the
liquid-solid interface of the water droplet expands during the
freezing process, causing the droplet to form a pointed tip at
the top, which is a consequence of a self-similar geometric
mechanism, independent of the solidification. Based on the
work of Marin et al. [15], Schremb et al. [16] proposed
a new experimental method to study the solidification of a
supercooled droplet using the Hele-Shaw cell, and this method
allows observation of the process in a quasi-two-dimensional
manner, without optical distortions arising from the free sur-
face of the droplet. The experimental results show that the
a small mutual influence of the dendrites is observed only
when the freezing process is dominated by heat diffusion and
supercooling is high. More recently, Zeng et al. [17] inves-
tigated the influence of gravity on the freezing of pendent
and sessile droplets through an experimental method. They
demonstrated that the gravity significantly affects the droplet
freezing process by shaping the initial droplet, resulting in
the flattening or elongation of pendent and sessile droplet,
respectively.
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Although experimental methods can be used to obtain ex-
ternal and internal information of a frozen droplet through
direct physical observation and measurement, due to the lim-
itations of measurement techniques, it is difficult to obtain
detailed information on the internal icing front, tempera-
ture field, and velocity and pressure distributions inside the
droplet. In particular, although the intrusive measurement
method can obtain information about the interior of the
droplet, the measurement probe may affect the icing process.
Therefore, in order to overcome the limitations of experimen-
tal methods, it is necessary to develop accurate theoretical
models or numerical methods to derive more detailed informa-
tion about the interior of frozen droplet. Through considering
the effects of supercooling and gravity, Zhang et al. [18]
developed a theoretical model to investigate the freezing be-
havior of a water droplet and compared it with experiments.
It was found that the freezing rate and time, as well as the
droplet profile calculated by the model, are in good agreement
with the experimental results. Based on a one-dimensional
approximation, Tembely et al. [19] proposed a theoretical
and numerical method to simulate droplet freezing on cold
hydrophilic surfaces, and the model accurately predict the
freezing time, droplet volume expansion, and tip singularity
during freezing. Zhu et al. [20] conducted the experimental
and theoretical studies on the freezing characteristics of water
droplet deposited on the cold hydrophilic and hydrophobic
aluminum surfaces. The results show that the freezing shape
of sessile droplet depends on the surface temperature and
wettability, and a power-law relationship between the freezing
time of deposited droplet and the surface temperature was ob-
tained. Although the theoretical models can be used to predict
the freezing time, volume expansion, and tip singularity that
are consistent with experiment, they often rely on simplifying
assumptions. For example, in the models of Zhang et al. [18]
and Zhu et al. [20], the freezing front is always assumed to
be flat, which is clearly unreasonable; while in the theoretical
model of Tembely et al. [19], the lubrication approximation is
usually applicable to the hydrophilic configurations. In addi-
tion, the dynamic evolution and strong nonlinear properties of
phase interfaces also bring some challenges to the theoretical
analysis.

To overcome the limitations of the experimental and
theoretical approaches, some numerical methods have been
developed to study the solidification processes in multiphase
systems [21–29]. Vu et al. [21] and Shetabivash et al. [22] sim-
ulated the solidification of sessile droplets on a cold plate by
the front-tracking method and multiple level-set approaches.
In their works the droplet volume change due to density varia-
tion during solidification is taken into account, and the angle at
the trijunction point can also be imposed. Lyu et al. [23] devel-
oped a novel hybrid volume-of-fluid and immersed-boundary
(VOF-IB) method to simulate freezing droplet considering the
volume expansion during freezing, and tested the accuracy of
the method through a comparison with some available exper-
imental and theoretical results. The numerical results in their
work also show that the lower the density ratio, the longer the
freezing time, and the more likely the formation of singular
tips at the end of the freezing stage. Different from these
traditional numerical methods, the kinetic theory-based LB
method has been widely used to study phase change problems
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FIG. 1. Schematic of a freezing droplet on the cold substrate.

due to its simple algorithmic structure, high parallelism, and
ability to handle complex physics and boundary conditions
[24–30]. For example, Sun et al. [24] and Zhang et al. [25]
investigated droplet solidification on the cold surface using
the multiphase-field pseudopotential LB method, the main
difference between these two works being that the volume
change of the droplet during the freezing process is not taken
into account in the work of Sun et al. [24]. Xiong et al. [26,27]
also employed the pseudopotential LB method to study the
impact dynamics and solidification behavior of droplet on
cold smooth and rough substrates. However, it is known
that the pseudopotential LB method usually suffers from the
numerical instability for the multiphase problems with large-
density ratios [30]. To resolve this problem, the phase-field
base LB method is adopted to study the freezing process of the
droplet. For example, Zhang et al. [28] proposed a phase-field
based LB method to study the ice evolution during methane
hydrate dissociation, while the volume change of a droplet
has not been considered. To overcome this drawback, Moham-
madipour et al. [29] developed another phase-field based LB
method to investigate the solidification behavior of droplets in
multicomponent systems, and considered the volume change
of droplets during the solidification process by adding a mass
source term to the Cahn-Hilliard (CH) equation. However,
it should be noted that in the framework of LB method, the
fourth-order C-H equation cannot be recovered correctly [31].

In this work, we will propose a phase-field based LB
method to study containerless freezing problems, and simul-
taneously, the volume change during solidification can be
taken into account. Different from the previous work [29],
here we considered a new second-order Allen-Cahn (A-C)
equation where the volume change during solidification is
included through adding a mass source term based on mass
conservation. Additionally, the present LB method has more
advantages in the study of multiphase flows with larger den-
sity ratios since it can capture the topological changes of
the interfaces more accurately. The remainder of this paper
is organized as follows. In Sec. II a mathematical model for
the containerless freezing problems is proposed, followed by
the developed phase-field LB method in Sec. III. Numerical
results and discussion are presented in Sec. IV, and finally, a
brief summary is given in Sec. V.

II. MATHEMATICAL MODEL

We now take the freezing process of a droplet on the cold
substrate as an example, as shown in Fig. 1, and assume that
the solid phase forms only within the liquid phase; the liquid
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and gas phase fluids are immiscible. The freezing process
occurring in an ambient gas environment is a gas-liquid-solid
ternary phase system, and the solid-liquid (�sl ), solid-gas
(�sg), and gas-liquid (�gl ) interfaces must be updated si-
multaneously. To simplify the following analysis, the phase
interfaces can be divided into the one with phase change (�sl )
and those without phase change (�sg, �gl ). The basic idea of
the present work is to use the phase-field method to track
interfaces without phase change, and update the interface with
phase change using the enthalpy method. To this end, the
phase-field order parameter, φ, is introduced to distinguish
whether the medium is solid-liquid mixture or gas phase. Here
φ = 1 represents the solid-liquid mixtures, and φ = 0 denotes
the surrounding gas phase. On the other hand, the solid frac-
tion used in the enthalpy method, fs, is adopted to label the
interface between the solid and liquid phases in solid-liquid
mixtures, where fs = 1 stands for the solid phase and fs = 0
denotes the liquid phase. With the help of the order parameter
φ and solid fraction fs, the liquid, solid, and gas phases can be
represented by (φ = 1 and fs = 0), (φ = 1 and fs = 1) and
(φ = 0 and fs = 0). In this case, the physical properties of
system can be characterized by a linear function of the order
parameter and solid fraction:

ζ = fsζs + (1 − fs)φζl + (1 − fs)(1 − φ)ζg, (1)

where the parameter ζ denotes the density, viscosity, thermal
conductivity, and heat capacity, and the subscripts g, l , and s,
represent the gas, liquid, and solid phases, respectively.

In the following, we will propose a mathematical model
for containerless freezing processes, which includes the
phase-field equation, enthalpy based energy equation, and
Navier-Stokes equations.

A. Phase-field method for capturing
interfaces without phase change

The Allen-Cahn equation has been widely used to model
moving interfaces among different phases [28,32], and for the
interfacial dynamics without phase change (�sg, �gl ), it can be
written as

∂φ

∂t
+ ∇ · (φu) = ∇ · [M(∇φ − λn)] + φ∇ · u, (2)

where φ is the order parameter, u is the velocity, M is a
positive constant called mobility, n = ∇φ/|∇φ| is the unit
vector normal to the interface, and λ is a function of φ and
is defined as

λ = 4φ(1 − φ)

W
, (3)

where W is the interface thickness. It should be noted that
for incompressible fluid flows, the last term on the right-hand
side of Eq. (2) can be neglected, while for the freezing process
including the volume change, it must be considered (see the
following discussion).

B. The Navier-Stokes equations for fluid flows

Apart from the interface-capturing equation mentioned
above, we now introduce the governing equations for fluid
flows. We assumed the fluid to be immiscible and Newtonian,

and the fluid flows can be described by the following Navier-
Stokes (N-S) equations [32,33]:

∇ · u = 0, (4a)

∂ρu
∂t

+ ∇ · (ρuu) = −∇p + ∇ · {μ[∇u + (∇u)T]}+Fs+G,

(4b)

where ρ is the density, p is the pressure, μ is the dynamic vis-
cosity, G is the body force, and Fs is the surface tension force,

Fs = μφ∇φ, (5)

where μφ is the chemical potential and is defined by

μφ = 4β(φ − φl )(φ − φg)

(
φ − φl + φg

2

)
− κ∇2φ. (6)

The physical parameters β and κ are related to the interface
thickness W and the surface tension σ ,

k = 3

2
σW, β = 12σ

W
. (7)

During the freezing process, the droplet volume may ex-
pand or shrink because of the density difference between solid
and liquid phases [12,15]. In order to include the volume
change into the above N-S equations, some modifications have
been made to the continuity equation by neglecting the gas
phase to account for the density change during the solidifi-
cation of liquid-solid mixtures [22,23,34]. Here we make a
similar assumption adopted in the VOF and level-set frame-
works through considering mixture of the three phases of
liquid, solid, and gas. Actually, in an arbitrary control volume
with the constant mass that consists of both solid and liquid
phases, the conservation of mass can be expressed as

D

Dt
(M ) = D

Dt
(Ml + Ms) = 0, (8)

where the solid and liquid masses are defined as

Ms =
∫

Vs (t )
ρs dVs =

∫
V (t )

ρs fs dV, (9a)

Ml =
∫

Vl (t )
ρl dVl =

∫
V (t )

ρl (1 − fs) dV, (9b)

substituting Eqs. (9a) and (9b) in (8), we can obtain

D

Dt

{∫
V (t )

[ρs fs + ρl (1 − fs)]dV

}
= 0. (10)

Using Reynolds’ transport theorem and assuming zero veloc-
ity in the solid phase, we have∫

V (t )

{
∂

∂t
(ρs fs) + ∇ · [(1 − fs)ρlul ] − ∂

∂t
(ρl fs)

}
dV = 0,

(11)
where ul is the liquid velocity. To ensure the integral over any
integration region V(t ) to be zero, one can obtain

∇ · [(1 − fs)ul ] =
(

1 − ρs

ρl

)
∂ fs

∂t
. (12)

Using the fact u = ul (1 − fs) + us fs, we can rewrite the
above equation as

∇ · u = ṁ, (13)
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where the source term ṁ = (1 − ρs

ρl
) ∂ fs

∂t on the right-hand side
of Eq. (13) describes the expansion or shrinkage of the volume
during the freezing process, and it is influenced by the ratio of
solid density to liquid density.

In addition, how to treat the fluid-solid boundary is also a
crucial issue. To overcome the difficulty in directly treating
the solid-fluid interface, Noble and Torczynski [35] proposed
an immersed moving boundary approach, which has also been
widely used to deal with solid-liquid phase change prob-
lems [36,37]. To characterize the interaction between fluid
and solid more accurately, a diffuse-interface method is fur-
ther developed through adding a modified force term to the
momentum equation [38]. In this method, the momentum
equation can be written as

∂ρu
∂t

+ ∇ · (ρuu) = −∇p + ∇ · {μ[∇u + (∇u)T]}
+ Fs + G + ρf, (14)

where f is the force generated by fluid-solid interaction to be
discussed below.

C. Enthalpy method for moving interface

The temperature equation used to describe the freezing
front (�sl ) can be derived from the energy conservation
[39,40],

∂ (ρh)

∂t
+ ∇ · (ρhu) = ∇ · (λ∇T ) + ρh∇ · u + q̇, (15)

where T , Cp, and λ are temperature, specific heat at constant
pressure, and thermal conductivity. h = CpT is the sensible
enthalpy. q̇ is the heat source term caused by the absorption or
release of latent heat and can be given by [40]

q̇ = −
[
∂ (ρ�H )

∂t
+ ∇ · (ρu�H )

]
, (16)

where �H is the latent enthalpy undergoing phase change.
For the pure material freezing, the second term ∇ · (ρu�H )
can be neglected due to the uniform latent heat of the liquid,
and thus q̇ can be simplified as [40]

q̇ = −∂ (ρ�H )

∂t
= −∂ (ρL fl )

∂t
, (17)

where L is the latent heat, and fl is the liquid fraction, given
by fl = �H/L. Substituting Eq. (15) into Eq. (17), one can
obtain [39,40]

∂ (ρH )

∂t
+ ∇ · (ρCpT u) = ∇ · (λ∇T ) + ρCpT ∇ · u, (18)

where H is the total enthalpy, which can be divided into the
sensible and latent enthalpy components as

H = h + �H = CpT + L fl . (19)

Based on above definition of total enthalpy, the liquid fraction
and temperature can be calculated as follows [41]:

fl =

⎧⎪⎨
⎪⎩

0, H � Hs
H−Hs
Hl −Hs

, Hs � H � Hl

1, H � Hl

, (20a)

T =

⎧⎪⎨
⎪⎩

H/Cp H < Hs

Ts + H−Hs
Hl −Hs

(Tl − Ts) Hs � H � Hl

Tl + (H − Hl )/Cp H > Hl

, (20b)

where Ts and Tl are the solidus and liquidus temperatures,
respectively, and Hs = Cp,sTs and Hs = Cp,lTl + L are the total
enthalpy at the solidus and liquidus temperatures. Through
solving the enthalpy-based energy equation (18), one can not
only obtain the temperature field, but also simultaneously de-
termine the liquid fraction, thereby achieving implicit tracking
of the solid-liquid phase interface. In summary, the present
mathematical model, including Eqs. (2), (13), (14), and (18),
is used to describe the droplet freezing process, and the vol-
ume change is also considered.

III. LB METHOD FOR CONTAINERLESS FREEZING

In this section, we will develop a new LB method where
three different LB models are adopted for phase field, temper-
ature field, and flow field.

A. LB model for the phase field

The evolution equation of LB model with the BGK colli-
sion operator for the Allen-Cahn equation can be written as
[32]

gi(x + ci�t, t + �t ) − gi(x, t )

= − 1

τg

[
gi(x, t ) − geq

i (x, t )
] +

(
1 − 1

2τg

)
�tGi(x, t ),

(21)

where gi(x, t ) is the order parameter distribution function at
position x and time t , and ci is the discrete velocity. For the
D2Q9 model considered here, the weight coefficient ωi and
discrete velocity ci are defined as

ωi =

⎧⎪⎪⎨
⎪⎪⎩

4/9 i = 0,

1/9 i = 1 − 4,

1/36 i = 5 − 8,

, (22)

ci =

⎧⎪⎪⎨
⎪⎪⎩

(0, 0), i = 0,

( cos[(i − 1)π/2], sin[(i − 1)π/2])c, i = 1 − 4,

( cos[(2i − 9)π/4], sin[(2i − 9)π/4])
√

2c, i = 5 − 8,

(23)
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where c = �x/�t is the lattice speed with �x and �t de-
noting the lattice spacing and time step, respectively (both of
them are set to 1 in the present work). geq

i is the equilibrium
distribution and is given by

geq
i = ωiφ

(
1 + ci · u

c2
s

)
, (24)

where cs = c/
√

3 is the sound speed. To recover the Allen-
Cahn equation with the multiscale analysis, the source term
Gi should be designed as

Gi = ωici · [
∂t (φu) + c2

s λn
]

c2
s

+ ωiφ∇ · u. (25)

In addition, the order parameter in the present LB model can
be computed by

φ =
∑

i

gi + �t

2
φ∇ · u. (26)

Following the Chapman-Enskog analysis, the Allen-Cahn
equation can be recovered correctly from the LB model (21)
with the mobility M = c2

s (τ f − 0.5)�t .

B. LB model for the temperature field

For the temperature field, the enthalpy-based thermal LB
model proposed by Huang et al. [40] is adopted, and the
evolution equation of the total enthalpy distribution function
hi(x, t ) reads

hi(x + ei�t, t + �t )

= hi(x, t ) − 1

τh

[
hi(x, t ) − heq

i (x, t )
]

+
(

1 − 1

2τh

)
�tρhṁ, (27)

where τh = λ/ρCp,ref c2
s �t + 0.5 is the relaxation time related

to the thermal conductivity, and heq
i is the local equilibrium

distribution function [40],

heq
i =

⎧⎨
⎩

H − Cp, ref T + ωiCpT
(Cp,ref

Cp
− I:uu

2c2
s

)
, i = 0,

ωiCpT
[Cp, ref

Cp
+ ei ·u

c2
s

+ (eiei−c2
s I):uu

2c4
s

]
, i �= 0,

(28)

where Cp, ref is the harmonic mean of solid phase specific heat
Cp,s and liquid phase specific heat Cp,l . The total enthalpy is
is calculated by

H =
∑
i=0

hi + 1

2
�tρhṁ. (29)

C. LB model for the flow field

Differently from the original LB model for the flow
field, we incorporate an extra mass source arising from
density change during the freezing process, which results
in some modifications to the evolution equation and the
computation of macroscopic quantities. The evolution equa-
tion of the LB model for flow field is formulated as

follows [42]:

fi(x + ci�t, t + �t ) − fi(x, t )

= − 1

τ f

[
fi(x, t ) − f eq

i (x, t )
] + �t

(
1 − 1

2τ f

)
Fi(x, t ),

(30)

where τ f = ν/cs
2�t + 0.5 is the corresponding relaxation

time for flow field, and f eq
i is the local equilibrium distribution

function,

f eq
i =

{ p
c2

s
(ωi − 1) + ρsi(u), i = 0

p
c2

s
ωi + ρsi(u), i �= 0

(31)

with

si(u) = ωi

[
ci · u

c2
s

+ (ci · u)2

2c4
s

− u · u
2c2

s

]
. (32)

The forcing term Fi is given by [42]

Fi = ωi

[
S + ci · (F + ρf )

c2
s

+ (uF̃ + F̃u) :
(
cici − c2

s I
)

2c4
s

]
,

(33)

where S = ρṁ + u · ∇ρ, F̃ = F − ∇p + c2
s ∇ρ + c2

s ∇ · S,
F = Fs + G is the total force. The macroscopic velocity u and
pressure p can be evaluated by

ρu∗ =
∑

ci fi + �t

2
F, (34)

u = u∗ + �t

2
f, (35)

p = c2
s

(1 − ω0)

⎡
⎣∑

i �=0

fi + �t

2
S + τ�tF0 + ρs0(u)

⎤
⎦, (36)

where u∗ is the velocity without considering the fluid-particle
interaction, and u is the corrected velocity. The fluid-solid
interaction force f can be discretized as fs(us − u∗)/�t [38],
where us is the solid-phase velocity. We would like to point
out that this treatment has been successfully applied to deal
with a variety of fluid-solid coupling problems, such as the
particulate flows [38], dendrite growth [43], and two-phase
flow in complex structures [44].

In numerical simulations, the derivative terms should be
discretized with some suitable difference schemes. For sim-
plicity, the temporal derivative in Eq. (25) is approximated by
the first-order explicit Euler scheme [45],

∂t (φu)(x, t ) = [(φu)(x, t ) − (φu)(x, t − �t )]/�t . (37)

To calculate the gradient and Laplace operators appeared
above, the second-order isotropic central schemes are applied
[32,45]:

∇ζ (x, t ) =
∑
i �=0

ωiciζ (x + ci�t, t )

c2
s �t

, (38a)

∇2ζ (x, t ) =
∑
i �=0

2ωi[ζ (x + ci�t, t ) − ζ (x, t )]

c2
s �t2

. (38b)
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D. Numerical implementation of the wetting
boundary condition

In the presence of gas-liquid-solid interaction, the fluid in-
terface dynamics would be greatly affected by the wettability
of the solid substrate, and consequently influencing the freez-
ing behavior. Therefore, it is desirable to establish wetting
boundary condition to describe the interaction between the
fluid and solid substrate. Based on the geometric relationship,
the wetting boundary condition can be formulated as [46]

nw · ∇φ = − tan
(π

2
− θ

)
|nτ · ∇φ|, (39)

where nw represents the unit normal vector points from the
solid wall into the fluids, nτ is the unit vector tangential to
solid surface. nw · ∇φ and nτ · ∇φ are the normal and tan-
gential components of ∇φ, and they can be determined by the
second-order schemes [47],

nw · ∇φ = φx,1 − φx,0

�x
, (40a)

nτ · ∇φ = ∂φx,1/2

∂x
= 1.5

∂φx,1

∂x
− 0.5

∂φx,2

∂x
, (40b)

where the lattice nodes near the solid substrate are divided
into the fluid layer, solid boundary (y = 1/2), and ghost layer
(y = 0). The derivatives of the order parameters can be calcu-
lated by a second-order central difference scheme [47],

∂φx,y

∂x
= ∂φx+1,y − ∂φx−1,y

2∂x
. (41)

Once the values of the order parameters at the ghost layer are
obtained, the gradient of the order parameter and the Lapla-
cian at all fluid nodes can be calculated from Eqs. (38a) and
(38b). In addition, the contact angle formulation (39) can be
used to simulate the contact line dynamics on smooth surfaces
or nonideal surfaces during freezing process.

E. Dimensionless numbers

According to the similarity theory, the numerical solution
should be similar to the experimental results as long as they

have geometric similarity and the same dimensionless param-
eters. For the multiphase solidification system considered in
this work, it is mainly governed by the following nondimen-
sional parameters:

Ste = Cp(Tm − Tw )

L
, Pr = μlCp

λl
, Fo = λl t

ρlCpR2
0

, (42)

where Ste, Pr, and Fo are the Stefan number, Prandtl number,
and Fourier number, respectively. The Stefan number charac-
terizes the ratio of sensible heat to latent heat. The Prandtl
number represents the ratio of viscosity to thermal diffusivity.
The Fourier number represents the ratio of thermal diffusion
rate to the rate of heat transfer and can be considered as an
dimensionless time.

IV. NUMERICAL RESULTS AND DISCUSSION

In this section, we will test the capability and reliability
of the proposed LB method with several typical benchmark
problems, including the problem of conduction-induced freez-
ing in a semi-infinite space, the three-phase Stefan problem,
freezing droplets on a cold surface, and rising bubbles with
solidification, and conduct some comparisons between the
present results with the available numerical, analytical, and
experimental data reported in some previous works.

A. Conduction-induced freezing problem

We first consider the conduction-induced freezing process
of a pure substance in a semi-infinite space to test the present
LB method. To simulate this conduction-induced freezing
problem, the velocity field is set to be zero, and initially,
the computational domain is filled with the liquid-phase sub-
stance at a temperature T0 (T0 > Tm ) higher than the melting
temperature Tm. Then a constant temperature Tb (Tb < Tm ) is
imposed to the left wall (x = 0), and the temperature of the
right wall is maintained at T0. Under these conditions, one can
obtain the analytical solution of the temperature [40],

T (x, t ) =
⎧⎨
⎩

Tb − (Tb − Tm ) erf (x/2
√

αst )
erf k 0 < x < Xi(t ), t > 0

T0 + (Tm − T0) erfc (x/2
√

αl t )
erfc (k

√
αl /αs ) x > Xi(t ), t > 0

, (43)

and the solid-liquid interface in time t ,

Xi(t ) = 2k
√

αst, (44)

where k is a constant and can be obtained implicitly from the
transcendental equation

Cp,s(Tm − Tb)

L exp (k2) erf (k)
− Cp,l (T0 − Tm)

√
αl/αs

L exp (k2αs/αl ) erfc(k
√

αs/αl )
= k

√
π.

(45)
In simulations, Dirichlet and the periodic boundary conditions
are applied in the x and y directions. The thermophysical
properties of the pure substance are given by Cp,s = Cp,l =
1.0, αs = αl = 0.4, L = 250, Tb = −1.0, T0 = 1.0, and

Tm = 0.0. Figure 2(b) shows a comparison of the temperature
distributions between the present LB results and the analytical
solutions at different times, and both of them are in good
agreement with each other.

B. Three-phase Stefan problem

In order to accurately predict the droplet freezing process,
the volume change during the freezing process should be
considered, and thus a source term is added in the contin-
uum equation, as described previously. We now focus on the
freezing of pure matter in the semi-infinite space to verify
the accuracy of the method in treating volume change. The
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< >
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Solid-liquid interface

FIG. 2. (a) Schematic diagram of the conduction freezing problem; (b) A comparison of the temperature distributions between LB results
and analytical solutions at different times t .

schematic of the problem is depicted in Fig. 3. Initially, the
liquid phase and gas phase are uniformly distributed in the
regions 0 � y � H0 and H0 � y � L with the uniform tem-
perature T0 (T0 > Tm, Tm is the freezing temperature), then a
constant temperature Tw(Tw < Tm) is imposed on the bottom
wall. To match this setup, the initial profile of the order pa-
rameter is given by

φ(x, y) = 0.5 + 0.5 tanh
2(H0 − y)

W
, (46)

where the interface width W is set as 5. With the evolution of
freezing front from the bottom surface to the free surface, the
interfaces among the liquid, gas, and solid phases should be
treated simultaneously. Once the freezing of the liquid phase
is completed, one can obtain the maximum height of the solid
phase, which is denoted by Hf . Based on the mass conserva-
tion, the final height of the frozen liquid can be determined
from the following equation [22]:

Hf = ρl

ρs
H0. (47)

Liquid

Gas

Solid

x

y

Liquid

Gas

H

Gas

Solid

H

(a) (b) (c)

FIG. 3. Schematic of the three-phase Stefan problem. The initial
stage before freezing (a), the intermediate stage of partial liquid
phase freezing to solid phase (b), the final moment of complete
freezing (c).

In our simulations, the grid resolution of the computational
region is set to be Nx × Ny = 400 × 10, the physical parame-
ters are given as T0 = 0.1, Tw = −2, Tm = 0, Ste = 0.1–0.2,
Cp,s/Cp,l = 1, Ts = Tl = Tm, and λs/λl = 1. For the phase,
temperature and flow fields, the bottom and top surfaces are
the solid walls imposed by the no-flux, Dirichlet, and no-slip
boundary condition, while the periodic boundary condition
is applied in the horizontal direction. To treat the no-flux
and no-slip boundary conditions, the half-way bounce-back
scheme is used, while for the Dirichlet boundary condition,
the general bounce-back scheme [48] is adopted. Figure 4
shows a comparison of Hf /H0 between the numerical results
and theoretical solution (47), and a good agreement between
them can be observed. This indicates that the present LB
method can accurately capture the volume change during the
freezing process and preserve the mass conservation.

0.8 0.9 1.0 1.1 1.2

0.8

0.9

1.0

1.1

1.2

1.3 Ste=0.1

Ste=0.15

Ste=0.2

Theoretical solution

FIG. 4. Comparisons of final dimensionless solid-phase height
Hf /H0 between numerical results and theoretical solution (47) at
different values of ρs/ρl after complete solidification.
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TABLE I. Physical properties of water and ice at 0 ◦C.

Material
Density ρ Heat capacity Cp Thermal conductivity λ Latent heat L
(kg m−3) (kJ kg−1 K−1) (W m−1 K−1) (kJ kg−1)

Water 999.8 4.22 0.56 333.4
Ice 917.0 2.02 2.26 –

C. Droplet freezing on a cold surfaces

Droplet freezing on a cold surface is a fundamental heat
transfer problem that has been widely used to assess the
proposed numerical methods for simulating freezing process.
In this part, to show the capacity of the present LB method,
we first simulate the droplet freezing on a cold substrate, and
then we explore the effects of solid-liquid density ratio and
wettability on the droplet freezing.

1. A comparison between the numerical and experimental results

We first conduct a comparison of numerical results with
the experimental data reported in Ref. [49]. In the experiment
conducted by Hou et al. [49], a droplet with a volume of 15 µl
is gently deposited on a super-cooled surface at the temper-
ature T = −29.5 ◦C with the contact angle θ = 86.4◦. Our
simulations are carried out in a two-dimensional domain with
the grid resolution Nx × Ny = 400 × 200, and the temperature
is set to T0. Initially, a semicircular droplet with the radius
of R = 40 is located at the center of the cold substrate. A
lower temperature Tw is imposed on the bottom surface after
the contact angle of the droplet being equal to the prescribed
value θ . In numerical simulations, the distribution of the order
parameter is initialized by

φ(x, y) = 0.5 + 0.5 tanh
2[R − (x − x0)2 − (y − y0)2]

W
,

(48)
where (x0, y0) = (0, Nx/2) is the coordinates of droplet cen-
ter, W = 5 is the interface thickness. The periodic boundary
condition is applied in the horizontal direction, while the
no-slip boundary condition is adopted at the bottom and top
boundaries. Based on experimental conditions and the physi-
cal properties of water listed in Table I, the following nondi-
mensional parameters, Pr = 7.25, Ste = 0.02, λs/λl = 3.8,

FIG. 5. Comparison of the freezing shapes of droplet at different
times: Ref. [49] (a), experiment (b), and present LB back (c), where
the gas, liquid, and solid phases are labeled by the white, blue, and
orange.

Cp,s/Cp,l = 0.5, ρs/ρl = 0.9, and the contact angle θ = 86.4◦
are used.

Depending on the temperature fluctuation of water droplet,
the freezing process of the droplet on a cold plate can be
divided into five stages: liquid stage, nucleation, recalescence
stage, solidification stage, and postsolidification stage [8].
Due to the much shorter duration of the nucleation and re-
calescence stages, compared to the entire freezing period, it
is difficult to simulate such a small timescale. Thus, we focus
only on the freezing stage based on heat balance, and take
the time before nucleation as the initial state [25]. Figure 5
presents a comparison of the freezing process of water droplet
on the cold surface between the present results, previous ex-
perimental and numerical solutions [49]. In the experiments,
the freezing front starts to move from the bottom to the top
of the droplet, and the droplet volume expands continuously
due to the density difference between water and ice. In this
case, the droplet shape expands mainly in the vertical direction
instead of the radial direction. It is clear that the present re-
sults agree well with the experimental data, and the evolution
of the melting front and the change of droplet shape can
be captured accurately, which indicates that the present LB
method can provide accurate numerical results in the study of
the droplet freezing process. However, the numerical results
without considering volume change during freezing process
are inconsistent with the experimental results [49].

To conduct a quantitative comparison between the present
results and some available data, the time evolution of the
square of the dimensionless center freezing height Hc is shown
in the Fig. 6, in which the results in Ref. [49] are also incor-
porated. As seen from this figure, the evolution of the freezing
front inside the droplet predicted by the LB method has a good
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FIG. 6. Comparison of the dimensionless center freezing front
height Hc among different works.
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Initial: Vu et al.

Final: LBM
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FIG. 7. Comparison of the freezing profile among the present
results, numerical results [50], and experimental results [15].

agreement with the previous results [49], which also illustrates
that the phase-field-based LB method can be used to predict
the freezing process of the water droplet on the cold surface.

In contrast to the spherical cap shape of frozen droplet
observed in the experiment [49], the pointed frozen droplet on
the cold substrate have also been widely reported. To further
validate the ability of present LB method in capturing the tip
formation during the freezing process, we perform a compari-
son of current numerical results with the experimental results
of Marin et al. [15] and the numerical solution of Vu et al.
[50]. In the experiments of Marin et al. [15], a 4–8 µl droplet
with the contact angle θ = 90◦ is gently deposited on a cold
plate with the constant temperature T = −44.1 ◦C. Figure 7
shows the initial and final freezing profiles of a droplet, and
it can be seen that the present results are in good agreement
with the available experimental [15] and numerical data [50].
In addition, the predicted values of aspect ratio H/R by the
phase-field base LB method and experiments are 1.18 and
1.16, respectively, H is defined as the final height of the ice
drop and R is the radius of the wetted surface area.

2. Freezing characteristics of droplet at different solid-to-liquid
density ratios and wettability

The density difference between liquid and solid phases
leads to the volume change of droplet during the freezing
process. For example, the total volume of the water droplet in-
creases during freezing due to the decrease in average density.
In the following, we intend to study the problem of droplet
freezing on the cold surface at different solid-to-liquid density
ratios. Figure 8 shows the final frozen droplet profiles under
different values of the solid-to-liquid density ratio γ = ρs/ρl .
It can be found from this figure that compared to the initial
liquid drop, the volume of droplet expands for γ < 1, shrinks
for γ > 1, and remains unchanged for γ = 1. In addition, the
expansion and shrinkage of the water droplet mainly occur
in the y direction, and only a little expansion and shrink-
age in the radial direction are observed during the freezing
processes, which is consistent with previous experimental
results [51].

To study the effect of surface wettability on the freezing
process, we conducted some simulations of droplet freezing
on a cold surface with different contact angle varying from
θ = 30◦ to θ = 160◦, while the droplet volume and other
parameters are fixed. In our simulations, a droplet with the
radius R is placed on a surface with contact angle θ , and
once the droplet reaches the prescribed contact angle θ , a
temperature field is applied. Figure 9 illustrates the effect
of contact angle θ on the dimensionless freezing time t∗ at
different values of the initial droplet radius R and solid-liquid
density ratio γ . As shown in this figure, it is obvious that the
freezing time increases with the increase of contact angle θ at
the same initial liquid volume, and the increase of volume also
leads to an increase in freezing time. We note that the similar
results have also been reported in some available numerical
simulations [52] and experiments [53,54].

Figures 10 and 11 show the final profiles of frozen droplet
at different contact angle, and the dashed line represents the
initial droplet with prescribed contact angle θ . It can be seen
that for γ < 1, the gas-liquid interface gradually expands
outward and eventually forms a conical tip at the top of the

FIG. 8. Effect of solid-to-liquid density ratio γ = ρs/ρl on frozen droplet shape at θ = 90◦; the dashed line represents the initial droplet
profile.
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FIG. 9. Effect of contact angle on the dimensionless freezing time t∗ of droplet at different values initial radius R: (a) γ = ρs/ρl < 1;
(b) γ = ρs/ρl > 1.

FIG. 10. Final shape of the frozen droplet at different contact angles θ : R = 40, Pr = 7.25, Ste = 0.25, Cp,g/Cp,l = 1.0, and Cp,g/Cp,s =
0.5; the dashed line denotes the initial solidification front.

FIG. 11. Final shape of frozen droplet at different contact angles θ : R = 40 for γ = 1.1 > 1, and the dashed line represents the initial
solidification front.
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FIG. 12. Evolution of rising bubbles with solidification, the gas, liquid, and solid phases are filled by the white, blue, and orange.

droplet for a larger contact angle. In contrast, the liquid-gas
interface gradually shrinks inward and shrinks in volume for
γ > 1, resulting in the formation of a distinct plateau at the
top of the droplet. In addition, a larger contact angle leads
to a smaller initial base radius and a larger initial height of
the droplet. The former reduces the contact area between the
droplet and the cold surface, while the latter increases the ther-
mal resistance. The combined effect of these two factors slows
the release of latent heat and the freezing process. Therefore,
a larger contact angle results in a lower thermal resistance,
which delays the freezing process.

In addition, the rate of freezing in this freezing stage
is mainly controlled by the rate of heat transfer from the

substrate to the droplet and the rate of dissipation to the
surrounding environment via convection. Considering that the
droplet is generally very small, the natural convection is prac-
tically weak and convective heat transfer can be neglected. In
this case, the freezing rate is then mainly controlled by the
rate of heat transfer between the droplet and the solid surface,
which is described by the following equation [55]:

dQ/dt = −hcL(Tw − T0), (49)

where dQ/dt is the heat transfer rate (J/s), hc is the heat
transfer constant (J/m2 s K), and L is the contact length (m).
According to Eq. (49), the heat transfer by means of con-
duction is proportional to the contact area or length. For the
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same volume of droplet, the contact area of surface with a
small contact angle is larger than that with a large contact
angle. Therefore, the thermal conductivity decreases with the
increase of contact angle, leading to a larger freezing time. We
note that these results agree well with previous experimental
and analytical results [19,52,54], which demonstrates that the
present LB method can accurately predict the freezing process
on the cold surfaces.

D. Rising bubbles with solidification

The evolution of gas bubbles during the solidification
process has been widely encountered in many engineer-
ing applications, such as metalworking and pharmaceutical
manufacturing [56,57]. Simulation of the solid-liquid-gas in-
teraction during the solidification process is a challenge due
to the complex interfacial dynamics, bubble deformation, and
heat transfer across the solid-liquid interface. Recently, Huang
et al. [58] used a consistent and conservative phase-field
model to study the solidification behavior of a liquid column
with three gas bubbles, and the numerical results show that
the two bubbles at the lower region are eventually captured
and frozen as two hollows, while the bubble at the upper
region rises upwards under the action of buoyancy force until
it breaks and merges with the gas-liquid interface. In this
part, to further demonstrate the applicability of present LB
method for the solidification process with gas bubbles, we will
simulate the freezing process of the liquid column containing
bubbles.

The simulations are conducted with a uniform computa-
tional mesh Lx × Ly = 4l × 3l . A liquid column with a height
of H = 1.8l is initially located at the bottom wall, and the
other region is occupied by gas [seen in Fig. 12(a)]. To be
smooth across the interface, the initial order distribution is
given by Eq. (46), the liquid column contains three circular
gas bubbles with the radii of 0.2l , 0.24l , and 0.3l from left
to right, and their centers are located at (l, 0.3l ), (2l, 1l ), and
(3l, 0.4l ). The initial temperature of the system is set to T0,
and a lower temperature Tw is adopted on the bottom wall.
The periodic boundary condition is applied in the horizontal
direction, the bottom and top boundaries are two solid walls,
and the bounce back and anti-bounce-back schemes are used
to treat the nonslip and Dirichlet boundary conditions of flow
and temperature fields. In addition, all the physical parameters
used in our simulations are Pr = 7.25, Ste = 0.02, λs/λl =
3.8, Cp,s/Cp,l = 0.5, and ρs/ρl = 0.9. Furthermore, the sur-
face tension force in Eq. (5) is modified by Fs = fsμφ∇φ,
which ensures that the surface tension force acts only at
the interface between the gas and liquid phases. Under the
assumption of the Boussinesq approximation, the buoyancy
force can be given as Fg = −ρ0gβ(T − Tref ), where g, β,
and Tref are the acceleration of gravity, volumetric expansion
coefficient and reference temperature, respectively.

Figure 12 plots the solidification process of liquid pool
with gas bubbles, in which the solid, liquid, and gas phases
are filled with the white, blue, and orange. In the initial
stage, the solidified phase begins to develop near the cold
substrate, and the freezing front gradually moves upward. As
the solidified phase grows, two bubbles located in the lower
region gradually form two hollows. Due to the lower thermal

conductivity of the gas phase than that of the liquid phase,
the solidification is slower right above the two trapped gas
bubbles, resulting in a V-shaped solid-liquid interface, as
shown in Fig. 12(l). At the same time, the gas bubbles at the
upper region gradually rise to the liquid-gas interface under
the action of buoyancy and eventually rupture. Finally, the
liquid pool completely solidifies, with two hollows formed
by two gas bubbles located in the lower region. We would
like to point out that the present results are in agreement with
those reported in Ref. [58], which indicates that the present
LB method can accurately capture the evolution of gas bub-
bles during the solidification process. In addition, the Mach
number (Ma = u/cs) is less than 0.1 in our simulations, which
can be used to reduce compressibility error and nonphysical
oscillation.

V. CONCLUSIONS

In this work we propose a phase-field LB method to simu-
late the freezing process in a gas-liquid-solid system where
the volume expansion or shrinkage caused by the density
difference between liquid and solid is considered through
adding a source term to the continuity equation. The model
is first validated by simulating the solidification of a liquid
column, and the results show that the proposed LB method
is accurate in the study of the liquid-solid phase change with
the volume change. Then the LB method is applied to inves-
tigate the freezing dynamics of droplet on a cold substrate,
and it is found that the present numerical results are in good
agreement with the experimental data. Furthermore, we focus
on the effects of several key parameters on the freezing of
sessile droplet on a cold surface, such as the solid-to-liquid
density ratio, the contact angle, and volume of droplet, and
find that the solidification time increases with the increase
of contact angle and droplet volume, which is consistent
with previous experimental results. In addition, the solid-to-
liquid density ratio has a significant influence on the evolution
of the droplet shape. For the case with volume expansion
(ρs < ρl ), the frozen droplet tends to form a conical shape
on the upper surface, while for the case with volume shrink-
age (ρs > ρl ), a distinctive plateau is formed at the top of
the frozen droplet. Finally, a more challenging problem of
liquid column solidification with bubbles is also considered,
and the rising and deformation behavior of bubbles during
solidification can be captured by the present LB method. The
numerical results show that the present LB method is effec-
tive and accurate in the study of the freezing/solidification
problems.
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