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Direct microstability optimization of stellarator devices
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Turbulent transport is regarded as one of the key issues in magnetic confinement nuclear fusion, both for
tokamaks and stellarators. In this work, we show that a significant decrease in a microstability-based proxy, as
opposed to a geometric one, for the turbulent heat flux, namely the quasilinear heat flux, can be obtained in an
efficient manner by coupling stellarator optimization with linear gyrokinetic simulations. This is accomplished
by computing the quasilinear heat flux at each step of the optimization process, as well as the deviation from
quasisymmetry, and minimizing their sum, leading to a balance between neoclassical and the turbulent transport
proxy.

DOI: 10.1103/PhysRevE.110.035201

I. INTRODUCTION

The stellarator is a class of fusion devices that can run
in a steady state due to the flexible shaping of the confining
magnetic field and the absence of current-driven instabilities
[1]. This inherent flexibility allows stellarators to be optimized
for a wide range of parameters, with W7-X [2] and HSX
[3] examples of the experimental realizations of such opti-
mization studies. One of the main difficulties in stellarator
optimization is the balance between neoclassical transport,
driven by trapped particles in a low collisionality regime, and
turbulent transport in the core, the latter being driven largely
by microinstabilities [4]. As an example, while W7-X has
successfully shown decreased neoclassical transport, as in the
tokamak case, turbulent transport is still limiting its energy
confinement time [5]. Indeed, turbulent transport is currently
one of the main limiting factors in the performance of mag-
netic confinement fusion devices. Although we are currently
able to predict turbulent transport in the core with moderate
accuracy, we still need an effective way to design machines
with low turbulent transport, specifically, microinstability-
driven turbulent transport [4,6].

In this work, we directly target both (1) the reduction of
the microinstability drive of turbulent transport, and (2) the
trapped particle losses driving neoclassical transport. As we
show here, depending on the weights used in the optimization,
a balance between the two types of transport is possible, and
magnetic field equilibria with reduced quasilinear heat flux
can be achieved. While previous optimization methods tar-
geted cost functions based on proxy functions relying solely
on the properties of the magnetic field equilibrium [7–9],

*Contact author: rogerio.jorge@wisc.edu

here, we do not rely on geometry-based proxy functions
to evaluate microstability and directly solve the gyrokinetic
equation at each iteration. This study shows gyrokinetic cal-
culations performed within the optimization at every iteration.
We note that, while in this study a particular numerical tool
is used to solve the gyrokinetic equation and extract its lin-
ear growth rates and eigenfunctions, the direct optimization
method employed here can be applied to other equilibrium
and gyrokinetic codes which model different instability types
and can easily be generalized to directly optimize turbulent
heat and particle fluxes.

The framework used in this work to assess microstability
is gyrokinetics. This is considered to be one of the main tools
to assess the stability of fusion devices at spatial scales on
the order of, or smaller than, the ion gyroradius ρi and at
frequencies lower than the ion gyrofrequency �i [10–12] and
is usually regarded as the most complete, yet numerically ef-
ficient, framework to treat strongly magnetized plasmas [13].
For this reason, we quantify instabilities in this work by solv-
ing the linearized gyrokinetic equation to obtain the growth
rates and corresponding eigenfunctions associated with the
underlying instabilities. The instability studied here is the
ion-temperature-gradient (ITG) mode, which is commonly
regarded as one of the most transport-relevant electrostatic
instabilities in tokamaks and stellarators [14,15].

The ITG mode develops on the ion gyroscale and is widely
recognized as one of the main candidates to explain the experi-
mental observations of anomalous ion heat turbulent transport
in the core of fusion devices [16] as corroborated by numerical
simulations [17–19]. The study of solely ion-driven instabil-
ities such as the ITG mode is performed by removing the
fast electron dynamics induced by electron inertia, meaning
that the electron density in our model follows the perturbed
electrostatic potential φ via the Boltzmann response. The
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ITG mode can also deteriorate plasma confinement in elec-
tron heating scenarios by creating ion temperature clamping
in low-power W7-X ECRH-only discharges without the use
of the pellet injection or the boron dropper, preventing the
heating of ions in the plasma core above 2 keV [20]. While
ITG can drive a certain amount of electron heat flux (usually
proportional to the driven ion heat flux), contributions to the
electron heat flux from trapped electron modes are expected if
the ITG is not sufficient to drive the electron heat flux imposed
by the applied heating power [21].

As an optimization criterion to stabilize the underlying
unstable modes, we choose our objective function J to be
a quasilinear estimate [4,22] for the heat flux fQ with the
growth rates γ and associated eigenfunctions calculated using
linear gyrokinetic simulations. The method employed here
can also be used with nonlinear gyrokinetic or fluid codes
by replacing the quasilinear estimate fQ with the nonlinear
heat flux Q computed by the respective code. This differs
from previous objective functions that also targeted the re-
duction of turbulent transport such as Refs. [7,9,23] as these
are solely based on properties of the equilibrium magnetic
field and not on direct evaluations of gyrokinetic simulations,
therefore requiring more assumptions about the geometry and
the underlying modes. We note that, while the peak growth
rate γ could be chosen as the objective function, we found
it not to be a reliable indicator of the nonlinear heat flux
due to the importance of smaller wave numbers [24]. The
reduction of neoclassical transport is performed by targeting
quasisymmetry, an invariance of the magnetic field strength B
that guarantees confinement of the collisionless trajectories up
to a threshold energy [25]. As shown in Ref. [26], it is indeed
possible to design stellarators with precise quasisymmetry
and achieve unprecedented levels of collisionless particle con-
finement and collisional transport for a thermal plasma. We
leverage such findings by adding to the objective function J
the term fQS defined in Eq. (1) of Ref. [26] as it is already in a
form ready to be used in a least-squares optimization method
and, unlike previous optimization metrics, it does not require
the calculation of Boozer coordinates [27] at each optimiza-
tion step. We note that the quasisymmetry metric fQS is, in
fact, a measure of the deviation of quasisymmetry. Therefore,
during optimization, we seek to minimize fQS.

II. METHOD

The growth rates γ are calculated using the GS2 code
[28–30] that solves the gyrokinetic equation

dh

dt
+ v‖b · ∇h + vd · ∇h = C + qF0

T0

∂χ

∂t
, (1)

coupled with the quasineutrality condition and Ampère’s law.
In Eq. (1), F0 is the equilibrium distribution function, h =
f − F0(1 − qφ/T0) is the nonadiabatic part of the distribution
function f , χ = 〈φ − v · A/c〉 is the gyroaveraged gyroki-
netic potential with φ the electrostatic potential, and A is the
magnetic vector potential. dt = ∂t + (c/B)[χ, ·] is the total
time derivative with [χ, h] = ∂χ/∂R × ∂h/∂R · b being the
Poisson bracket, vd = (b/2�0) × (2v2

‖b · ∇b + v2
⊥∇B0/B0)

is the drift velocity with B0 being the equilibrium magnetic
field, �0 = qB0/m is the gyrofrequency with q the particle’s
charge and m its mass, and C is the gyroaveraged collision

operator. To focus on ITG modes, we reduce the gyrokinetic
equation to its linear electrostatic flux-tube limit employing
the adiabatic electron approximation, solve it as an initial
value problem, and fit the temporal evolution of the absolute
value of the electrostatic potential to an exponential of the
form exp(γ t ) with γ the growth rate.

The GS2 code employs a Fourier decomposition of the
physical quantities in the x (normal) and y (binormal) direc-
tions with k⊥ = kx∇x + ky∇y the perpendicular wave vector
and r = (x, y, z) the spatial coordinates. Such coordinates
are based on the Clebsch representation for the equilibrium
magnetic field B = ∇ψ × ∇α with ψ the toroidal magnetic
flux and α a field line label on the flux surface defined in
Boozer coordinates (ψ, θ, ϕ) as α = θ − ιϕ with ι = dθ/dϕ

[1]. The coordinates are then defined as x = a
√

s with a a
reference length taken here as the effective minor radius of
the stellarator (see definition in page 12 of Ref. [31]) and
s = ψ/ψb where ψb is the value of ψ at the outermost flux
surface (otherwise known as plasma boundary), y = xα and z
a dimensionless coordinate along the field line.

The density and temperature profiles are assumed to de-
cay exponentially in x with a constant scale length Ln/a =
−d ln n/dx and LT /a = −d ln T/dx, respectively. For this
work, we simulate flux tubes with s = 0.25 and linearly
evolve modes with kx = α = 0 with a grid of ten values of
0.3 � ky � 3.0. However, we note that while the choice α = 0
is expected to lead to a peak of the modes mainly on the
outboard side [19] where the choice kx = 0 is likely to yield
growth rates at or close to the maximum one, this hypothesis,
when applied to the design of new devices, should be corrob-
orated a posteriori via nonlinear simulations at finite ky and
kx. The density and temperature profiles used are a/Ln = 1
and a/LT = 3, respectively, with a the minor radius, leading
to η = LT /Ln = 3, a typically used value in cyclone base case
scenarios [32]. The remaining input parameters for GS2 were
obtained by performing convergence tests for the initial and
final equilibria of each optimization in a similar fashion to
Ref. [33]. In particular, we use a total of five poloidal turns,
151 points along the field line and 35 points along the velocity
pitch angle variable λ.

We then write the quasi-linear estimate fQ for the heat flux
using a mixing length saturation rule [34]

fQ =
∑

ky

γ (ky)

〈k2
⊥(ky)〉 , (2)

where the sum is taken over all values of ky used in the
simulation, and 〈k2

⊥〉 = ∫
gyyk2

y |φ̂|2√gdz/
∫ |φ̂|2√gdz is the

flux-surface average of the squared perpendicular wave num-
ber with |φ̂| the amplitude of the mode and

√
g the Jacobian.

As shown in Ref. [4], such a quasilinear transport model
overcomes some of the limitations of the heuristic mixing
length estimate γ /k2

y by taking into account the extension of
the toroidal modes along z.

The components of the magnetic field equilibrium
relevant to compute both the geometric coefficients entering
Eq. (1) and the quasisymmetry objective function fQS

are calculated using the variational moments equilibrium
code (VMEC) [35]. VMEC finds a solution of ideal
magnetohydrodynamics (MHD) equation J × B = ∇P,
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with J = ∇ × B/μ0 the plasma current and P the plasma
pressure, by applying a variational method to the integral form
of the MHD equations. We run VMEC in fixed-boundary
mode where an MHD equilibrium is obtained by specifying
the last closed flux surface S as boundary condition
parametrized by two variables (θ, φ), namely an anglelike
variable termed the poloidal angle θ and the standard
cylindrical toroidal angle φ, respectively, allowing us
to define S = [R(θ, φ) cos(φ), R(θ, φ) sin(φ), Z (θ, φ)]
where R = ∑Mpol

m=0

∑Ntor
n=−Ntor

RBCm,n cos(mθ − nfpnφ) and

Z = ∑Mpol

m=0

∑Ntor
n=−Ntor

ZBSm,n sin(mθ − nfpnφ). In the Fourier
decompositions of R and Z , the sin and cos terms are set
to zero, respectively, to ensure stellarator-symmetry [36]
and nfp is the toroidal periodicity of the equilibrium. While
stellarator symmetry is, in principle, not necessary, it allows
us to restrict the total number of degrees of freedom while
still providing adequate optimized solutions. Given a plasma
boundary S, a plasma pressure profile P(ψ ), and a net toroidal
current I , VMEC seeks a solution of the ideal MHD system
of equations with nested closed flux surfaces.

The optimization algorithm, the calculation of the qua-
sisymmetry objective function, and the calculation of the
geometric coefficients that enter the gyrokinetic equation are
performed using the SIMSOPT code [37]. The independent vari-
ables for optimization are the boundary Fourier coefficients
{RBCm,n, ZBSm,n} excluding RBC0,0 which is set to one to
fix the spatial scale. We use as initial condition the precise
quasihelically (QH) symmetric configuration of Ref. [26] with
n f p = 4 and set to zero all surface modes with m � 1 and
|n| � 1. Finally, in order to keep the same aspect ratio as
the provided initial condition to the optimization, we add
to the objective function J the term fA = (A − A∗)2 where A is
the aspect ratio of the configuration computed at each iteration
and A∗ = 8 the target (initial) aspect ratio. The final objective
function is then given by

J = ω fQ fQ + fQS + fA, (3)

where ω fQ is the weight given to the minimization of fQ.

III. RESULTS

We first perform a parameter space scan to guide the
choice of our optimization algorithm. Namely, we assess
the dependence of the quasisymmetry cost function fQS and
the quasilinear estimate fQ on the geometry of the magnetic
field by performing a scan on the RBC0,1 boundary mode
in the range (−0.2, 0.2), a range of values where VMEC is
able to yield converged with a tolerance of FTOL = 10−14

with 131 radial points within 7000 iterations on the initial
QH configuration where RBC0,1 = 0.180. This is shown in
Fig. 1 with the value of fQ illustrating microstability in blue
and the value of fQS illustrating quasisymmetry in orange. We
find that while there are only two local minima of fQS, the
cost function fQ contains many local minima with its global
minimum at a different location than the global minimum
of fQS. Therefore, when performing optimization studies on
both quasisymmetry and microstability, a compromise on the
level of quasisymmetry is expected. Given the fact that the
local minima of fQ and fQS appear to be well separated,
and that the roughness of the cost function fQ does not lead

FIG. 1. Quasilinear estimate fQ (noisy, lower line) and quasisym-
metry cost function fQS (smooth, upper line) as a function of the
surface shape parameter RBC0,1 for the quasihelically symmetric
configuration used as initial conditions for the optimization.

to large jumps in fQ for small changes of RBC0,1, we use
a local optimization algorithm instead of a global optimiza-
tion algorithm. This leads to a more efficient optimization
method but it may not result in the global minimum of the
objective function found. However, as it is shown below, the
solution found is able to fulfill our desired criteria. The op-
timization is carried out using the Python library Scipy [38]
for nonlinear least-squares minimization by employing the
Levenberg-Marquardt method. Gradients are computed using
finite differences, with Message Passing Interface (MPI) for
concurrent function evaluations where, at each iteration, both
the magnetic field inside the boundary (using VMEC) and the
gyrokinetic simulations (using GS2) are computed within the
SIMSOPT framework. In order to steer the optimizer away from
the many local minima present in fQ and still be able to use
finite differences, we use a large value for the relative �r and
absolute �a step sizes and perform two extra optimization
to refine the minimum found. Due to the smallness of the
degrees of freedom with increasing Fourier modes, for a given
maximum mode Mpol, we use �r = 0.015/Mpol and �a =
min[0.003, (Mpol/5) × 10−Mpol ] in the first optimization, then
decreasing �r and �a by a factor of 10 and 300 for the two
ensuing optimizations, respectively. We note that the study in
Fig. 1 is performed by varying a single parameter and the
extrapolation of such findings to other optimization parame-
ters would need a multi-dimensional survey. Therefore, an a
posteriori examination of the growth rates and is performed
to assess the effectiveness of this optimization procedure.

We perform five optimization studies. The first targets
only quasisymmetry by setting ω fQ = 0 and will be
used as a benchmark case. The resulting optimization is
shown in Fig. 2 (left). The remaining studies target both
microstability and quasisymmetry simultaneously and set
ω fQ = 0.1, 1, 10, and 100. The resulting optimization for
the value of ω fQ = 10 is shown in Fig. 2 (right). The overall
optimization was done in an iterative fashion, namely,
an optimization with large and smaller step sizes was
performed at each of maximum surface Fourier modes
Mpol = Ntor = 1, 2, 3, 4. A further increase of Mpol and Ntor

resulted in negligible improvements in the objective function
in the ω fQ = 10 case. Therefore, the resulting configurations
have only surface Fourier modes up to m � 4 and |n| � 4.
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FIG. 2. Top: Magnetic field configuration optimized for qua-
sisymmetry with ω fQ = 0 (left) and the configuration optimized for
quasisymmetry and microstability with ω fQ = 10 (right) where the
color shows the magnetic field strength on that surface. Bottom:
Field strength on an s = 0.245 flux surface in Boozer coordinates
for ω fQ = 0 (left) and ω fQ = 10 (right).

The initial values of fQS and fQ are 1.412 × 10−1 and
1.346 × 10−1, respectively. We find that, for the cases of
ω fQ = 0, 0.1, 1, 10, and 100, the quasisymmetry objective
function increases from fQS =2×10−4 to 4×10−4,

1.11×10−2, 1.171×10−1, and 2.966×10−1, respectively,
while the microstability objective function decreases from
fQ = 1.92 × 10−1 to 1.91 × 10−1, 1.63 × 10−1, 1.12 × 10−1

and 1.01 × 10−1, respectively. In order to assess the
deterioration in quasisymmetry, we show in Fig. 2 (bottom)
the contours of the magnetic field strength at s = 0.245
with the deviation from straight lines appearing in the
second case (optimization for microstability). On the other
hand, the enhanced microstability properties of the resulting
configuration are evident even at values of Ln and LT outside
the ones used for the optimization, and for several flux tubes
and radii, see Fig. 3.

The properties of the five different configurations obtained
from the optimizations at ω fQ = 0, 0.1, 1, 10, and 100 are
now assessed. We compare in Fig. 4 the rotational transform
ι (top left), cross sections at a cylindrical angle φ = 0 (top
right), and geometry coefficient |∇ψ |2 (bottom) between the
different configurations. We find that, as microstability is fa-
vored with increasing ω fQ , the rotational transform decreases
and, comparing with ω fQ = 0 and 0.1, there is a finite mag-
netic shear. We note that magnetic shear has been associated
with turbulence reduction, see Refs. [39–41]. Furthermore, it
is found that the cross sections become more circular and,
therefore, have less surface compression, as ω fQ is increased.
Finally, as shown in Fig. 4 (bottom), the maxima of the
metric tensor coefficient |∇ψ |2 are seen to decrease as the
value of ω fQ increases. This parameter represents flux surface
compression and plays a role in ITG turbulence as it is the
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FIG. 3. Top: Comparison of the quasilinear estimate for the heat flux between the configuration optimized for ω fQ = 0 (left) and ω fQ =
10 (right) for several profile scale lengths Ln and LT . We note that the stability (dark blue color) observed in the lower right corners is a
characteristic of the adiabatic electron assumption employed here. Bottom: Similar comparison at fixed a/Ln = 1 and a/LT = 3 for different
field line labels α and surfaces s corresponding to different fluxtubes.
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FIG. 4. Radial profiles of rotational transform ι (top left), cross-
sectional cuts of the plasma boundary at cylindrical angle φ = 0 and
metric tensor coefficient gψψ = |∇ψ |2 along a field line (bottom) for
the five optimization cases considered here at ω fQ = 0, 0.1, 1, 10 and
100. R and Z are shown in units of the major radius R0, here taken as
R0 = 1m.

coefficient of the ion radial heat flux Qi ∝ −|∇ψ |2dTi/dx
[7].

We now perform an a posteriori assessment of the neoclas-
sical and quasilinear transport of the optimized configurations,
free-boundary standard configuration of the W7-X device [42]
and the free-boundary configuration of the HSX device [3].
Both the W7-X and HSX files consist of the vacuum configu-
rations taken from the public repository in Ref. [43]. We start
with a comparison of the quasilinear proxy fQ between the five
different optimizations and the W7-X device. This is shown
in Fig. 5. Here we find that a precise QH configuration with
four field periods has a larger quasilinear flux than W7-X. A
similar conclusion holds for the maximum growth rates and
for different flux tubes. However, the fQ decreases to levels
similar to W7-X for ω fQ = 10, and reaches even lower values
for ω fQ = 100. Additionally, we note that the optimization
performed here also led to similar, or possibly higher, fQ

critical gradient values of a/LT for the case of ω fQ = 10 when
compared with other values of ω fQ .

1 2 3 4 5 6
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0.2

0.3
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f Q
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ωfQ
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ωfQ
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ωfQ
= 1.0

ωfQ
= 0.1

ωfQ
= 0.0

FIG. 5. Comparison of the quasilinear estimate fQ from Eq. (2)
between the standard configuration of W7-X, HSX, and the five
optimizations carried out here at ω fQ = 0, 0.1, 1, 10 and 100 as a
function of the minor radius a divided by the gradient scale length of
the ion temperature a/LT .

As a metric for neoclassical transport, we use the parameter
εeff, as ε

3/2
eff scales with the diffusive transport of trapped par-

ticles in the long-mean-free-path collisionality regime. This
quantity is computed using the NEO code [44]. In Fig. 6 (bot-
tom) we show the value of εeff for the standard configuration
of W7-X, HSX and the optimizations performed in this work.
We see that the values of εeff for the ω fQ = 10 microstabil-
ity optimized case is within the range of current optimized
experiments such as the HSX [3] and W7-X [42] devices,
with smaller (larger) εeff values for smaller (larger) ω fQ , as
expected. Regarding fast particle confinement, we assess in
Fig. 6 (top) the fraction of lost particles to the surface by
tracing the guiding center motion of 3500 test particles initial-
ized isotropically on the s = 0.25 surface followed using the
SIMPLE code [45] for 0.01s. For this case, the configurations
are scaled to the same minor radius 1.7m and field strength
on-axis of B0=5.7T of the ARIES-CS fusion reactor study,
in a similar fashion as in Refs. [26,46]. We find that the
optimization cases with ω fQ up to ω fQ = 1 lead to no loss of
particles, while optimizations with ω fQ > 1 have finite loss
fractions, with a maximum of 4.5% at ω fQ = 100, showing
that reducing ITG growth rates in QH stellarators comes at the
expense of poor particle confinement due to the degradation of
quasisymmetry.

IV. CONCLUSIONS

In this work, for the first time, microstability is taken into
account in the optimization of quasisymmetric magnetic field
configurations using first-principles gyrokinetic simulations.
We were able to significantly reduce the quasilinear estimate
for the heat flux, although at the cost of larger neoclassical
transport. Notwithstanding, the resulting fast particle loss is
still smaller than most stellarator designs to date and with
similar levels of neoclassical transport. An extension of the
framework introduced here to directly optimize for turbulent
transport by replacing a quasilinear estimate for the heat flux
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FIG. 6. Top: Fraction of 3.5 MeV alpha particles from a total of
3500 that are lost at 0.01s the plasma boundary s = 1 when started
isotropically at s = 0.25. Bottom: Relative levels of neoclassical
transport for a thermal plasma in the 1/ν regime, measured using
the effective helical ripple quantity εeff , between the configurations
found in this work and two of the most recently built stellarators,
the quasihelical symmetric HSX machine and the quasi-isodynamic
W7-X machine.

with its nonlinear counterpart will be the subject of future
work. Furthermore, additional optimization targets, such as
MHD stability, can be added to the objective function used,
which might impose additional constraints on the magnetic
field geometry.

The data supporting this study’s findings are available in
Zenodo [47].
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